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Abstract- A rapidly emerging model in the field of 
adaptive computing is the symbiosis of human 
expertise with evolutionary algorithms for user 
controlled and directed search.  The two aspects in 
any EA are the selection of individuals to reproduce 
based on some measure of their quality or fitness and 
the application of variation operators to produce new 
solutions. In the context of interactive evolution these 
aspects are compounded by the need for rapid 
convergence to prevent user fatigue and to provide the 
user some control over the generation of new 
solutions. Elsewhere [5], we have examined different 
policies for best incorporating the user into the 
evaluation and selection process.  In this paper we 
explore the hypothesis that user assigned fitness 
represents a source of information that can be used to 
control the variation process: effectively to broaden 
the search if none of the current solutions is 
promising, or focus the search and improve 
convergence speed in the vicinity of a good solution. 
The main aims of this study, therefore, are to analyse 
the advantages of using a user directed adaptive 
mutation strategy over fixed mutation step sizes in 
terms of time to converge and robustness of the 
resulting solution. We present results showing a 
qualitatively different type of search process can be 
obtained by using the user assigned fitness to control 
the nature of the mutation process. There is also a 
synergy between user-based selection and fitness-
based mutation control which out performs either 
system on its own.  

1 Introduction 

A rapidly emerging model in the field of adaptive 
computing is the symbiosis of human expertise with 
evolutionary algorithms for user controlled and directed 
search. This field of interactive evolution has been 
expanding into numerous and varied application areas 
since Dawkins introduced the evolution of “biomorphs” 
using subjective selection [1]. In reviewing the literature, 
applications using “interactive evolution” were found to 
range from generating Jazz solos [2] to personalising 
hearing aid characteristics [3]. In [4] Takagi divides 
research based on interactive evolution in three major 
fields - artistic, engineering and educational and lists 89 
references demonstrating the scope of this idea. Human 

expertise is exploited in terms of its unparalleled 
creativity and ability for pattern recognition. Interactive 
evolution is particularly appropriate for the optimisation 
of a quality metric which is difficult to mathematically 
define and possibly subject to change over a period of 
time, but can be assigned by a human on the basis of tacit 
expert knowledge.  However, by including a human in the 
loop, a key requirement is consequently introduced: the 
need for rapid convergence to prevent the interactive 
process from becoming tedious for the human participant.  

The reliance on human guidance and judgement to 
direct and control the search creates both the potential 
weaknesses and strengths. On one hand, human 
assessment tends to have a component of subjectivity and 
non-linearity of focus over time [5] but at the same time 
the ability to manoeuvre the search interactively could be 
exploited as a powerful strategy for adapting an otherwise 
naive evolutionary algorithm.  

The work in this paper stems from the development of 
an automatic surface inspection system for classifying 
defects in sheet steel. In the first instance this involves 
identifying regions of interest (ROI) on the surface of the 
steel. Delineating regions of interest, and being able to 
identify them as defects, involves being able to separate 
them from the background accurately.  This segmentation 
process is crucial, as the next step involves extracting 
appropriate descriptors, or features, for these regions 
which are then used for the classification. The main 
problem associated with segmentation arises from the 
noisy nature of the surfaces, in terms of amount of debris 
and an inherently irregular natural texture.  Due to the 
nature of the defects found most commonly on hot rolled 
steel surfaces, there is often a compromise between 
segmenting the whole defect accurately and falsely 
segmenting areas of the noisy background. In these cases, 
the decision on the location of the segmentation 
boundaries is a compromise to give an acceptable level of 
ROI extraction over a whole set of images, using a single 
set of image processing parameters. This problem may be 
further complicated by the fact that the end user 
specifications of the segmentation might vary over time in 
non-quantitative terms. In such situations, it is not 
possible for the system to be delivered with a universal set 
of parameters and therefore the system needs to have the 
ability to be re-tuned easily and effectively by the user. 

One possible solution is to use Evolution Strategy (ES) 
[7] to search the space of image processing parameters 
and to evolve an optimum set based on the user’s visual 
evaluation and grading of the resulting segmentation. 



