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Abstract In order to realize the force control, when the prosthetic hand grasps the object, the fore-

arm electromyography signal is collected by the multi-channel surface electromyography (sEMG)

acquisition system. The grasping force information of the human hand is recorded by the six-

dimensional force sensor. The root mean square (RMS) of the electromyography signal steady state

is selected, which is an effective feature. The gene expression programming algorithm (GEP) and BP

neural network are used to construct the prediction model and predict the grasping force. The force

prediction accuracy of GEP algorithm and BP neural network algorithm are discussed under differ-

ent grasping power levels and different grasping modes. The performance of the two algorithm

models are evaluated by two measures of root mean square error (RMSE) and correlation coeffi-

cient (CC). The results show that the RMS eigenvalue extracted from the sEMG signal can better

characterize the grasping force. The prediction model with GEP algorithm has smaller relative error

and higher prediction effect.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Artificial intelligence is a very hot topic nowadays. The rapid

development of robot technology has been promoting the
expansion of the application field of artificial intelligence.
The application field of artificial intelligence has expanded
from industrial production to medical, service and military

fields. The core of artificial intelligence is the design of algo-
rithm. At present, there are a large number of researchers in
the study of how to solve the design algorithm and the realiza-
tion of new computing methods. In this paper, GEP and BP

neural network are combined to build the prediction model
and predict the grasping force, so as to get the application of
sEMG signals [1–3].

The sEMG is an electrical signal generated by evaluating
and recording muscle contraction. It contains abundant
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physiological motion information and reflects people’s motor
intentions [4]. As the bioelectrical signals of the human body,
the sEMG is an ideal source of human biosignal control that

can be widely used [5–8]. By analyzing and processing the
sEMG, the human hand movement mode can be recognized
[9], but it is difficult to accurately control the output force of

the prosthetic hand. How to dig out the force information in
the electromyography signals (EMG) to improve the flexible
control of the prosthetic hand is a difficult problem to be

solved. The action of the prosthetic hand can be controlled
by detecting the bioelectrical signals generated by the corre-
sponding muscles of the human body [10,11]. This artificial
hand controlled by the electrical signals generated by the cor-

responding muscles is called electromyography artificial hand
[12]. Since the EMG is a bioelectrical signal generated when
the human neuromuscular system is active, the electromyogra-

phy artificial hand and the real human hand belong to the
same homologous control. Therefore, the EMG is an ideal sig-
nal source for the human-computer interaction system [13,14].

Traditional methods based on EMG signals driving force
estimation often require extraction of muscle activation. How-
ever, due to the randomness and variability of EMG signals,

the degree of muscle activation is difficult to obtain accurately
[15–17]. Furthermore, the transformation from muscle activa-
tion to muscle strength depends on some phenomena models,
such as the Huxley model and the Hills model [18]. At present,

although the myoelectric artificial hand control can meet the
requirements of intuitive control, there is still no good solution
to the synchronous control of multi-degree of freedom grasping

mode and grasping force [19,20]. In recent years, sEMG have
received great attention as a source of control for prosthetic
limbs and intelligent exoskeletons [21]. And advanced control

techniques such as pattern recognition technology [22] and
regression techniques have been rapidly development of. How-
ever, due to the practical limitations of different positions or

movements of the arm, electrode displacement, non-stationary
signals, and changes in force, the clinical application of pros-
thetic and exoskeleton based on sEMG are still affected. And
a good user experience cannot be achieved [23,24]. The high

recognition rate in the literature reports is often obtained in a
strictly controlled experimental environment, which leads to
serious imbalances in scientific research results and clinical

applications [25–27]. Among the many factors affecting the sta-
bility of EMG, the magnitude of the grasping force causes a sig-
nificant change in the characteristics of the ENG, which leads to

a decrease in the recognition rate of the grasping action. 16-
channel electrode sleeves are used to collect human EMG. Com-
pared with traditional sENG, it is expected to solve the problem
of grasping force independent of muscle dynamics and muscle

localization. And it has good universality.
The innovation of this paper is to construct a grasping force

prediction model which is based on Gene Expression Program-

ming (GEP) algorithm. Compared with BP neural network pre-
diction model, the prediction error of grasping force based on
GEP prediction model is smaller and the correlation coefficient

is higher.
The rest is organized as follows. In Section 2, the related

works on grasping force prediction method are introduced.

The signals acquisition is described in Section 3. Section 4
introduces the proposed algorithm. Section 5 contains experi-
mental results and the discussion of experimental results. The
conclusion is in Section 6.
2. Related works

Castellini et al. of AI Data Laboratory in Munich have studied
the recognition of grasping force and grasping action respec-

tively [28]. The recognition rate of action is 89.7%, and the
error of force estimation is 7.9% [29]. Lioyd et al. have studied
the method of predicting muscle strength and knee joint

moment by acquiring EMG signals and joint muscle parame-
ters under different dynamic contraction conditions [30]. The
method uses three-dimensional anatomical model which are
improved Hill muscle model, discrete non-linear EMG signals

model and calibration model respectively. The final determina-
tion coefficient of knee joint moment and measurement value
is 0.91 ± 0.04. Gagnon et al. proposed an improved multi-

joint electromyography-assisted optimization method to esti-
mate the joint force in the lumbar musculoskeletal model
[31,32]. The objective function was found to estimate the mus-

cle force under the condition of lumbar joint balance. This
study is helpful to further explore the relationship between
human muscles and joint movements, but intrusive methods

need to obtain the characteristic parameters of muscles and
bones, which will bring some pain to the experimenters. From
the physiological point of view, muscle contraction force is
mainly expressed by the size and frequency of human action

potential. These parameters can be obtained by measuring
sEMG signals. These parameters can be further studied to
make use of the correlation between sEMG signals and muscle

contraction force [33,34].
Many scholars have also conducted research on the

effects of changes in force and the robustness control of

myoelectric prostheses. Scheme et al. suggested that the
intensity of motion at different levels of force may vary
greatly from one another [35,36]. Al-Timemy et al. also

pointed out that the change of force may lead to a 60%
reduction in the accuracy of EMG control system [37]. Sub-
sequently, they studied the problem of robust control of
hand prosthesis under the condition of force level change,

and found that force change may have a greater impact
on the robustness of prosthesis control [38]. Although stabil-
ity control can be improved by increasing training samples,

it will lead to more complex classifier, longer training pro-
cess and lower classification accuracy.

