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Abstract

Current methods of dialogue modelling for Conversational AI (CAI) bear little re-
semblance to the manner in which humans organise conversational interactions. The way
utterances are represented, interpreted, and generated are determined by the necessities of
the chosen technique and do not resemble those used during natural conversation. In this
research we propose a new method of representing task-oriented dialogue, for the purpose
of computational modelling, which draws inspiration from the study of human conversa-
tional structures, Conversation Analysis (CA). Our approach unifies two well established,
yet disparate, methods of dialogue representation: Dialogue Acts (DA), which provide
valuable semantic and intentional information, and the Adjacency Pair (AP), which are
the predominant method by which structure is defined within CA. This computation-
ally compatible approach subsequently benefits from the strengths, whilst overcoming the
weaknesses, of its components.

To evaluate this thesis we first develop and evaluate a novel CA Modelling Schema
(CAMS), which combines concepts of DA’s and AP’s to form AP-type labels. Thus creat-
ing a single annotation scheme that is able to capture the semantic and syntactic structure
of dialogue. We additionally annotate a task-oriented corpus with our schema to create
CAMS-KVRET, a first-of-its-kind DA and AP labelled dataset. Next, we conduct detailed
investigations of input representation and architectural considerations in order to develop
and refine several ML models capable of automatically labelling dialogue with CAMS
labels. Finally, we evaluate our proposed method of dialogue representation, and accom-
panying models, against several dialogue modelling tasks, including next label prediction,
response generation, and structure representation.

With our evaluation of CAMS we show that it is both reproducible, and inherently
learnable, even for novice annotators. And further, that it is most intuitively applied to
task-oriented dialogues. During development of our ML classifiers we determined that, in
most cases, input and architectural choices are equally applicable to DA and AP classifi-
cation. We evaluated our classification models against CAMS-KVRET, and achieved high
test set classification accuracy for all label components of the corpus. Additionally, we
were able to show that, not only is our model capable of learning the semantic and struc-
tural aspects of both the DA and AP components, but also that AP are more predictive
of future utterance labels, and thus representative of the overall dialogue structure. These
findings were further supported by the results of our next-label prediction and response
generation experiments. Moreover, we found AP were able to reduce the perplexity of the
generative model. Finally, by using χ2 analysis to create dialogue structure graphs, we
demonstrate that AP produce a more generalised and efficient method of dialogue rep-
resentation. Thus, our research has shown that integrating DA with AP, into AP-type
labels, captures the semantic and syntactic structure of an interaction, in a format that
is independent of the domain or topic, and which benefits the computational modelling of
task-oriented dialogues.
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Chapter 1

Introduction

With regard to computing machines, it was Turing who initially proposed, and popularised,
the idea of a ‘thinking’ machine conversing with human subjects (Turing, 1950). Though
the field of Natural Language Processing (NLP) has grown to encompass a wide range
of topics, from Sentiment Analysis to Machine Translation (Eisenstein, 2018), the goal of
humans using natural language to interact with computers - Conversational AI (CAI) - has
been a long-term and prominent one. CAI has since become a ubiquitous part of modern
life, with Virtual Assistants (VA), such as Google Assistant, Apple’s Siri, and Amazon’s
Alexa estimated to reach 1.8 billion users worldwide by 2021 (Budzinski, Noskova, and
Zhang, 2019). This growth has been largely fuelled by advances in Machine Learning
(ML), and associated NLP applications, which has not only improved the capabilities of
CAI, but increased the number of ways in which it can be developed and deployed in
the real world. The ‘traditional’ linguistic, or rule-based, methods of building CAI are of
the same ilk that Weizenbaum (1966) used to develop ELIZA, and still commonly used.
Rule-based CAI relies on predefined if-then logic, and certain language conditions can
be created to identify word order, synonyms, and common phrases, to formulate desired
responses. Conversely, ML provides several options for a purely data-driven approach to
CAI development. Artificial Neural Networks (ANN), and Deep Reinforcement Learning
(DRL), both solve the problem in an end-to-end fashion. That is, using a large corpus of
conversational data, they are trained to automatically produce appropriate responses to
a user’s input. On the other hand, a hybrid approach offers the best of both these worlds
while overcoming some of their respective disadvantages. It increases transparency and
reduces development cost, by allowing developers to specify the desired conversational flow
and response type, without the need to define all possible phrasings and synonyms. At
the same time, it can be built with little or no data, and still leverage NLP components
(speech recognition, user-intent classification, named entity recognition (NER), and so on)
to provide smarter and more flexible responses.