Typically in an ES a set of λ offspring are created by 
mutation from µ parents, with λ/µ  in the range 5-10. 
These are then evaluated, and a new set of parents for the 
next generation is then selected as the best  µ of the 
offspring (comma strategy) or of the union of the 
offspring and parents (plus strategy). In a previous paper 
[5] we showed the advantage of using a plus strategy over 
a comma in terms of reduced convergence time with 
comparable accuracy figures for resulting solutions. In 
addition, the relationship between consistency of user 
scoring and the progression of the run were analysed. 
There was a more significant reduction in consistency at 
the end of a run for the comma strategy than for the plus. 
All the experiments were conducted using a fixed 
mutation step-size, which clearly does not exploit the 
information regarding the quality of the solution that the 
user supplies, and is inevitably a compromise between 
exploration and exploitation.  In this paper we explore the 
hypothesis that this information can be used effectively to 
broaden the search if none of the current solutions is 
promising, then to focus the search and improve 
convergence speed in the vicinity of a good solution. By 
immediately linking mutation parameters to user 
preferences, we save the time taken to evolve suitable 
parameters in self-adaptive systems, which is imperative 
in our time-constrained system. The main aims of this 
study, therefore, are to analyse the advantages of using a 
user directed adaptive mutation strategy over fixed 
mutation step sizes in terms of time to converge and 
robustness of the resulting solution.  

2 Background 

The method that was found to perform consistent and 
robust region detection for the steel images was 
developed using texture based segmentation. Texture 
describes the spatial distribution of sub-patterns of grey 
levels in an image, these sub-patterns are also called 
texels. Visually, texture can be described as fine, coarse, 
smooth, speckled etc. Mathematically, one of the ways in 
which textural information can be extracted is by 
computing the statistical relationships of the spatial 
distribution of the texels [6]. This involves the calculation 
of a set of grey level co-occurrence matrices (GLCMs) 
from which textural features, that is statistical measures 
that relate to characteristics such as homogeneity, 
contrast, correlation, variance and entropy, are calculated. 

The segmentation strategy involves the image being 
simultaneously processed by two texture derivation 
modules. The two resultant texture images are 
normalised, low-pass filtered, and thresholded to extract 
the ROI, then recombined using a logical OR function. 
The variables that need to be specified for calculating the 
texture image include the texture measure, the size of the 
sliding window in which the texture parameter is 
calculated, sliding window step size, the distance between 
co-occurrence samples and a threshold value. 

Objectively assessing the reliability and speed of the 
evolution of segmentation parameters necessitates having 
a standardised and quantified set of images to conduct the 
experiments. A set of 10 images were created each with 
an embedded defect of a different irregular shape and 
size. The edges of the defect were blended with the 
background texture using a non-linear gradient around the 
perimeter of the defects. The aim was to create a set of 
images with a high level of technical complexity, and 
ambiguity with regards to visual clarity of the boundaries 
of the defects, which were comparable to the steel images. 
Unless otherwise stated, all the experiments described 
here were conducted using the synthetic set of defect 
images. 

An accuracy metric was formulated which gave a 
standardised measure by which segmentations using the 
different parameter sets could be compared. This metric 
gives equal weight to all previously identified ROI, and 
both under and over segmenting of the ROI are penalised 
equally. It is only possible to use it with known annotated 
data. The form is:  Accuracy = ( Nc   / Ns ) * ( Nc  /Nd  ) 

where Nc  is the number of correctly segmented pixels, 
Ns  is the total number of segmented pixels, and Nd  is the 
number of ROI pixels in the known defect. Theoretically, 
using this metric a perfectly segmented image will 
achieve an accuracy of 1.0.  Due to the highly textured 
nature of the background, and the merging of the defect 
using a non-linear gradient along the perimeter of the 
defect with the background, achieving a “perfect” 
segmentation, is not possible. However, it should be 
noted, an image segmented to a high standard, and 
visually discernable as being such, has a correspondingly 
high accuracy score [5]. As can be seen from figure 1, a 
parameter set scoring 0.663, calculated using the accuracy 
metric, results in a near perfect segmentation (for clarity 
the width of the segmenting line has been increased). 

It should be noted that use of equal weighting and 
penalties is only one possible option in terms of user 
preference. There might be situations when users might 
not be interested in identifying a particular category of 
defect, or were more concerned about failing to segment 
defects than about falsely segmenting background noise. 
In this case the metric would have to be recalibrated, 
which might be non-trivial – hence our interest in 
interactive evolution. 

3 Methodology 

This section describes the algorithm used to implement 
the evolution strategy using training based on user- and 
system-scoring (auto-scoring). Given the extent of 
interaction between the (real-valued or integer) 
parameters, the search space is suspected to be highly 
complex and is known to contain several local minima, 
prompting the use of (µ, λ) or (µ + λ) evolution strategies 
for generating optimised parameter sets.  



