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ABSTRACT

Frequency Modulation parameter estimation has provided a continual challenge to researchers since its first
application to audio synthesis over thirty years ago. Recent research has made use of basic evolutionary
optimisation algorithms to evolve sounds produced by non-standard Frequency Modulation arrangements.
In contrast, this paper utilises recent advances in multi-modal evolutionary optimisation to perform dynamic-
sound matching with traditional arrangements. In doing so, a technique is developed that is not synthesiser

dependent, and provides the potential for alternative methods of synthesis control.

1. INTRODUCTION

There is now an abundance of (complex) synthesis
methodologies, each of which are capable of pro-
ducing a diverse assortment of timbres. Often the
synthesiser interface is a reflection of the underlying
synthesis process, and rarely do its parameters re-
late to sound in human terms. Consequently, there
is often a large discrepancy between the dimensions
of the synthesiser parameter space and the perceived
sound space. When such a discrepancy exists, syn-
thesiser control is often unintuitive and difficult to
learn. Inexperienced users/programmers would ben-
efit from a procedure that relates to their mental pic-
ture of timbre. For example, it may be desirable to
specify a ‘brassy’ tone, the spectral characteristics

of which are well known [1]. A process is therefore
required that is able to map known sound qualities
onto sound synthesis parameters: a matching tech-
nique that can efficiently search a synthesis param-
eter space for specific spectral requirements.

There have been numerous attempts to transfer syn-
thesiser control into a more intuitive domain [2] [3].
The most promising recent developments utilise the
optimisation principles of Evolutionary Computa-
tion (EC) for sound navigation and exploration [4]
- [10]. When EC is used, assistance is generally
provided in one of two forms: interactive evolution,
where the user controls the direction of the search
as evolution takes place; or sound matching, where
the evolutionary search explores the space to find a
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close match to a given target sound. It is the later
that is of interest here.

This work applies an advanced form of Evolution
Strategy (ES) to optimise simple dynamic-spectra
Frequency Modulation (FM) parameters that syn-
thesise good matches to randomly generated target
sounds. It builds upon the previous work, presented
by Horner [11] [12], and has wider implications as
a platform for a generic synthesiser interface that is
not specific to the underlying synthesis type.

Ultimately, this technique will allow users to specify
target spectral characteristics, which a synthesiser
(of any type and known form) will approximate. At
present, that technique is able to match target spec-
tral forms with an FM synthesiser, where it is pos-
sible to accurately match the target. That is, when
the target spectrum was originally generated with
an FM synthesiser.

The next section of this paper will introduce FM au-
dio synthesis, the dynamic-spectra FM models im-
plemented for sound matching, and early attempts
at parameter estimation. Section 3 will introduce
previous evolutionary sound matching work. Section
4 will provide some background information on EC,
specifically for the ES. Section 5 will outline the opti-
misation engine utilised for this work, and Section 6
will outline FM sound matching procedure, followed
by results and plans for future developments.

2. FREQUENCY MODULATION SYNTHESIS
FM audio synthesis, presented originally by Chown-
ing [13], provides a synthesis method by which com-
plex spectra can be created simply and efficiently.
In what is termed simple FM, the instantaneous fre-
quency of one oscillator is modulated by another,
to produce a tone with multiple frequency partials
Fig. 1(a). The amplitude function for simple FM is
given by the formula

e = Asin(w.t + Isinwn,t). (1)

where e is the modulated carrier amplitude, A the
peak amplitude of the carrier, w. and w,, the carrier
and modulator angular frequency, and I modulation
index, given by ratio of the frequency-deviation to
the modulating frequency.

Modulation produces side-bands in the frequency
domain, with partials deviating from the carrier at
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Fig. 1: Simple, double-modulator and nested FM
arrangements

integer multiples of the modulating frequency. The
amplitudes of frequency partials are determined by
the Bessel functions of the first kind and nth order.
The bandwidth of the output signal increases as the
modulation index is raised, as can be observed in
Fig. 2. Notice that as [ is raised the amplitude of
each partial varies according to a non-linear (Bessel)
function. This can make it hard to achieve a target
sound when altering parameters by hand. For fur-
ther reading into the spectral decomposition of FM
signals, the reader is referred to [14].