However, one characteristic shared by each of these approaches to CAI, is that the
method in which they model dialogue bears little resemblance to the way humans organise
conversational interactions. The way utterances are represented, interpreted, and gen-
erated are determined by the necessities of the chosen technique and not those used by
humans during natural conversation. This research proposes a new method of representing
dialogue, for the purpose of computational modelling, which draws inspiration from the
study of human conversational structures, Conversation Analysis (CA).

In this introductory chapter, we describe the motivation for the proposed approach
and specify the research problem investigated. This is followed by outlining the research
aim, the hypotheses, objectives and contributions, and finally the structure of this thesis.
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1.1. Motivation and Research Problem

1.1 Motivation and Research Problem

Human conversational interactions are, naturally, a complex phenomenon. When we take
part in such interactions, we may utilise a range of visual, verbal, and linguistic cues
to interpret the intentions of other participants, formulate responses and organise turns
of talk (Goodwin, 1981). Even when considered solely in an audio or text-based form,
the utterances of an interaction cannot be fully understood on an individual basis, but
rather must be interpreted within the wider context in which they were produced (Ekman
and Scherer, 1984). In other words, because utterances are not produced in isolation, to
fully understand the meaning of a dialogue, or section of dialogue, we must also have some
understanding of its structure. The question of how such intricate conversational structure,
and meaning, can be represented in a computationally practical format, remains an open
problem within NLP, and is a primary motivation for this research. A further motivation,
and as previously mentioned, is that current dialogue modelling techniques bear little
resemblance to the mechanisms that humans use to organise talk. In rule-based, and
hybrid approaches, the dialogue model is hand-crafted by the developer. As such, the
systems conversational behaviour is typically reactive to the user utterance or dialogue
state (Matěj̊u et al., 2021). ML and statistical approaches, on the other hand, are purely
data-driven. Fundamentally, the dialogue model is only as flexible, or generalisable, as
the data upon which it was trained, and the developer’s agency over dialogue strategy is
removed. Thus, NLP methods of representing dialogue syntax, and semantics, are often
dependant on, or bespoke to, the target domain, problem, or the available data (Shum,
He, and Li, 2018). We propose a method of representing the meaning and structure of
dialogue that is not only domain agnostic, but also independent of the constituent words
of the utterances themselves. It is therefore not constrained by the domain to which it is
being applied, but instead, provides a ‘high-level’ dialogue model based on the empirical
study of human conversational patterns.

Currently, the predominant approach to representing dialogue semantics for the pur-
pose of NLP, is the use of Dialogue Acts (DA). Originating from John Austin’s ‘illocu-
tionary act’ theory (Austin, 1962), and later developed with John Searle’s ‘speech acts’
(Searle, 1969), though the term dialogue act was introduced by Bunt (1978). In speech
act theory, speakers produce utterances in a conversation in order to perform actions, for
example, a question, statement, or greeting. A DA, is therefore the semantic content and
communicative function of a single utterance of dialogue, and these can be defined with an
appropriate set of DA labels. The utility of DA, as a set of labels for a semantic interpre-
tation of a given utterance, has led to their use in many NLP applications (Jurafsky and
Martin, 2017; McTear, Callejas, and Griol, 2016). In dialogue management systems they
have been used as a representation of user turns and intent (Firdaus et al., 2020; Li et al.,
2017), and as a set of possible system actions as a means of dialogue state tracking (DST)
(Keizer and Rieser, 2017; Cuayáhuitl et al., 2016; Ge and Xu, 2015; Griol et al., 2008). For
spoken language translation Kumar et al. (2008), utilised the contextual information pro-
vided by DA’s to improve accuracy in phrase based statistical speech translation. They
have also been used to analyse the structure of dialogue within the intelligent tutoring
domain (Boyer et al., 2010a, 2009a), and everyday conversations (Iseki, 2019).