 
Figure 1 System Accuracy scores for segmentations resulting 
from different parameter sets. System Accuracy = 0.117 (top), 
0.242 (middle), 0.663  (bottom). 

Two key issues constrained the number of offspring, λ. 
The first was monitor size and resolution, which coupled 
with the visual clarity required for segmentation placed a 
limit on the number of images that could be 
simultaneously displayed. The second issue was time 
constraints, namely that the user’s availability and, more 
importantly, their mental concentration, limits the number 
of evaluations that can be conducted at each generation. 
In [5] we examined the use of (1, 8) and (1+7) strategies 
to select one parent, and used eight images per generation. 
The plus strategy was found to result in faster 
convergence time without compromising the solution. In 
this study each individual is comprised of 2 sets of 
variables, one for each of the 2 texture modules. Each set 
of variables includes a texture option, the height and 

width of the sliding window and a threshold value, which 
makes a total of 8 variables in each individual. The 
increment, orientation and sample distance were fixed at 
2, 0 and 1 respectively. A given set of values for each of 
these variables will collectively be referred to as a 
parameter set or offspring. 

During the user scoring phase, (i.e. the interactive 
assignment of fitness values to the parameter sets), a 
screen displays 8 segmented images arising from the 
application of the parameter sets of the current generation 
to one of the images. The user then assigns a quality 
rating, between 0 and 10, to each of these. An option is to 
evaluate more than one image per generation. In this case 
the system or the user selects another image which is 
segmented and scored using the same set of 8 parameter 
sets. After all images have been segmented and the results 
scored in this way, the system averages the allotted scores 
for each offspring over all the images for the 
corresponding parameter set. An automatic version, 
without any user intervention, of the above system was 
also used, where the accuracy metric was used to generate 
a score for each solution. In both cases the parameter set 
with the highest score is the parent for the next 
generation.  

Each set of variables within the offspring is created by 
mutation from the corresponding ones in the parent, and 
the design of the mutation operator takes into account that 
there is a linkage that exists between the variables within 
a parameter set, for example between the texture measure 
and the size of the window. Maintaining a reasonable 
level of linkage during mutation ensures the propagation 
of good solutions, so it is important to maintain this, while 
still allowing for reasonable levels of perturbation, in any 
mutation strategy adopted.   

The following mutation strategy is designed to take the 
above limitations into account without compromising 
efficiency of the search. Each set of variables within the 
offspring is created by mutation from the corresponding 
ones in the parent as follows: 
- With probability pm, a new random texture option is 
chosen, also a new threshold is randomly chosen 
uniformly from (Tmin, Tmax) and the height and width of 
the sliding window chosen at random uniformly from 
(Wmin, Wmax). (Tmin, Tmax) being the minimum and 
maximum logical values for the threshold. (Wmin, Wmax) 
being the minimum and maximum logical values for the 
height and width of the sliding window. 
- Otherwise the texture option from the parent is retained 
but the threshold and the window height and width are 
mutated by the addition of random deviates from N(0, σ1) 
and N(0, σ2) distributions respectively. Both σ1 and σ2 are 
a given percentage of the range of the respective variable.  

The process continues until either a set of parameters 
results in segmented images attaining a target score of 10, 
or the user decides that no further progress is being made. 
This is of course a subjective judgement affected by 
factors such as the other demands on the user’s time, and 
their perception of the speed of the process. 



4 Review of Results on User-Evaluation 

    In [5] we reported on experiments evaluating the 
efficiency of comma or plus strategies in terms of reduced 
convergence times using the synthetic images.  Various 
training sets comprising of 3 images per generation were 
used, and a fixed mutation step size (MSS), σ  = pm = 15 
was found to yield reliable results. Pooling the results 
from all runs, the median number of generations were 19 
and 8 for the comma and plus strategies respectively. 
Based on the results of the non-parametric Wilcoxon test, 
we can say that with 92% confidence the plus strategy 
leads to shorter mean run times. 