At present, most studies need to establish the relationship

between muscle strength and EMG signals based on muscle
model. But the complexity and uncertainty of human physio-
logical structure, individual differences in different people
make it difficult to establish an accurate force estimation

model. In addition, as far as the acquisition device is con-
cerned, when the conventional device collects signals for a long
time, the position of the electrode is liable to change and shift,

which reduces the reliability of the EMG signals and the accu-
racy of the influence prediction.

Through the introduction of the relevant research status of

sEMG, we can find that a lot of scholars have done a lot of
work on sEMG research. But there is still no convincing
method or norm on how to accurately predict the catch and

get high accuracy. There are still ambiguities about many of
the details of the specific processing of sEMG. In order to
obtain higher grasping accuracy, it is necessary to systemati-
cally study the surface EMG signal. The research carried out

in this experiment is of great significance.
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The main reasons for the research on grasping force predic-
tion from the aspects of sEMG are as follows:

As the human body’s own biological signals, the sEMG

contain a wealth of human body motion information. There
are relatively mature processing algorithms and theories in
software, and some successful application cases on the hard-

ware. The sEMG signals acquisition method is simple to oper-
ate and does not cause extra trauma to the human body. So it
can be an ideal signal source.

The sEMG signal is a bioelectrical signal formed by muscle
contraction, so the control of the action of the central nervous
system on the human body is directly related to the EMG sig-
nal. For people with amputation or limb disability leading to

muscle dysfunction, it is hoped that by controlling the pros-
thetic hand, different action modes can be used to grasp
objects of different shapes and weights. This practical need is

expected to be achieved by further mining human motion
information contained in sEMG signals.

The sleeve can collect sEMG signals conveniently and real-

time, without considering the specific muscle location corre-
sponding to human movement. It can operate and use rehabil-
itation equipment such as prosthetic hand better. It is also the

advantage of the future development of the application of
sEMG signals.
3. Multi-channel EMG signals acquisition

3.1. EMG signals acquisition device

EMG signals acquisition device has ELONXI electromyo-
graph and electrode sleeve. The integrated dual Bluetooth

module is sent to the PC-side Bluetooth port to provide data
for the matching acquisition and analysis software MyoAna-
lytics. The grasping force is collected by a six-dimensional

force sensor acquisition system. The grasping force data is col-
lected by the two acting faces of the pinch pressure sensor. The
acquisition system is shown in Fig. 1.

3.2. Manual capture mode selection

Because of the complex structure of the hand, more degrees of
freedom and various combinations of finger joint movements,

the hand can achieve a variety of grasping movements. Litera-
tures have studied the grasping maneuvers in daily life, and
summarized six basic grasping modes: cylindrical, fingertip,

hook, palmar, spherical and lateral [39,40]. Through the above
six kinds of grasping modes, the human hand can complete
most of the actions of grasping objects in daily life. Consider-

ing the simple usage of movements and the feasibility of pat-
tern recognition, four grasping modes are selected, namely,
G1 for thumb and index finger, G2 for thumb and middle fin-

ger, G3 for thumb three finger and G4 for thumb five finger, as
shown in Fig. 2.

3.3. Experimentation object and process

3.3.1. Experimental subjects

Three healthy males, 22–27 years old, were selected for the

study. There was no history of neurological or musculoskele-
tal. And written informed consent was given to the subjects.
The subjects were in a normal indoor environment without
large equipment and serious noise interference. In order to col-
lect accurate and effective EMG signals, the subjects did not

exercise vigorously before the collection experiment, with
keeping the muscles naturally relaxed and avoiding the effects
of muscle fatigue on the EMG signals.

3.3.2. Experiment process

Wearing the surface electrode sleeve and using the alcohol cot-
ton to wipe the subject’s arm with alcohol should be in accor-

dance with the experimental requirements. On the one hand, it
can clean the dirt and cuticle on the skin surface to reduce the
skin impedance. On the other hand, it can increase the skin’s

electrical conductivity and improve electrical and mechanical
contact of the electrodes. Before starting to collect signals,
the subject first performs familiar training according to the

experimental grasping action, and detects whether the acquisi-
tion system hardware is running normally.

The maximum autonomous contraction experiment was
conducted. The maximum grasping force was generated by

increasing the force to the maximum within 5 s and keeping
it for 5 s. The maximum amplitude of EMG signals and the
corresponding grasping force were recorded as the reference

values for normalization of EMG data.
Hand grasping can be divided into the following four

modes: G1 for thumb and index finger, G2 for thumb and mid-

dle finger, G3 for thumb three finger and G4 for thumb five
finger. Subjects were set to a frequency of 100 Hz in different
capture modes. The finger grasped the upper and lower contact

faces of the six-dimensional force sensor for 5 s continuous
force pinching, and gradually changed the grasping force.
The mean value of the 100% maximum voluntary contraction
(MVC) was used as a reference value for calculating the mag-

nitude of the grading force. We have used common levels.
From 0% to 100% of MVC (20%, 40%, 60%, 80%) [41],
the grasping force was 0–90 N.

The experiment was divided into four groups according to
the above four capture modes, and the data was repeatedly col-
lected four times. In each group, the G1–G4 grasping mode

was sequentially performed. After the force signals was col-
lected in each group of grasping modes, the subject rested
for 5 min to rest the forearm muscle group to prevent muscle
fatigue. During the whole experiment, attention should be paid

to avoiding removing or moving the position of the electrode
sleeve. And the position of the surface electrode should be kept
as constant as possible

3.4. Feature selection of EMG signals

There are three main methods for analyzing the sEMG signals:

time domain feature analysis, frequency domain feature anal-
ysis and time-frequency domain feature analysis [42–44]. Most
of the features can be used to characterize changes in sEMG

signals, and the magnitude of the grasping force is directly
related to the magnitude of the sEMG signals [45–47]. There-
fore, the choice of features directly affects the accuracy of the
results of the grasping prediction. If multiple types of features

are used at the same time, the amount of calculation will be
increased, causing delay, which will bring a heavy burden to
the subsequent algorithm construction. And the feature selec-

tion method will not always extract the most effective EMG



Fig. 1 Experimental acquisition system.