While DAs provide valuable semantic and intentional information, they naturally con-
sider utterances as an isolated unit, even if the DA may imply some future or past action.
In so doing, they fail to recognise the sequential nature of interactions, and the influence
that both context and position have, on the production and meaning of an utterance (Clift,
2016; Ekman and Scherer, 1984). As Clift (2016), points out, “the form of an utterance
alone cannot necessarily be relied upon to deliver how it is understood by its recipient”.
Consider the use of “Okay” in the following examples. In the first instance speaker B
uses “Okay” in response to a question. In the second instance speaker A uses “Okay” as
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confirmation that a response has been heard and understood.

1 A: How are you? 2 A: Do you need help with that?
B: Okay B: No thank you.

A: Okay

What is needed, then, is a method of representing not just the semantics of single
utterances but the context within which they were produced and their contribution to
the interaction as a whole. For this we turn to the study of human conversation. CA is
an area of sociological research that is oriented towards understanding the organisational
structure of talk, and aims to define, and analyse, constructs that facilitate turn-taking
in human conversations (Sacks, Schegloff, and Jefferson, 1974). Further, CA theory can
be applied to any conversation, and therefore, offers some insights into domain agnostic
methods of capturing the structure of dialogue. Some key principles of CA are: that
turns of talk have some organisational structure; that the structure itself has a descriptive
quality for the utterances produced; and in turn, helps to shape the future utterances of
the interaction (Sidnell, 2010; Schegloff, 2007). Within CA, the predominant method by
which this structure is defined is the concept of an Adjacency Pair (AP). AP arose from
the observation that many turns at talk occur as pairs; a greeting is followed by another
greeting, and a question followed by an answer. Liddicoat (2007), provides a definition of
the basic AP features which are, i) they comprise of two turns, ii) by different speakers,
ii) that take place one after the other (in their basic form), and iv) are differentiated into
pair types. In an AP the initial turn is called the First Pair Part (FPP), and initiates an
exchange, the second turn is a Second Pair Part (SPP) which is responsive to the prior
FPP. To elaborate on the third point, talk does not always occur in neatly ordered pairs.
To account for this AP also include the concept of sequence expansion (or just expansion)
pairs. Expansions allow for talk which is made up of more than a single AP, yet is still
constructed and understood as performing, or oriented around, the same basic action.
They are constructed in relation to a base sequence of a FPP and SPP in which the core
action under way is achieved. To further elaborate on the final point of Liddicoat (2007),
AP may also be ‘type related’. That is, not every SPP can properly follow any FPP,
but rather, the SPP must be of the appropriate type according to the initiating FPP. A
question could be followed by an answer, but not a greeting, an offer accepted or declined,
and so on (Schegloff, 2007). Thus, in producing a FPP, a speaker determines the relevance
of a particular (range of) ‘next actions’ for the subsequent speaker (Clift, 2016; Liddicoat,
2007). In terms of computational dialogue modelling, this pair-type relation has the useful
property of limiting the range of possible SPP responses to a given FPP, and further, adds
a predictive quality in determining future valid responses given an initiating FPP.

From these observations we may now start to draw some connections between AP and
DA. And further, to outline how the concept of combining relevant theories from within
the CA, and DA literature, forms the basis of this research.

1. Both DA and AP consider talk as a sequence of actions. DA may be considered
single-utterance label defining the action, or intention of the speaker. AP on the
other hand, model the sequential nature of these actions through pair-type relation-
ships.

2. The type of a single FPP, or SPP, is effectively a DA. Therefore, it is possible to unify
these two concepts, DA and AP, from their related, but distinct, linguistic sub-fields
of speech act theory and CA. That is, we may use the well defined, and descriptive,
DAs as a type label for each component of an AP (FPP, SPP, and expansions). This
extends the concept of pair-type relation between AP, into a much richer, expressive,
and fine-grained, method of labelling dialogue utterances with AP-types.
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3. The individual weaknesses and strengths of DA, and AP, compliment each other
when used in combination. DA provide useful semantic and intentional information
for single utterances of dialogue, but fail to convey structural or contextual detail.
AP, on the other hand, indicate the structural and contextual relationship between
dialogue utterances, yet their pair-type relationships are enhanced through a more
descriptive set of DA labels.

Thus, we propose an approach to task-oriented dialogue modelling, which combines AP
with DA, into AP-types. The AP-types express the general structure of an interaction,
while leveraging the descriptive power of the DA for individual utterances. Or viewed
another way, we can consider DA labels as descriptions of the intra-utterance features of a
dialogue, while AP represent the inter-utterance features. We will show that integrating
DA with AP, into AP-type labels, captures the semantic and syntactic structure of an
interaction, in a format that is independent of the domain or topic, and which facilitate
the computational modelling of task-oriented dialogues.