Human assessment is likely to have a high component 
of subjectivity and non-linearity of focus. It is important 
to assess whether, and to what extent, the efficiency of the 
evolutionary search is compromised by introducing too 
much noise in the form of human assessment. This 
implies that in the first instance it is necessary to analyse 
the nature of the variability of the human assessment. To 
this effect, user scoring behaviour in terms of consistency 
over the period of a run was analysed by splitting the 
number of generations in each run into thirds to define a 
beginning, middle and end stage for each run and then 
calculating correlation coefficients between the user score 
and system accuracy values. These experiments were 
conducted for both the comma and plus strategy. Median 
values of user scores for runs conducted using the plus 
strategy show a more marked increment between stages 
and are higher than those using the comma strategy 
indicating a possible loss of good solutions in the latter. In 
addition, correlation coefficients were calculated to assess 
the correspondence of user scores with system accuracy. 
These showed that the plus strategy showed higher 
correlation in each phase than the comma, the latter in 
particular falling off in the final stages, suggesting a 
lowering concentration. 

One of the potential disadvantages of interactive 
evolution is the relatively high commitment and reliance 
on user time for scoring the images. It is therefore 
important to determine if adequate levels of accuracy and 
generalisation can be achieved using a fewer number of 
training images at each generation. In [5] we presented 
results for the plus strategy obtained using 3 images per 
generation and one image per generation, where the single 
image was held constant, or was randomly selected each 
generation. It was shown that using just one random 
image per generation resulted in comparable accuracies as 
using three images per generation. It is also important to 
note that the time taken to reach this level of performance 
is reduced when only one image is used per generation as 
opposed to three. 

5 Results for Different Mutation Policies 

As stated earlier, preliminary experiments showed that 
the system was relatively robust using the initial value of 
15% for mutation step size, σ, and probability of 

mutation, pm.  Having established correlation between the 
system accuracy and user scores, and robustness of 
training sets, the effects of different values for σ and pm 
were investigated in more depth. An automated version of 
the system was developed which enabled the finding and 
verification of appropriate values of parameters 
controlling the ES algorithm. The automation was in 
terms of using the accuracy metric, which allowed the 
scoring of the segmented images in the training set and 
test sets to be allocated by the system. In the first instance 
this was used to evaluate different fixed mutation rates in 
order to select one which resulted in the shortest 
convergence times. Six different mutation step sizes, σ ∈ 
(5, 10, 15, 20, 25, 30), were tested. At every generation 
each parameter set had a fitness assigned by scoring a 
segmentation of a randomly chosen image from the 
training set. It also had a "test" accuracy calculated by 
averaging the auto-scores from segmenting images of a 
separate test set. This was unseen by the algorithm other 
than as the termination criterion. 

The results shown in Figure 2 were obtained using 
selection based on auto-scoring one random image out of 
the training set per generation. Ten runs for each mutation 
step size value were made. The values for the number of 
generations/run shown in figure 3a were derived by using 
a cut-off point for the test set accuracy of > 0.6. This cut-
off value was judged as being reasonable due to the fact 
that a system score of 0.6 using the accuracy metric for a 
set of test images, results in a segmentation that is visually 
perceived as almost perfect. As can be seen from figure 
3a, the box plots show that there is high level of 
variability between the results of runs obtained using the 
different mutation step sizes. Comparing the box plots 
showing the number of generations in each set, it can be 
seen that a fixed mutation step size of 15 results in 
relatively lower runs lengths.  Using a one way ANOVA, 
the probability that these results are not significantly 
different is 0.0147.  The p value from the non-parametric 
Kruskal-Wallis test was 0.0047, confirming that there is a 
statistically significant difference in the mean number of 
generations using the different mutation step sizes. 

Figure 2 Run length statistics with Fixed mutation step 
sizes and auto-scoring, termination when test score >0.6. 



In order to investigate the benefits of user-directed 
mutation rates, we created four functions with very 
different profiles for mapping accuracy scores to 
corresponding mutation step sizes, σ. These profiles were 
generated on the basis of the experiments using the 
different fixed mutation step sizes and the range of 
concave to convex shapes were designed to explore the  
region of the typical U-shaped curve obtained by 
graphing the means of the fixed mutation step sizes. Each 
of these was created by choosing a set of mutation rates 
for different integer evaluation scores, and then fitting a 
polynomial curve to these to provide for the cases when 
averaging produces non-integer scores.  The curves used 
are shown in Figure 3, As can be seen, all vary between 
random resetting (i.e. mutation probability of 0.5) for 
segmentations scored at 0, through to no change for 
perfect segmentations. F2 is near linear, F4 and F1 are 
concave (thus reducing the mutation probability for low 
scores), and F3 has the reverse effect, with the probability 
of substantial change in parameters kept high until the 
user allots a relatively high score.  

In the first instance, it was necessary to establish 
which of the four mutation profiles gave the best results. 
In order to do this efficiently, the auto-scoring system was 
used. 