Fig. 2 Four grasping modes selected.
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signals characteristics. The time domain features and fre-
quency domain features calculated based on the sEMG signals
amplitude do not need to undergo Fourier transform, and the
calculation is simple [48,49]. Considering the minimization of

the amount of computation and the redundancy of data infor-
mation, the representative single-featured RMS performance
capability was studied [50–52].

A set of experimental data was selected to segment the syn-
chronous EMG signals data samples from 0% MVC to 80%
MVC. The time window size was set to 200 ms and the step

length was set to 100 ms. The RMS was calculated and the
average value was selected to represent the change level of pat-
tern recognition and grasping force of grasping action. The

mean value of RMS characteristics of sEMG signals under
four grasping maneuvers is shown in Figs. 3–6.

It can be seen from Figs. 3–6 that for the same grasping
mode, different levels of grasping force are 20%, 40%, 60%,

80% (MVC). The magnitude of RMS of EMG signals in each
channel is obviously different, and it will increase with the
increase of grasping force. It shows that the time domain char-
acteristics of sEMG signals are directly related to the human
hand grasping action, and can be used to characterize the grasp-

ing force. Therefore, the RMS can reflect the amplitude change
characteristics of sEMG signals in time dimension, which can be
used to measure muscle activity in real time and nondestruc-

tively. At the same time, this feature algorithm is simple, conve-
nient, less computational complexity and strong real-time. After
comprehensive consideration, RMS feature is selected as the

main feature of grasping force prediction model.

4. Proposed algorithm

4.1. Data processing

In order to reduce the amount of calculation and improve the
response speed of the system, considering the standardization



Fig. 3 20%MVC.
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methods and their properties, the experimental data standard-
ization method adopts the corresponding maximum value of
the same eigenvalue as the reference. And the remaining data

is used as a reference. Standardization is performed as shown
in Eq. (1).

yj ¼
xi � xmin

xmax � xmin

ð1Þ

where xi is the original sEMG signals. yi is the sEMG signals
after normalization. xmin and xmax are the minimum and max-
imum values of xi respectively.

The EMG signals data is defined as a vector of one-
dimensional 16 elements, each element corresponding to a
sample value of one channel.

X ¼ x1; x2; x3; :::; x16½ �; x 2 R16 ð2Þ
Each vector corresponds to a target value of the grasping

force, z 2 R16. The goal of data processing is to establish the
relationship between EMG signals and grasping force. Let

z ¼ fðxÞ.

4.2. Implementation of gene expression programming algorithms

Gene Expression Programming Algorithms (GEP) is a new
adaptive evolutionary algorithm based on biological gene
structure and expression process [53–55]. It is a robust variant
of genetic algorithms (GA) and genetic programming (GP)

[56,57]. GEP not only absorbs the advantages of GA and
GP, but also overcomes their shortcomings. It has the charac-
teristics of compact and stable coding structure, simple and
effective genetic operation. The algorithm is faster and more

accurate [58–60]. The biggest advantage is that it can solve
complex problems by simple coding. The specific steps of
GEP process are as follows:

(a) First, the population is initialized, and a certain number
of individual sets are randomly generated as the initial

population.
(b) Then we should calculate the fitness of each body in the

population, and determine whether the fitness meets the
calculation accuracy requirement or whether the number

of iterations reaches the maximum evolution algebra. If
one of them is satisfied, the evolution ends, and the out-
put saves the optimal individual. Otherwise the next step

is continued.
(c) Finally, according to the size of fitness value, the prob-

ability of being selected with large fitness is high, and

the probability of being selected with small fitness value
is low. A series of genetic operations, such as replication,
mutation, insertion and recombination, are used to
obtain the new population and recalculate its fitness.

Loop in turn. The flow chart of the algorithm is shown
in Fig. 7.

The grasping force prediction model based on GEP algo-
rithm is constructed as follows:



Fig. 4 40%MVC.
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Input: RMS eigenvalue of sEMG signals [x1-x16], popula-
tion number, gene length, gene number, mutation rate, inser-
tion rate and recombination rate.

Output: optimal chromosome and corresponding predictive
force function model.

Two termination criteria are defined: (i) the maximum num-

ber of iterations is 2000; (ii) Mean square error value (MSE) is
less than 0.01. If any condition is met, the algorithm stops. The
specific steps are as follows:

(a) The RMS eigenvalue sample set of sEMG signals is T.
And the sliding window width is w which is included

in T. The last w�1 data is added to the GEP parameter
variable, and the remaining data is added to the pre-
dicted value list. The window slides in a unit width. A
new wcolumn data is formed.

(b) According to GEP algorithm, chromosomes are initial-
ized, parameters are set, GEP-related coding is carried
out, and population is formed.

(c) The fitness function should be calculated. Load the data
set, and use the MSE of the training sample as the fitness
value. The maximum fitness function is set to 1000. The

fitness calculation is as shown in Eqs. (3) and (4).

ffitness ¼ 1000� 1

MSEi þ 1
ð3Þ
MSEi ¼ 1

m

Xm
j�1

Fij � Tj

� � ð4Þ

where MSEi represents the sum of mean square error, m is
the total number of training samples, Fijis the actual measured

force in the equations, and Tj is the input of the sEMG signals.

Predictive force is calculated by GEP Model. When Fij ¼ Tj,

the fitness function is the largest and the prediction result is
the most accurate.

Determine whether the optimal individual fitness value of
the new generation population meets the requirements and

preserve the optimal chromosome. If the condition is met, skip
to (g). Otherwise, proceed to the next step.

(d) The genetic rules such as selection, replication, muta-
tion, insertion and recombination are operated. The
genetic rules are selected according to the standard roul-

ette rules, and the best individuals are retained according
to the elite retention strategy.

(e) Form the next generation of new individuals. First, the
fitness values of new chromosomes that have been

selected to undergo crossover and mutation operations
are calculated. Then the chromosomes corresponding
to these new parameter sets are combined with other

chromosomes of the previous generation to form a
new generation of chromosomes.



Fig. 5 60%MVC.
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(f) The new individual is assessed for fitness by Eq. (2).