Schottstaedt [15] extended Chowning’s basic FM ar-
rangement developing models that allowed string in-
strument tones to be simulated, specifically the pi-
ano. In doing so, he introduced two important forms
of FM synthesis with complex modulation.

The first of these models, namely double-modulator
FM (Fig. 1(b)), instantaneously modulates the car-
rier frequency with the sum of two modulating sinu-
soids; given by

e = Asin(wet + L, $inwm, t + I, Sinwm,t)  (2)

with I,,,, and I,,, the modulation indices, and wy,,
and wy,, the two modulator angular frequencies.

With double-modulator FM, the spectrum that re-
sults is as though the partials produced by the mod-
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Fig. 2: Synthesised FM spectra with increasing mod-
ulation index I

ulation of the carrier by one modulating oscilla-
tor, are modulated (as carriers) by the second. For
the mathematical derivation of the double-modulator
FM spectrum, in terms of the Bessel Functions, the
reader is referred to [14] and [15].

The second arrangement, nested-modulator FM
(Fig. 1(c)), modulates the carrier with a modulat-
ing sinusoid, which is itself modulated by a third
modulating sinusoid; given by the equation

e = Asinfwct + I sin(wpm, t + Iasinwm,t)]  (3)

The carrier side-bands are positioned as they would
be in simple FM, however, the partials each have
their own side-bands at frequency intervals of the
second modulator frequency. The full mathematical
derivation of the nested-modulator spectrum can be
found in [12].

The double-modulator and nested-modulator FM ar-
rangements are of great significance to the work pre-
sented in this paper, as they are both implemented

within an algorithm that is able to decompose tar-
get sounds into FM parameters, using an evolution-
ary computation process. Details of this matching
method will be outlined in Section 6. First we shall
look at some of the early FM matching methods that
have been documented.

2.1. Frequency Modulation Sound Matching

As can be observed in Fig. 2, there is a complex map-
ping between FM parameters and the spectral form
of the corresponding sound. As such, FM parame-
ter control may appear random and complicated to
inexperienced users. The desire to control the sonic
diversity that FM provides has motivated a series
of studies intent upon providing a systematic means
by which FM synthesis can be used to simulate real
acoustic instruments. Chowning’s original paper ini-
tiated interest in this direction, providing example
parameters that simulate brass, woodwind and per-
cussive tones.

The earliest attempts at automating sound design
with FM were made by Justice [16], creating a
phase-analysis procedure, based upon the Hilbert
transform, that attempts to decompose signals into
nested-modulator FM parameters. To verify the suc-
cess of his algorithm, Justice presented some suc-
cessful experimentation extracting the parameters of
contrived nested-modulator target FM signals. How-
ever, if the signal does not conform exactly to a prod-
uct of the nested FM model (eq. (3)), unavoidable
error in the approximation is observed. Some the-
oretical analysis is provided for the application of
the model to general signals, but further experimen-
tation is left as future work. Justice suggests that
such a system may provide users with a means by
which they can jump to approximate regions of the
synthesis sound space, leaving finer adjustment to
be performed by hand. The process is specific to
nested-modulator FM, works only with slow moving
oscillator envelope shapes, and does not allow for the
FM phenomenon of spectral wrapping’.

Justice’s analytical process of parameter derivation
was later extended by Payne [17] to process multiple-
carrier nested-modulator FM arrangements. The
paper outlines in detail numerous restrictions to

Lwhere side-bands synthesised with negative frequency are
mapped onto their positive frequency values with inverted
phase
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which the target signal should conform, but, even
when all are met, the process is not always success-
ful. A comparable technique of FM parameter de-
composition was proposed by Delprat [18]. FM law-
extraction interprets formations in the Gabor trans-
form coefficients of the analysed signal to estimate
FM parameters. Experimental results are presented
that show promising partial interpretation of the co-
efficients, however the system is not complete and,
like many of the procedures outlined in this section,
full development is left as future work.

Recent advances, matching target signals with FM,
have applied the robust optimisation techniques
of evolutionary computation to match time-variant
sounds. This is the discipline within which the
present work resides.