 
Figure 3 Mutation Step Size Function Curves. Starting from 

bottom for evaluation score 5, order of curves is F4, F1, F2, F3 

From previously conducted experiments it was 
observed that the maximum system accuracy obtained 
using auto-scoring was 0.75. This prompted a need to 
scale the accuracy metric score allotted to the training 
image so that it was in the range 0 to 10, which would 
result in an equivalent coverage of the range of mutation 
rates as during the human-scoring. The experiments were 
performed using one random image from the set of 5 
training images at each generation, which has been found 
to result in robust solutions comparable with those using 3 
images per generation and has the advantage of efficiency 
in terms of utilising less of the user’s time. 

Ten runs were conducted for each variable MSS 
function with auto-scoring using a cut-off point for the 
test accuracy of 0.6 as before. The results shown in Figure 
4 suggest that functions F1 and F4 generate the best 
results in terms of lower run lengths. Although the 
difference in mean run length is not statistically 

significant, the worse case, as indicated by the upper 
quartiles is. This is sufficient rationale to favour F1 and 
F4. 

 
Figure 4 Run length statistics with auto-scoring and 

different functions for adaptive MSS, termination when 
test score >0.6.  

Having established that F1 and F4 were the most 
promising adaptive mutation strategies using system 
scoring, they were then compared to a fixed MSS of 15 
with user scoring, again using one random image from a 
set of 5 per generation. These results are shown in Figure 
5. As can be seen, a fixed MSS of 15 may be faster for 
synthetic images but the results using an adaptive 
mutation strategy based on attenuation curve F1 are not 
significantly worse. Furthermore, as Figure 2 shows, it 
was necessary to get the right fixed mutation rate and this 
will of course be problem dependant.  

  Figure 5 Comparison of Fixed and Adaptive Mutation Using 
User Scoring 

In addition to removing the problem-dependence of 
the fixed mutation rates, there is also the possibility that 
knowing the underlying mutation strategy may influence 



the user’s choice of scores to allot, in order to implicitly 
control the rate of exploitation vs. exploration. Figure 6 
shows a side by side comparison of the run-lengths using 
adaptive mutation strategies with system and user scoring 
for F1 and F4, it can be seen that these are considerably 
lower in the user scoring scenario.  For F1 we can say 
with 73% confidence that user scoring results in reduced 
mean run times, and for F4 we can say the same with 98% 
confidence. This certainly suggests that there is some kind 
of synergy, whereby the user allocates scores to 
“promising” segmentations in order to fine-tune the 
search around that set of parameter values. 

 
  Figure 6 Comparison of System and User Scoring Using 
Adaptive Mutation 

In order to analyse and visualise the convergence 
curves using the fixed and adaptive mutation strategies 
we created plots of the percentage of time in a run spent 
at different score levels relative to the run length and then 
aggregated over all the runs for each set of experiments. 
These reveal the adaptive strategy showing rapid progress 
to the maximum user score (i.e. high exploitation with 
lower mutation rates) once a good region has been 
identified, but before that there are proportionally longer 
periods of low scores indicating widespread search 
(exploration via higher mutation) (see Figure 8).  

 
Figure 7 Percentage of time spent at different scoring 

levels with user scoring and fixed MSS.  

In contrast the fixed mutation strategy is often seen to 
have a drawn out end-game, taking time to fine tune 

because the fixed mutation rate has to be high to balance 
exploration with exploitation, as can be seen in Figure 7. 

 
Figure 8 Percentage of time spent at different scoring 

levels with system scoring and adaptive MSS.  

To explore whether this is just a characteristic of user 
scoring or a trait of using the adaptive mutation strategy, 
the convergence curves of the fixed and adaptive 
mutation strategies using system autoscoring were 
compared, the run-length being taken as the point at 
which the score on the test set went above a threshold of 
0.6. The system-allotted fitness vs. time for each run in 
shown in Figures 9a and 9b, median filtered for clarity.  

 
Figure 9 Run progression with system scoring.  (a -

top) fixed MSS of 15, (b- bottom) adaptive F1  



As can be seen the same effect is noticeable, albeit 
slightly obscured by that fact that in one run with adaptive 
scoring (9b) the system finds a good quality solutions, 
and then apparently abandons it to do more exploration. 
This would not be possible with a plus selection strategy, 
but does illustrate escape from a local optimum. The 
pattern is more clearly evident by viewing the results 
aggregated as a percentage of time in a run spent at 
different score levels relative to the run length (Figure 
10). 
 