Determine whether the optimal individual fitness value
in the new generation population meets the expected
requirements. If so, output the result and go to step

(g). Otherwise, repeat the new population and return
to step (d).

(g) When the optimal solution is found or the iteration step

is reached, the operation terminates. Set two termination
criteria: f fitness ¼ fmax and maximum algebra up to 2000.

Determine whether the above criteria are met before
each operation. If any criterion is met, the optimization

process ends, the GEP operation is terminated, the
grasping force prediction model function F(x) is
obtained, and the calculation result is output. Specific

parameters are shown in Table 1.

Using the forecasting model constructed above, the fitness

function ffitness = 997.627 and MSE = 0.0006 can be obtained
by running the program. According to the GEP algorithm
decoding method, the input is the RMS eigenvalue of the
sEMG signals of each channel, and the output is the corre-

sponding grasping force prediction model function expression.

4.3. Realization of BP neural network algorithms

BP neural network is a kind of multi-layer neural network with
three or more layers in structure. The most widely used is a
three-layer neural network which is composed of input layer,
hidden layer and output layer [54,55]. In this structure, the first

and last layers are the input layer and the output layer respec-
tively, and the middle layers are hidden layers. Each layer is
composed of several neurons. The neurons in the left and right
layers connect with each other, but there is no connection

between the neurons in the upper and lower layers [61,62].
The network structure is shown in Fig. 8.

Where Xi is the input vector, i.e. the eigenvalue of the

sEMG signals, Rj is the output vector of the hidden layer,
Yk is the actual output vector of the output layer, i.e. the pre-
dicted grasping force, Wij is the connection weight of the input

layer to the hidden layer, and Wjk is the connection weight of
the hidden layer to the output layer [63,64].

According to the structure and basic theory of BP neural

network, the algorithm steps and parameters of building BP
neural network model for grasping force prediction are as
follows.

(a) Weight initialization: randomly assign a small set of
non-zero values to the weight.

(b) Determine the parameters of BP neural network and the

definition of each variable: Xi is the input vector. YK is
the actual output after the nth iteration of BP algorithm.

(c) The input Sj and output bj of each neuron in the hidden

layer are calculated. Enter Sj calculation formula as
follows.



Table 1 GEP algorithm parameter settings.

Parameter Value

Population size 200

Evolutionary algebra 2000

Number of genes 6

Mutation probability 0.045

Insertion /root insertion string transformation

probability

0.1

Genetic transformation probability 0.1

Single point/Two point reorganization probability 0.2

Genetic recombination probability 0.1

Selection strategy Roulette

Connection symbol +

Fitness function MSE

Fig. 6 80%MVC.

Fig. 7 Flow chart of GEP algorithm.

1142 R. Ma et al.
Sj ¼
Xn

i¼1

wij � Xi � hj; ðj ¼ 1; 2; 3; :::; pÞ ð5Þ

fðxÞ ¼ 1

1þ e�x
ð6Þ

bj ¼ f Sj

� � ¼ 1

1þ exp �Pn
i¼1

wij � Xi þ hj

� � ð7Þ



Fig. 8 Three-layer BP neural network structure model.
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where wij represents the connection weight from the input layer
to the hidden layer. Xi represents the characteristic value of the

input EMG signal. hi represents the unit threshold of the
hidden layer. n represents the number of neurons in the input
layer. p represents the number of neurons in the hidden layer

[65,66].
BP neural network prediction model is established based on

the software of MATLAB R2013a to realize the prediction of

sEMG signals grasping force. The number of hidden layer
nodes is set to 21, the training function selects trainlm, the
learning function selects leanngdm, the transfer function
selects tansig, and the performance function selects MSE.

After 30 iterations, MSE = 0.0081, less than 0.01, is obtained,
and the training of prediction model is completed.

5. Experimental results and discussion

5.1. Evaluation index of force prediction effect

In order to measure the effect of force prediction, the root
mean square error (RMSE) and cross-correlation (CC) criteria

are used as indicators to evaluate the prediction results. The
RMSE is a statistical measure of the performance of force pre-
diction. It shows that the smaller the error between the pre-

dicted value and the actual value, the better. As shown in
Eq. (8).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1

Pn � Tnð Þ
s

ð8Þ

where Pn and Tn are the predicted value and the actual value of

the grasping force respectively, and n is the number of samples.
The CC is used to evaluate the similarity between the predicted
value and the actual value. The closer the value is to 100, the

higher the similarity. As shown in Eq. (9).
Table 2 Grasping force statistics under G4 grasping action of five

Grasping force grade Min/N Max/N

20%MVC 16 20

40%MVC 27 30

60%MVC 45 50

80%MVC 70 75

100%MVC 86 92
CC ¼ cov P;Tð Þ
rprt

ð9Þ

where cov P;Tð Þ is the covariance of the predicted value and

the actual value, rp is the standard deviation of the predicted

value and rt is the standard deviation of the actual value. In
general, smaller RMSE value (close to 0) and a larger CC value
(close to 1) indicate that the model has better generalization

performance for force prediction.

5.2. Prediction and analysis of grasping force

Among the four hand grasping modes of G1–G4, five-fingered

G4 has a wider application environment and demands in EMG
prosthetic hand. So the hand grasping action is used to indi-
cate the EMG signals and the grasping force under the G4

pinch. The data is experimental data used to compare the pre-
dictive force of different predictive models. By collecting mul-
tiple sets of 20% MVC, 40% MVC, 60% MVC and 80%

MVC four levels of grasping force data, the mean and stan-
dard deviation are calculated and used as the target variables
of the predictive model. The statistical results are shown in

Table 2.
Under the five-finger pinch G4 grasping action, the RMSE

and the CC obtained after the GEP algorithm prediction
model and the BP neural network algorithm prediction model

are used to train and predict the four different levels of grasp-
ing force. The statistical results are shown in Figs. 9 and 10.