3. EVOLUTIONARY FREQUENCY MODULA-
TION SOUND MATCHING

Research at the intersection of artificial intelligence
and music has provided a collection of studies intent
on providing intuitive synthesiser control with evolu-
tionary computation [4] - [10]. The most relevant to
the presented work, and indeed the work on which it
is based, are the evolutionary FM matching systems
of Horner [11] [12].

To facilitate the matching of acoustic instrument
tones, Horner’s algorithm optimises a set of static
basis-spectra generated via FM, which are dynami-
cally recombined to simulate a given harmonic target
tone. The synthesis process is therefore very close to
that of wavetable synthesis, with FM used only in
the production of basis-spectra. The basis-spectra
is generated using a simple FM arrangement where
the modulator is tied to the fundamental frequency,
and the carrier frequency is set to integer multiples
thereof, known as formant FM. This arrangement
is excellent for use in conjunction with wavetable
synthesis, as regions of the target spectrum can be
reproduced by individual basis-spectra, allowing the
optimum spectral envelopes to be established. The
restriction of the carrier frequency to an integer mul-
tiple of the modulating frequency ensures that all
of the basis-spectra are harmonic, and supports the
use of a Genetic Algorithm (GA) for optimisation
purposes: GAs perform their genetic operations on
bit-strings, which make them ideal for integer based
combinatorial search domains, such as this.

Whilst Horner’s synthesis method provides a means
by which static FM spectra can be combined to
produce dynamic sounds, dynamic-spectra FM syn-
thesis arrangements have existed for many years.
A simple model is provided in Chowning’s origi-
nal paper, where the modulation depth is controlled
by a simple envelope to produce dynamic sounds
(Fig. 1(a)). The models presented by Schottstaedt
[15], also allow such spectral control (Fig. 1(b) and
(¢)). Combined, Chowning and Schottstaedt’s mod-
els have formed the basis on which commercial FM
has evolved. Consequently, Horner’s model cannot
be applied directly to explore the sound space of
regular FM, as it exploits an alternative synthesis
paradigm.

In [11] Horner does experiment with non-static mod-
ulation indices interpolating parameters across fixed
spectral matches that are made throughout the du-
ration of the target tone. This method proved prob-
lematic, as parameter variation from one spectral
match to the next is non-continuous, and the per-
ceived tone travels through harsh transitions be-
tween the points at which the static matches are
made.

The work presented here utilises the basic dynamic-
spectra FM configurations outlined above, repre-
senting parameters with real valued numbers. When
the synthesis variables are not limited to integer
numbers, the search is performed across the entire
parameter space to locate optimal solutions. This
operation is a non-trivial process, as the FM object
landscape is extremely complex and multi-modal?.
Early attempts with simple evolutionary optimisers,
like the simple-GA and basic ES proved insufficient
for the FM matching problem. As such, a specialised
optimisation algorithm known as FCES is employed
for this work that is designed to operate within such
harsh conditions. Before the FCES can be described,
the next section will provide a brief overview of evo-
lutionary computation, introducing the basic evolu-
tion strategy, the model on which the FCES is built.

4. EVOLUTIONARY COMPUTATION

Evolutionary computation is now a well established
research field that has derived inspiration from bio-
logical evolution. Three main branches of this dis-
cipline, developed independently and contempora-

2where the object landscape contains many peaks.
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neously, are concerned with function optimisation:
evolutionary programming [19], genetic algorithms
[20] and evolution strategies [21]. The genetic al-
gorithm has been mentioned already as it was the
optimisation engine chosen by Horner in his match-
ing work. For further information on evolutionary
programming or genetic algorithms the reader is di-
rected to the associated references; this section will
expound only on the basic evolution strategy as this
is the general model to which the FCES conforms.

4.1. Evolution Strategies

The Evolution Strategy was originally developed in
the 1960’s by two students of the Technical Univer-
sity of Berlin [21] [22]. Presented as an automatic
engineering design optimiser, shown to outperform
traditional gradient oriented techniques, evolution
strategies have since undergone numerous modifica-
tions and enhancements.

The original evolution strategy used a simple iter-
ative mutation-selection mechanism in which a sin-
gle ‘parent’ generates a single offspring, the latter
is subject to a mutation operator and the stronger
individual forms the parent of the next generation.
This formed the precursor of a series of more elabo-
rate strategies which allowed first multiple offspring,
then the concept of limited life-span, and finally a
population of ‘parents’ to form the gene pool from
which the next generation inherits.