 

 
Figure 10 Comparison of System scoring profiles 

between fixed and adaptive MSS as percentage of time 
spent at different scoring levels. 

 
The final test of the interactive evolution strategy 

using adaptive mutation was the segmentation of the steel 
images. Assessments were on the basis of convergence, 
mean number of generations to achieve convergence, and 
generalisability of the solutions. Initial results showed that 
using one random image per generation took too long to 
generalise over different defect classes for the user to 
maintain concentration. So for this experiment 3 
representative images were selected for training. The 
images had varying intensity backgrounds with bruises of 
different forms. Figure 11 shows the application of one of 
the successful parameter sets on two test images. It is 
significant to note that the “rolled in scale” in figure 11a 

has been identified as one entity, and the bruise in figure 
11b includes the concave depressions on either side of the 
central depression. The inclusion of both these 
characteristics in the segmentation will enhance the 
reliability of the classification of the defect types. 

The median number of generations to reach a 
maximum user score of 10 using 3 training images per 
generation for five runs was 11. This took about 1 hour 
on a 3GHz PC. Future work will consider other means to 
reduce this to a practical timescale such as seeding the 
search with good solutions and using fewer images per 
generation. 

 
Figure 11 (a) Rolled in Scale (b) Bruise 



6 Conclusions  

The two aspects in any EA is the selection of 
individuals to reproduce based on some measure of their 
quality or fitness and the application of variation 
operators to produce new solutions. In the context of 
interactive evolution these aspects are compounded by the 
need for rapid convergence to prevent user fatigue and 
inconsistency and to provide the user some control over 
the generation of new solutions. Elsewhere [5], we have 
examined different policies for best incorporating the user 
into the evaluation and selection process.  

When using a fixed mutation rate there is a trade-off 
between having a value which is sufficiently high to 
permit rapid exploration of the space of possible solutions 
early in the run, and also escape from local optima, whilst 
at the same time not being so high that it is difficult to 
achieve fine-tuning (exploitation) at the end of the run. 
Reviewing the literature on EA research it can be seen 
there has been significant effort expended into solving 
this problem by varying the mutation rate according to 
some schedule or algorithm. In “self adaptation”, the 
method most widely accepted, the space of possible 
mutation rates is searched in parallel to the space of 
possible problem solutions by the same EA by adding to 
each member of the population an extra variable which 
encodes for the mutation rate to be applied. The idea is to 
exploit a correspondence between the quality of the 
search operator (in this case the mutation rate), and the 
quality of the resultant solution when that search operator 
is applied to a parent. These methods have been shown in 
many papers to work very well in practice, resulting in 
robust search with the added benefit of reducing the 
number of algorithm parameters that the designer should 
choose. However the added variable does of course 
increase the search space size, which can cause a slight 
increase in mean run-times. 

This research demonstrates an alternative means of 
adapting the mutation rate which directly exploits the 
implicit knowledge of the user’s perception of where they 
are in the search process. Further, it provides the user 
with an immediate means of broadening the search, when 
they feel that the region of the search space that they are 
exploring is not of sufficient quality. This is achieved by 
directly linking the mutation rate applied to a parent to the 
score allotted by the user. Thus low scores lead to a 
higher mutation rate, and hence higher probability of 
creating offspring which are very different from the 
parent. In contrast a high-scoring parent has a low 
mutation rate assigned to it, and therefore offspring are 
more likely to be similar, permitting fine tuning in the 
region of the search space close to the parent. 

Here we have presented results showing a qualitatively 
different type of search process can be obtained by using 
the user assigned fitness to control the nature of the 
mutation process. The results show that the adaptive 
strategy shows rapid progress to the maximum user score 
(i.e. high exploitation with lower mutation rates) once a 
good region has been identified, but before that there are 

proportionally longer periods of low scores indicating 
widespread search (exploration via higher mutation).  

There is also a synergy between user-based selection 
and fitness-based mutation control which out performs 
either system on its own.  Examining the single runs it can 
be seen that by downgrading the score to a previously 
favoured solution the system can be made to abandon its 
focus on a localised area of the parameter space and re-
direct its attention elsewhere. This is of particular 
significance in an environment where rapid system re-
configurability can mean a large saving in terms of costs. 

This would not be possible using autoscoring methods, 
and the immediate change of mutation parameters 
provides vital time saving compared with other methods 
such as self-adaptation.    
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