For comparison, the data in the figure are expressed in the

form of mean ± square difference.
It can be seen from Figs. 9 and 10 that the RMSE between

the measured force and the predictive force obtained by the BP

neural network algorithm and the GEP algorithm is less than
10%, and the CC is above 90%. However, from the overall
data, the RMSE obtained by GEP algorithm is smaller and
the CC is higher than that of BP neural network algorithm,

which shows that GEP algorithm has higher CC. The predic-
tion accuracy can better reflect the change of force. Four dif-
ferent levels of grasping force are predicted by GEP

algorithm and BP neural network algorithm, and the predicted
results are analyzed and compared, as shown in Figs. 11–14.

From Figs. 11–14, compared with BP neural network, the

predicted result curve of GEP prediction model is closer to
the target grasping force curve and has better fitting. In terms
of the RMSE and the CC, the relative error and fluctuation of

the GEP prediction model are smaller, which indicates that the
prediction accuracy of the model is higher and the prediction
results are more stable. The prediction results of individual
locations are poor and the accuracy is not high, while the

results of BP neural network prediction model are more accu-
rate. GEP algorithm has the greatest prediction error and the
fingers.

Mean/N standard deviation /N

18 2.8

28.5 2

47.5 3.5

72.5 3.5

89 4



Fig. 9 Grasping Force Prediction RMSE Result Diagram.

Fig. 10 Grasping Force Prediction CC Result Diagram.

Fig. 11 Grasping force predictio

Fig. 12 Grasping force predictio
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lowest accuracy when the grasping force is 20% MVC. And
the prediction accuracy is relatively high when the grasping
force is 40% MVC, 60% MVC and 80% MVC. However,

from the overall data point of view, the performance of GEP
prediction model is better than that of BP neural network
model. The reason is that GEP model has high mapping abil-

ity. Under the four grasping forces, GEP prediction model per-
forms best, and with the improvement of grasping force, the
prediction performance of GEP model tends to be good.

The above experimental results show that the RMSE value
of the root mean square error of the grasping force predicted
by GEP prediction model is the smallest 7.5%, the correlation
coefficient CC is the largest 95%, the prediction accuracy is the

highest and the result is the best when the grasping force level
is 60% MVC. Further, in order to study the relationship
between grasping mode and predicted grasping force, GEP

prediction model is used to predict grasping force under four
grasping action modes, and two evaluation indexes are
obtained and compared. The results are shown in Figs. 15

and 16.
The experimental results show that the REMS of force pre-

diction is the smallest and the CC is higher in the G1 grasping

mode of thumb-index finger (RMSE = 5.941 ± 0.188, CC =
95.562 ± 0.875). The force prediction result of the thumb-
middle finger G2 grasping action is second (RMSE = 6.585
± 0.163, CC = 96.294 ± 0.934). Then the three-finger pinch

grasping action G3 (RMSE = 7.703 ± 0.178, CC = 94.741
± 0.726). The force prediction result under the five-finger
pinch grasping action G4 is relatively the worst (RMSE = 8.

588 ± 0.189, CC = 93.142 ± 1.125).
n result chart of 20% MVC.

n result chart of 40% MVC.



Fig. 13 Grasping force prediction result chart of 60% MVC.

Fig. 14 Grasping force prediction result chart of 80% MVC.

Fig. 15 The REMS of force prediction under four grasping

modes.

Fig. 16 Result of force prediction coefficient in four grasping

modes.
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The above experimental results show that the RMS of the
time domain feature extracted from the sEMG signals can be
used as a feature input sample to characterize the level of

grasping force. The prediction model based on GEP algorithm
can achieve the prediction of grasping force. Generally, the
prediction accuracy is higher. However, as the grasping motion

becomes more and more complex and the more fingers partic-
ipate in the action, the force prediction error of the prediction
model increases and the accuracy decreases.

6. Conclusion

The 16-channel electromyogram acquisition device is used to

detect the EMG signals of hand grasping. Compared with
the traditional electrodes, the prediction of grasping force
can be achieved without precise positioning of EMG.
A grasping force prediction model based on GEP algorithm

and BP neural network algorithm is constructed, and four dif-
ferent levels of grasping force are predicted. Through compar-
ative analysis, it is found that the prediction error of grasping

force based on GEP model is smaller than that based on BP
neural network model, and the correlation coefficient value is
higher, which shows that GEP algorithm has better prediction
effect in grasping force prediction. GEP prediction model can

be used to identify the grasping action and predict the grasping
force, which can provide a solution to the problem of how to
mine the force information in the muscle electrical signal to

improve the flexible control of the prosthetic hand.
The RMS of time domain feature extracted from sEMG

signals can be used as feature input samples to characterize

the grasping force level. The prediction model based on GEP
algorithm can realize the prediction of grasping force, and
the prediction accuracy is high in general. However, as the
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grasping action becomes more and more complex and the
more fingers participate in the action, the error of force predic-
tion value of the prediction model is greater and the accuracy

is reduced. It shows that the change of force has a certain
impact on the stability of EMG prosthesis operation.
Acknowledgements

This research was supported by Hubei Provincial Department
of Education (D20191105).
Declaration of Competing Interest

The authors declare that there is no conflict of interest regard-

ing the publication of this article.

References

[1] M.A. Goodrich, A.C. Schultz, Human-robot interaction: a

survey, Found. Trends Human-Comput. Interact. 1 (3) (2007)

203–275.

[2] Y. Nam, B. Koo, A. Cichocki, S. Choi, GOM-face: GKP, EOG,

and EMG-based multimodal interface with application to

humanoid robot control, IEEE Trans. Biomed. Eng. 61 (2)

(2012) 453–462.

[3] F. Dario, H. Ales, Human-machine interfacing by decoding the

surface electromyogram, IEEE Signal Process Mag. 32 (1)

(2015) 115–120.

[4] J.X. Qi, G.Z. Jiang, G.F. Li, Y. Sun, T. Bo, Intelligent human-

computer interaction based on surface EMG gesture

recognition, IEEE Access 7 (2019) 61378–61387.

[5] N. Bandari, R. Ahmadi, A. Hooshiar, J. Dargahi, Hybrid

piezoresistive-optical tactile sensor for simultaneous

measurement of tissue stiffness and detection of tissue

discontinuity in robot-assisted minimally invasive surgery, J.

Biomed. Opt. 22 (7) (2017) 77002.