Search points in ESs are usually n-dimensional vec-
tors (object variables) of real valued (in practice
fixed-length floating point approximations) parame-
ters. Additionally, each individual normally includes
a vector of strategy variables which evolve together
with the object variables in a process which has been
termed self-adaptation by Schwefel [22].

Mutation consists of the addition of a normally dis-
tributed (zero mean) random number to each com-
ponent of the object variable vector, corresponding
to a step in the search space. The variance of the
step-size distribution is itself subject to mutation as
a strategy variable.

Recombination normally takes one of two main
classes:

e Intermediate - the genotype/phenotype vector
of each offspring is obtained by taking the mean
vector of its parents’ vectors.

e Discrete - dynamic n-point crossover: each com-
ponent of the genome of the offspring is pro-
duced by choosing either the vector component
of the first or the second parent with equal prob-
ability.

Selection operators choose the best individuals from
the current generation to act as parents for the next,
those not ‘fit’ enough to reproduce, are simply re-
moved from the population through the natural re-
placement processes of the ES. A range of strategies
are possible here, dependent upon the maximum al-
lowable age of the parents. The extremes (and the
most usual in practice) are:

e extinctive strategies - parents live for a single
generation only.

e preservative strategies - selection operates on
the joined set of parents and offspring, very fit
individuals may survive indefinitely.

4.2. MultiModal Evolution Frequency Modula-
tion Object Landscape

The compact FM synthesis model is well suited to
evolutionary optimisation, as a broad range of tim-
bres can be accessed via a relatively small number
of object parameters. That is not to say that the
task of matching tones with FM is trivial, the vary-
ing success of the work reviewed in sections 2.1 and
3 informs us that this is not the case. The FM
model, in fact, presents an extremely complex real
world multi-modal optimisation problem that, un-
til recent developments, would, in all likelihood, be
insurmountable by early optimisation engines.

Since the earliest applications of evolutionary com-
putation to numerical optimisation problems, a re-
current theme has been the problem of reliably find-
ing the global optimum in a multi-modal fitness
landscape. Selection, acting on a finite population,
will tend to cause stable convergence on a single
peak; the consequent loss of genetic diversity pre-
vents further exploration except as the result of ran-
dom mutation. If there are equal peaks, the choice
will be random because of the stochastic variations
inherent in the genetic operators. Even in the case
of unequal peaks, there is no guarantee that the al-
gorithm will always converge on the global optimum.
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In order to prevent such premature convergence and
stagnation, a number of operators have been de-
signed with the aim of adapting the search strategy
to evolve stable separate sub-populations, each of
which can converge on a different sub-domain. Ex-
amples of such techniques include crowding [23], Re-
stricted Tournament Selection [24], and fitness shar-
ing [25]. The method chosen for this work is an
extension to the standard ES known as FCES, de-
veloped by Sullivan [26], which uses fuzzy cluster-
ing and recombination operators to exploit the par-
titions of the ES population. The choice has been
made as the FM model is both real-valued and multi-
modal, domains within which FCES is designed to
function.

5. FUZZY CLUSTERING EVOLUTION STRAT-
EGY

FCES combines the powerful local search proper-
ties of the evolution strategy with the strengths of
Fuzzy Clustering, by partitioning the search pop-
ulation into fuzzy sub-populations that locally re-
combine and progress. With a sufficient number of
clusters, and an adequate population size, all of the
locally optimal peaks can be identified and thus, a
global optimum is consistently found.

Clustering, as a tool for global optimisation [27], was
previously utilised to provide multiple start points
for a local hill-climber optimisation. FCES follows
essentially the same framework but uses a stochas-
tic population-based search (the ES) in place of the
local optimisation algorithm and proceeds by alter-
nate application of optimisation and clustering. The
aim is to achieve the reliability of clustering meth-
ods with the efficient self-adaptive search behaviour
of the ES approach.