[6] C.C. Li, G.F. Li, G.Z. Jiang, D.S. Chen, H.H. Liu, Surface

EMG data aggregation processing for intelligent prosthetic

action recognition, Neural Comput. Appl. (2018), https://doi.

org/10.1007/s00521-018-3909-z.

[7] Y.F. Fang, H.H. Liu, G.F. Li, X.Y. Zhu, A multichannel

surface EMG system for hand motion recognition, Int. J.

Humanoid Rob. 12 (2) (2015) 1550011.

[8] E.N. Kamavuako, D. Farina, W. Jensen, Estimation of grasping

force from features of intramuscular EMG signals with mirrored

bilateral training, Ann. Biomed. Eng. 40 (3) (2012) 648–656.

[9] G.F. Li, J.H. Li, Z.J. Ju, Y. Sun, J.Y. Kong, A novel feature

extraction method for machine learning based on surface

electromyography from healthy brain, Neural Comput. Appl.

31 (12) (2019) 9013–9022.

[10] T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier,

Neuromusculoskeletal modeling: estimation of muscle forces

and joint moments and movements from measurements of

neural command, J. Appl. Biomech. 20 (4) (2004) 367–395.

[11] E.N. Kamavuako, D. Farina, K. Yoshida, W. Jensen,

Estimation of grasping force from features of intramuscular

EMG signals with mirrored bilateral training, Ann. Biomed.

Eng. 40 (3) (2012) 648–656.

[12] Y. Sun, C.Q. Li, G.F. Li, G.Z. Jiang, D. Jiang, H.H. Liu, Z.G.

Zheng, W.N. Shu, Gesture recognition based on kinect and

sEMG signal fusion, Mobile Netw. Appl. 23 (4) (2018) 797–805.

[13] Z. Kappassov, J. Corrales, V. Perdereau, Tactile sensing in

dexterous robot hands-review, Rob. Auton. Syst. 74 (2015) 195–

220.
[14] K. Gui, H.H. Liu, D.G. Zhang, A Practical and adaptive

method to achieve EMG-based torque estimation for a robotic

exoskeleton, IEEE-ASME Trans. Mechatron. 24 (2) (2019) 483–

494.

[15] J.S. Schofield, K.R. Evans, J.P. Carey, J.S. Hebert, Applications

of sensory feedback in motorized upper extremity prosthesis: a

review, Expert Rev. Med. Devices 11 (5) (2014) 499–511.

[16] G.F. Li, D. Jiang, Y.L. Zhou, G.Z. Jiang, J.Y. Kong, G.

Manogaran, Human lesion detection method based on image

information and brain signal, IEEE Access 7 (2019) 11533–

11542.

[17] G.X. Ouyang, X.Y. Zhu, Z.J. Ju, H.H. Liu, Dynamical

characteristics of surface EMG signals of hand grasps via

recurrence plot, IEEE J. Biomed. Health. Inf. 18 (1) (2014) 257–

365.

[18] C. Castellini, P.V.D. Smagt, Surface EMG in advanced hand

prosthetics, Biol. Cybern. 100 (1) (2009) 35–47.

[19] D.G. Lloyd, T.F. Besier, An EMG-driven musculoskeletal

model to estimate muscle forces and knee joint moments in

VIVO, J. Biomech. 36 (6) (2003) 765–776.

[20] D. Gagnon, N. Arjmand, A. Plamondon, A. Shiraziadl, C.

Lariviere, An improved multi-joint EMG-assisted optimization

approach to estimate joint and muscle forces in a

musculoskeletal model of the lumbar spine, J. Biomech. 44 (8)

(2011) 1521–1529.

[21] G.F. Li, H. Wu, G.Z. Jiang, S. Xu, H.H. Liu, Dynamic gesture

recognition in the internet of things, IEEE Access 7 (2019)

23713–23724.

[22] E. Scheme, K. Englehart, Electromyogram pattern recognition

for control of powered upper-limb prostheses: state of the art

and challenges for clinical use, J. Rehabil. Res. Dev. 48 (6)

(2011) 643.

[23] A.H. Altimemy, R.N. Khushaba, G. Bugmann, Javier escudero,

improving the performance against force variation of EMG

controlled multifunctional upper-limb prostheses for transradial

amputees, IEEE Trans. Neural Syst. Rehabil. Eng. 24 (6) (2015)

650–661.

[24] J.X. Qi, G.Z. Jiang, G.F. Li, Y. Sun, B. Tao, Surface EMG hand

gesture recognition system based on PCA and GRNN, Neural

Comput. Appl. (2019), https://doi.org/10.1007/s00521-019-

04142-8.

[25] B.W. Luo, Y. Sun, G.F. Li, D.S. Chen, Z.J. Ju, Decomposition

algorithm for depth image of human health posture based on

brain health, Neural Comput. Appl. (2019), https://doi.org/

10.1007/s00521-019-04141-9.

[26] X.C. Yang, X.L. Sun, D.L. Zhou, Y.F. Li, H.H. Liu, Towards

wearable a-mode ultrasound sensing for real-time finger motion

recognition, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (6)

(2018) 1199–1208.

[27] T.G. Chen, S.W. Wu, J.J. Yang, G.D. Cong, Risk propagation

model and its simulation of emergency logistics network based

on material reliability, Int. J. Environ. Res. Public Health 16

(23) (2019) 4677.

[28] J.B. Hu, Y. Sun, G.F. Li, G.Z. Jiang, B. Tao, Probability

analysis for grasp planning facing the field of medical robotics,

Measurement 141 (2019) 227–234.

[29] E.A. Clancy, N.E. Hogan, Probability density of the surface

electromyogram and its relation to amplitude detectors, IEEE

Trans. Biomed. Eng. 46 (6) (1999) 730–739.

[30] B.L. Liu, Z.J. Ju, H.H. Liu, A structured multi-feature

representation for recognizing human action and interaction,

Neurocomputing 318 (2018) 287–296.

[31] Y.F. Fang, D.L. Zhou, K.R. Li, H.H. Liu, Interface prostheses

with classifier-feedback-based user training, IEEE Trans.

Biomed. Eng. 64 (11) (2017) 2575–2583.