The basis of the approach is that a clustering algo-
rithm is used to form a partition of the parent pop-
ulation in a regular ES. The algorithm, therefore,
is consistent with the standard generational model
of an Evolutionary Algorithm with global selection.
Subsequent recombination blends genetic material
from all parents in proportion to their degree of
membership of a particular cluster (fuzzy cluster-
ing). This allows clusters, within the population, to
form independently at regions of high fitness within
the object landscape, preventing premature global
convergence at locally optimal peaks.

6. FREQUENCY MODULATION SOUND
MATCHING WITH FUZZY CLUSTERING
EVOLUTIONARY STRATEGY

This section will provide an overview of the FCES
tone matching procedure providing details relevant
in its application to dynamic-spectra FM arrange-
ments.

6.1. Target Selection

For the matching procedure to commence, the algo-
rithm requires a target. It is possible to insert any
sound into the model at this point; however, for test-
ing purposes, it is useful to follow the methodology
presented by Justice [16] and Payne [17]: matching
contrived target sounds produced by a FM model
identical in structure to the matching synthesiser.
In such circumstances, a successful match will yield
parameters equal to those with which the target tone
was produced and, with repeated tests with a vari-
ety of targets, demonstrates that any point within
the sound space is accessible via the matching pro-
cess. The alternative, if non-FM target sounds are
matched, would be to perform an enumerative search
in parallel with with the evolutionary match, to en-
sure that the ‘fittest’ evolved solution is indeed glob-
ally optimal. Even at a very low search resolution
of 0.5 (in the range 0-5), models with 18 dimensions
(the maximum that will be optimised at this stage)
would require assessment in the order of some 108
potential solutions, an infeasible task. In contrast,
where a large number of contrived target sounds are
consistently and accurately matched, it may be pos-
tulated that an optimal match for any target sound
is feasible. For non-FM target sounds the optimal
match may not be an exact simulation, rather, it
would be the best match that could be found within
the synthesis sound space.

6.2. Synthesis Components

Each dynamic-spectra FM circuit is constructed
from two or three sinusoidal oscillators. The param-
eters of each FM oscillator are provided in Table 1.

The ‘Frequency’ parameter controls the oscillator
frequency expressed as a multiple of the of the syn-
thesiser fundamental®, ‘Attack’ is the time taken for
the output of the oscillator to reach the ‘Level’ value
from its starting point of zero, and the ‘Sustain’ is
represented as a percentage of the ‘Level’ parameter.

3which is set to 220Hz for the presented experimentation
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Parameter Range
Frequency 0.0-5.0
Level 0.0-5.0
Attack(time) | 0.0 - 0.5s
Decay(time) | 0.0 - 0.25s
Sustain(level) | 0.0 - 1.0
Release(time) | 0.0 - 0.25s

Table 1: Oscillator Component Parameters

In practice the envelope parameters are all scaled
onto the range 0-5 so that all parameters operate
within the same limits.

The output from each sinusoidal component can be
connected to either the audio output, or the input
of another oscillator, to modulate its instantaneous
frequency. In the latter connection, the ‘Level’ pa-
rameter forms the Modulation Index.

6.3. Fitness Assessment

The FCES requires a means by which good and bad
solutions can be differentiated. A metric is required
to provide the ‘distance’ between (the synthesis of ) a
potential solution and the target sound*. The objec-
tive function identifies strong offspring, facilitating
their selection as parents from which subsequent off-
spring can be produced.

Within this work, the ‘distance’ is measured by accu-
mulating the squared error that is measured between
the target and candidate spectra at multiple points
throughout their duration. This error measure has
proved effective in previous studies [8] [9] [11] [12]
and offers an excellent balance between detail and
execution speed.

The squared error is given by the equation

Npin

error = Z (Ty, — Sp)? (4)

b=0

Where T is a vector of the target spectrum ampli-
tude coefficients, S a vector of synthesised candidate
spectrum amplitude coefficients and Np;, the num-
ber of frequency bins produced by spectrum analy-
sis.

For the matching of instrument tones Horner ob-
tained good results by placing ten snap-shots

4where a good match is positioned ‘close’ to its target

throughout the perceptually critical initial transient
and another ten equally spaced throughout the re-
mainder of the sound [12]. In this work, matching
contrived dynamic tones, twenty spectral snap-shots
are taken at fixed intervals throughout the target
sound. This may be reduced by placing snap-shots
at regions of the target sound where fast changes
can be observed, however, further investigations into
‘intelligent’ snap-shot placement is, at this point, a
future plan for this work.