[32] C. Ferreira, Gene expression programming: a new adaptive

algorithm for solving problems, Complex Syst. 13 (2) (2001) 87–

129.

http://refhub.elsevier.com/S1110-0168(20)30008-9/h0005
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0005
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0005
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0010
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0010
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0010
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0010
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0015
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0015
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0015
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0020
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0020
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0020
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0025
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0025
https://doi.org/10.1007/s00521-018-3909-z
https://doi.org/10.1007/s00521-018-3909-z
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0035
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0035
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0035
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0040
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0040
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0040
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0045
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0050
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0055
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0060
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0065
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0065
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0065
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0070
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0075
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0075
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0075
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0080
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0085
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0090
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0090
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0095
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0100
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0105
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0110
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0115
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0115
https://doi.org/10.1007/s00521-019-04142-8
https://doi.org/10.1007/s00521-019-04142-8
https://doi.org/10.1007/s00521-019-04141-9
https://doi.org/10.1007/s00521-019-04141-9
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0130
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0135
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0140
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0145
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0145
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0145
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0150
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0150
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0150
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0155
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0155
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0155
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0160
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0160
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0160


Grasping force prediction based on sEMG 1147
[33] W.T. Cheng, Y. Sun, G.F. Li, G.Z. Jiang, H.H. Liu, Jointly

network: a network based on CNN and RBM for gesture

recognition, Neural Comput. Appl. 31 (Supplement 1) (2019)

309–323.

[34] Y.J. Huang, X.C. Yang, Y.F. Li, D.L. Zhou, H.H. Liu,

Ultrasound-based sensing models for finger motion

classification, IEEE J. Biomed. Health. Inf. 22 (5) (2018)

1395–1405.

[35] J.P.M. Mogk, P.J. Keir, Crosstalk in surface electromyography

of the proximal forearm during gripping tasks, J. Electromyogr.

Kinesiol. 13 (1) (2003) 63–71.

[36] A. Erdemir, S.B. Mclean, W. Herzog, A.J. Van Den Bogert,

Model-based estimation of muscle forces exerted during

movements, Clin. Biomech. 22 (2) (2007) 131–154.

[37] D. Jiang, G.F. Li, Y. Sun, J.Y. Kong, B. Tao, Gesture recognition

based on skeletonization algorithm and CNN with ASL database,

Multimedia Tools Appl. 78 (21) (2019) 29953–29970.

[38] E. Scheme, K. Englehart, Electromyogram dynamical

characteristics of surface EMG signals of hand grasps via

recurrence plot pattern recognition for control of powered

upper-limb prostheses: state of the art and challenges for clinical

use, J. Rehabil. Res. Dev. 48 (6) (2011) 643–659.

[39] Y. Lu, Z.J. Ju, Y.R. Liu, Y.X. Shen, H.H. Liu, Time series

modeling of surface EMG based hand manipulation

identification via expectation maximization algorithm,

Neurocomputing 168 (2015) 661–668.

[40] E.N. Kamavuako, D. Farina, K. Yoshida, W. Jensen,

Relationship between grasping force and features of single-

channel intramuscular EMG signals, J. Neurosci. Methods 185

(1) (2009) 143–150.

[41] K. Watanabe, M. Kouzaki, T. Moritani, Task-dependent spatial

distribution of neural activation pattern in human rectus femoris

muscle, J. Electromyogr. Kinesiol. 22 (2012) 251–258.

[42] C. Tan, Y. Sun, G.F. Li, G.Z. Jiang, D.S. Chen, H.H. Liu,

Research on gesture recognition of smart data fusion features in

the IoT, Neural Comput. Appl. (2019), https://doi.org/10.1007/

s00521-019-04023-0.

[43] C.G. Taylor, R.J. Schwarz, The anatomy and mechanics of the

human hand, Artificial Limbs 2 (2) (1955) 22–35.

[44] G.F. Li, L.L. Zhang, Y. Sun, J.Y. Kong, Towards the sEMG

hand: internet of things sensors and haptic feedback application,

Multimedia Tools Appl. (2018), https://doi.org/10.1007/s11042-

018-6293-x.

[45] W.J. Chang, G.F. Li, J.Y. Kong, Y. Sun, G.Z. Jiang, H.H. Liu,

Thermal mechanical stress analysis of ladle lining with integral

brick joint, Arch. Metall. Mater. 63 (2) (2018) 659–666.

[46] M.C. Yu, G.F. Li, D. Jiang, G.Z. Jiang, B. Tao, D.S. Chen,

Hand medical monitoring system based on machine learning

and optimal EMG feature set, Pers. Ubiquit. Comput. (2019),

https://doi.org/10.1007/s00779-019-01285-2.

[47] S.A. Nossier, M.R.M. Rizk, N.D. Moussa, S. Shehaby,

Enhanced smart hearing aid using deep neural networks,

Alexandria Eng. J. 58 (2019) 539–550.

[48] G.F. Li, H. Tang, Y. Sun, J.Y. Kong, G.Z. Jiang, D. Jiang, B.

Tao, S. Xu, H.H. Liu, Hand gesture recognition based on

convolution neural network, Cluster Comput. 22 (Supplement 2)

(2019) 2719–2729.

[49] E. Yasser, Estimation and prediction of construction cost index

using neural networks, time series, and regression, Alexandria

Eng. J. 58 (2) (2019) 499–506.

[50] Y. Zhou, Y.F. Fang, K. Gui, K. Li, D.G. Zhang, H.H. Liu,

Semg Bias-driven functional electrical stimulation system for

upper-limb stroke rehabilitation, IEEE Sens. J. 18 (16) (2018)

6812–6821.
[51] M. Elkholy, M.M. Hosny, H.M.F. El-Habrouk, Studying the

effect of lossy compression and image fusion on image

classification, Alexandria Eng. J. 58 (1) (2019) 143–149.

[52] Y. He, G.F. Li, Y.Z. Zhao, Y. Sun, G.Z. Jiang, Numerical

simulation-based optimization of contact stress distribution and

lubrication conditions in the straight worm drive, Strength

Mater. 50 (1) (2018) 157–165.

[53] M.C. Yu, G.F. Li, D. Jiang, G.Z. Jiang, F. Zeng, H.Y. Zhao, D.

S. Chen, Application of Pso-Rbf neural network in gesture

recognition of continuous surface EMG signals, J. Intelligent

Fuzzy Syst. (2019), https://doi.org/10.3233/jifs-179535.