A complete cycle of the objective function is as fol-
lows:

1. Insert candidate solution into the FM model,

2. Subject the corresponding synthesised wave-
form to spectral analysis,

3. Calculate SSE between target and synthesised
candidate spectra.

A variant of the squared error has been developed
that allows error to be measured across a weighted
band, details of this process can be found in [28].
The windowed squared error smooths the surface of
the fitness landscape. Consequently, the search com-
plexity is reduced, lowering the population size that
is required for a successful match. However, this er-
ror metric addresses issues specific to the FM prob-
lem and has, thus, not been been implemented in the
results presented here as it compromises the generic
nature of the matching procedure.

6.4. Processing

With the target sound, matching synthesiser and fit-
ness function in place, the matching process of Fig. 3
can begin.

The target tone is first analysed and the extracted
spectral snap-shots are passed into the fitness func-
tion. The initial population is seeded with randomly
generated solutions, which are assessed for similar-
ity with the target tone. The best solutions are
then selected to form the parents of the first gen-
eration. The parent population is partitioned into
clusters, and the membership, to which each solu-
tion belongs to each cluster, is calculated. Recom-
bination then blends the genetic information of the
parents to create the offspring which, like their ran-
dom ancestors, are assessed for fitness. Parents are
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Fig. 3: Matching Procedure

again selected and partitioned, their cluster mem-
bership calculated, recombined, and so forth. The
loop continues until some end criterion is met: ei-
ther the generational limit is reached or a sufficiently
strong solution located.

7. RESULTS

This section provides the early (promising) results
obtained when a FCES algorithm is applied to match
contrived sounds with dynamic-spectra FM arrange-
ments. One single run of the matching process is as
follows:

1. Generate a contrived target sound.
2. Extract spectral snap-shots from the target.

3. Match the target tone by searching the relevant
FM parameter space for an optimal match.

Contrived target sounds are produced by randomly
generating Ny, synthesis parameters (where Ny,
is the number of input parameters to the model -

Parameter Target Match
Carrier Parameters

Frequency 2.290531 | 2.289480
Level 4.830795 | 4.816228
Attack(time) 1.045151 | 1.039380
Decay(time) 4.228095 | 4.248294
Sustain(level) 2.264006 | 2.279245
Release(time) 3.952239 | 3.961980
Modulator Parameters

Frequency 3.270365 | 3.268940
Level 4.356868 | 4.334636
Attack(time) 3.565976 | 3.510057
Decay (time) 0.772121 | 0.860160
Sustain(level) 4.254643 | 4.307577
Release(time) 2.135209 | 1.499094

Table 2: Target and Matched parameters of a suc-
cessful run

the dimensionality of the problem) in the range of
0-5 (the parameter limits for the current arrange-
ments), and inserting them into the matching model
to produce a target tone. For experimental practi-
cality, the target tones are limited to one second in
duration.

7.1. Chowning’s Dynamic-Spectra models
Chowning’s [13]simple dynamic-spectra FM model
Fig. 1(a), presents a 12 dimensional matching prob-
lem. Fig. 4 provides the waveform and spectrogram
of a typical simple FM target sound, and the cor-
responding match. The FCES is able to match the
target tone to this accuracy in 50 generations, with
parent size of 300, offspring size of 1500 and 100 clus-
ters, which currently takes approximately 2 minutes
on a 2.4GHz Pentium 4 processor. The two plots dis-
play remarkable similarity, and indeed sound iden-
tical. To confirm the accuracy of the match, the
target tone parameters can be directly compared to
the matched parameters. Table 2 provides the car-
rier and modulator parameters for the waveforms in
Fig. 4.

For the carrier oscillator, the parameters are
matched to within approximately 0.01 of the variable
range. The modulator parameters are not matched
to this degree, but are still very good. The ‘Release’
parameter on the modulator exhibits the most error.
The most likely reason for this is that its impact on
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Fig. 4: (a) target sound and (b) matched sound; time and spectrogram plots

the spectral error is minimal.

Not all matches are quite as successful. As the tar-
get tone dictates the complexity of the search, in
some circumstances the match may be poor. This
is because the surface of the object landscape varies
significantly from one target to the next. In the
example provided in Fig. 4 the population sizes are
well suited to the complexity presented by the target
tone. With a more complex target, larger popula-
tions may be required, and conversely, simple tones
may be adequately matched with a smaller popula-
tion.

Tone matching is usually more difficult when cer-
tain parameters lie close to the limits of their range.
For example, tones with a very low carrier frequency
may have many partials that wrap around from the
negative frequency range on to the positive, these in-
terfere with positive frequency partials producing a
particularly noisy region of object space around the
optimum. Whilst the FCES is equipped to deal with
such environments, it may require more clusters to
ensure that the global optimum is located. An in-

crease in the number of clusters requires an increase
in the number of parents, which, in turn, requires an
increase in the number of offspring, which all result
in a prolonged search time.

Occasionally, the carrier ‘Level” or modulator ‘Index’
parameters may converge on a non-optimal region of
the search space; this may be the consequence of a
short ‘Attack’ time in the target that is not repre-
sented well by the uniform placement of the spectral
snap-shots. Solutions may escape via mutation, but
often the ‘Sustain’ parameter is able to compensate
with an opposing error. If the amplitude ‘Level’ is
low the ‘Sustain’ level will automatically evolve to an
increased value, to make up the difference through-
out the sustain period.

In repeated runs the target tones are normally
matched, with the offspring sizes that have been
given. Occasionally, the target may be too complex
and the FCES may converge upon a non-optimal
point of the object space. FEven the incorrectly
matched sound can exhibit good characteristics of
the target tone, which may be adequate for some
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Fig. 5: Normalised error with increasing number of clusters.

applications, but if an exact match is required, the
process may be repeated with a larger population
size.

7.2. Schottstaedt’s Dynamic Spectra models
Schottstaedt’s [15] dynamic FM tone arrangements,
double-modulator and nested-modulator (Fig. 1(b)
and (c) respectively), each present interesting
18 dimensional optimisation problems. Despite
the drastically increased complexity of the search
space, early experimentation matching contrived
FM sounds has produced excellent results; although
accurate matching with this model comes at a cost:
matches with the current arrangement can take up
to 10 minutes (again on a 2.4GHz Pentium 4 pro-
cessor). To regularly obtain good matches from the
model 500 clusters are required with a parent size of
2000, and an offspring size of 10000.

One notable observation in the early matching ex-

periments with contrived target tones, is that oc-
casionally an excellent (analytical) match is made,
but with vastly different parameters to the target
tone. This suggests that as the model becomes more
complex, not only is the potential for matching a
wider diversity of sounds increased, but there may
be many regions of high fitness in the search space.
The advantage of using the clustering algorithm is
that many of the strong regions are located concur-
rently, a synthesiser user may benefit from a choice
between several sounds that are all similar, in some
way, to their target.

Fig. 5 provides the average normalised error that
is observed when ten separate randomly gener-
ated contrived target tones are matched with the
FCES using simple, double-modulator and nested-
modulator FM synthesis arrangements. Any par-
tials that are not common to both the target and
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matched tones contribute to the error. An exact
match produces an error of zero. The populations
are proportioned to allow three parent solutions per
cluster, with a offspring population that is five times
the size of the parent population. From these early
results it appears that the easiest problem to solve
accurately is the simple FM followed by the nested-
modulator and double-modulator models.

8. CONCLUSION

A new matching method has been presented that
applies the FCES optimisation engine to the prob-
lem of FM sound matching for dynamic sounds. The
early results are promising and, with suitable opti-
misation, may provide a platform for new, intuitive,
synthesiser interfaces. Matching is carried out on
three different dynamic-spectra FM configurations:
simple, double-modulator and nested-modulator.

9. FUTURE WORK

The work presented here reports upon the initial
steps that have been taken to develop a synthesis
matching tool. In the future the model will be ex-
panded to operate upon wider parameter ranges and
larger, more complex FM arrangements. Work will
be done to optimise the process to allow faster con-
vergence that may allow for real-time tone searching.
It will also be investigated as to whether the model
could be applied to alternative synthesis methodolo-
gies. It is planned to arrange perceptual tests with
participants, to quantify the accuracy of the algo-
rithm.
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