[54] D. Sedighizadeh, H. Mazaheripour, Optimization of multi

objective vehicle routing problem using a new hybrid

algorithm based on particle swarm optimization and artificial

bee colony algorithm considering precedence constraints,

Alexandria Eng. J. 57 (4) (2018) 2225–2239.

[55] W. Miao, G.F. Li, G.Z. Jiang, Y.F. Fang, Z.J. Ju, H.H. Liu,

Optimal grasp planning of multi-fingered robotic hands: a

review, Appl. Comput. Math. 14 (3) (2015) 238–247.

[56] Y. He, G.F. Li, Y.J. Liao, Y. Sun, J.Y. Kong, G.Z. Jiang, D.

Jiang, H.H. Liu, Gesture recognition based on an improved

local sparse representation classification algorithm, Cluster

Comput. 22 (Supplement 5) (2019) 10935–10946.

[57] B. Li, Y. Sun, G.F. Li, J.Y. Kong, G.Z. Jiang, D. Jiang, B. Tao,

S. Xu, H.H. Liu, Gesture recognition based on modified

adaptive orthogonal matching pursuit algorithm, Cluster

Comput. 22 (Supplement 1) (2019) 503–512.

[58] H.M. Shehata, Y.S. Mohamed, M. Abdellatif, T.H. Awad,

Depth estimation of steel cracks using laser and image

processing techniques, Alexandria Eng. J. 57 (4) (2018) 2713–

2718.

[59] D. Jiang, G.F. Li, Y. Sun, J.Y. Kong, B. Tao, D. Chen, Grip

strength forecast and rehabilitative guidance based on

adaptive neural fuzzy inference system using sEMG, Pers.

Ubiquit. Comput. (2019), https://doi.org/10.1007/s00779-019-

01268-3.

[60] T.G. Chen, Q.Q. Li, J.J. Yang, G.D. Cong, G.F. Li, Modeling

of the public opinion polarization process with the

considerations of individual heterogeneity and dynamic

conformity, Mathematics 7 (10) (2019) 917.

[61] L. Huang, Q.B. Fu, G.F. Li, B.W. Luo, D.S. Chen, H. Yu,

Improvement of maximum variance weight partitioning particle

filter in urban computing and intelligence, IEEE Access 7 (2019)

106527–106535.

[62] D. Jiang, Z.J. Zheng, G.F. Li, Y. Sun, J.Y. Kong, G.Z. Jiang, H.

G. Xiong, B. Tao, S. Xu, H.H. Liu, Z.J. Ju, Gesture recognition

based on binocular vision, Cluster Comput. 22 (Supplement 6)

(2019) 13261–13271.

[63] Y.W. Cheng, G.F. Li, J.H. Li, Y. Sun, G.Z. Jiang, F. Zeng, H.

Y. Zhao, D.S. Chen, Visualization of activated muscle area

based on sEMG, J. Intell. Fuzzy Syst. (2019), https://doi.org/

10.3233/jifs-179549.

[64] D.S. Chen, G.F. Li, Y. Sun, J.Y. Kong, G.Z. Jiang, H. Tang, Z.

J. Ju, H. Yu, H.H. Liu, An interactive image segmentation

method in hand gesture recognition, Sensors 17 (2) (2017) 253.

[65] Y.J. Liao, Y. Sun, G.F. Li, J.Y. Kong, G.Z. Jiang, D. Jiang, H.

B. Cai, Z.J. Ju, H. Yu, H.H. Liu, Simultaneous calibration: a

joint optimization approach for multiple kinect and external

cameras, Sensors 17 (7) (2017) 1491.

[66] M.M. Alemi, J. Geissinger, A.A. Simon, S.E. Chang, A.T.

Asbeck, A Passive exoskeleton reduces peak and mean EMG

during symmetric and asymmetric lifting, J. Electromyogr.

Kinesiol. 47 (2019) 25–34.

http://refhub.elsevier.com/S1110-0168(20)30008-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0165
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0170
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0170
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0170
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0170
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0175
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0175
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0175
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0180
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0180
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0180
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0185
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0185
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0185
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0190
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0195
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0200
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0205
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0205
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0205
https://doi.org/10.1007/s00521-019-04023-0
https://doi.org/10.1007/s00521-019-04023-0
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0215
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0215
https://doi.org/10.1007/s11042-018-6293-x
https://doi.org/10.1007/s11042-018-6293-x
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0225
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0225
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0225
https://doi.org/10.1007/s00779-019-01285-2
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0235
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0235
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0235
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0240
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0240
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0240
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0240
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0245
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0245
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0245
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0250
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0250
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0250
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0250
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0255
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0255
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0255
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0260
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0260
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0260
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0260
https://doi.org/10.3233/jifs-179535
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0270
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0270
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0270
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0270
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0270
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0275
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0275
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0275
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0280
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0280
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0280
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0280
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0285
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0285
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0285
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0285
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0290
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0290
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0290
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0290
https://doi.org/10.1007/s00779-019-01268-3
https://doi.org/10.1007/s00779-019-01268-3
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0300
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0300
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0300
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0300
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0305
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0305
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0305
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0305
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0310
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0310
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0310
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0310
https://doi.org/10.3233/jifs-179549
https://doi.org/10.3233/jifs-179549
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0320
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0320
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0320
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0325
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0325
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0325
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0325
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0330
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0330
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0330
http://refhub.elsevier.com/S1110-0168(20)30008-9/h0330

	Grasping force prediction based on sEMG signals
	1 Introduction
	2 Related works
	3 Multi-channel EMG signals acquisition
	3.1 EMG signals acquisition device
	3.2 Manual capture mode selection
	3.3 Experimentation object and process
	3.3.1 Experimental subjects
	3.3.2 Experiment process

	3.4 Feature selection of EMG signals

	4 Proposed algorithm
	4.1 Data processing
	4.2 Implementation of gene expression programming algorithms
	4.3 Realization of BP neural network algorithms

	5 Experimental results and discussion
	5.1 Evaluation index of force prediction effect
	5.2 Prediction and analysis of grasping force

	6 Conclusion
	ack19
	Acknowledgements
	Declaration of Competing Interest
	References