Note that while CA, and DA, theory is applicable to any form of interaction, not only
task or goal driven, we have chosen to limit the scope of this research to task-oriented
dialogues. This is because they are more likely to have a well defined structure, that is
not merely linear sequences of utterances, or a collection of question-answer pairs (Grosz,
2018), and because task-oriented dialogues are a more widely studied domain for com-
putational dialogue modelling (Matěj̊u et al., 2021; Shum, He, and Li, 2018) (see section
2.4). Further, as with so many AI and ML paradigms that are, at least initially, based
on natural phenomenon or processes, this CA inspired approach to dialogue modelling
is directly influenced by the study of ‘natural’ human conversational patterns. The util-
ity of CA for modelling Human-computer Interaction (HCI) has been noted before (Luff,
Gilbert, and Frolich, 1990; Norman and Thomas, 1990; Robinson, 1990), yet, to date it
has received relatively little attention within the NLP and dialogue modelling literature.
We therefore intend to explore whether this human-centric approach can be augmented
with the current dialogue modelling techniques we have previously discussed, and to what
extent this proves beneficial.

1.2 Research Questions, Hypothesis and Objectives

The primary aim of this research is to develop and evaluate a CA inspired computational
model for task-oriented dialogues; by combining the descriptive power of DA for individual
utterances, with the structural and contextual information provided by AP, to form AP-
types, we hope to produce richer and more expressive representations of dialogue. In the
following we establish the research questions, hypothesis and objectives that form the basis
of this research.

1.2.1 Research Questions

In this research, we established the following research questions:

Q1 Are CA representations suitable for task-oriented and non-task-oriented dialogue?

Q2 What algorithmic process can effectively, and automatically, label task-oriented di-
alogue with AP and DA?

Q3 Can CA be used as a computationally compatible method of representing task-
oriented dialogue structure?

Q4 To what extent do CA representations benefit computational modelling of task-
oriented dialogue?
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1.2.2 Hypothesis

Motivated by the research aims and questions, the following outlines the research hypothe-
ses that are assessed throughout this thesis:

H1 CA theories on the structure of dialogue can be incorporated with DA as a method of
effectively representing task-oriented dialogue for computational modelling purposes.

H2 Existing text classification methods can be adapted to automatically label task-
oriented dialogues with DA and AP structure.

H3 Dialogues labelled with DA and AP provide a more syntactically and semantically
rich method of dialogue representation than existing methods.

1.2.3 Objectives

Based on the above, we have established the following objectives of our research:

O1 Develop and evaluate a CA annotation schema that defines DA and AP, which
combine to form AP-types.

O2 Annotate a task-oriented corpus with the CA schema to produce a gold-standard
CA labelled corpus.

O3 Design and develop a novel method to automatically label task-oriented dialogue
with the CA schema.

O4 Evaluate proposed method on gold-standard CA labelled corpus.

O5 Evaluate proposed method against different aspects of dialogue modelling.

1.3 Contribution of Thesis

The contributions of this research are summarised as follows:

C1 Developed the Conversation Analysis Modelling Schema (CAMS). A novel dialogue
annotation schema, that combines the CA concept of AP, with DA, to form AP-
types, for the purpose of computational task-oriented dialogue modelling.

C2 Constructed a gold-standard corpus of task-oriented dialogues annotated with the
CAMS. We annotated the Key-value Retrieval Network dataset (Eric and Manning,
2017a) with CAMS to produce a first-of-its-kind, AP-type labelled corpus, CAMS-
KVRET, and made it available to the research community.

C3 Conducted detailed investigations of input representations and architectural con-
siderations with respect to the DA classification task. Our findings are more com-
prehensive than any previously reported in the literature and in several cases are
applicable to other short text classification tasks.

C4 Developed and refined several ML models capable of automatically labelling seg-
ments of dialogue with CAMS labels. Both our single-label and multi-label models
are the first applications of DL algorithms to identify AP labels, and the latter model
is capable of simultaneously applying all label components of CAMS.

In meeting our previously stated objectives, and in contribution to this work, we have
published the following articles:
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1. Duran, N., Battle, S. and Smith, J. (2022) Inter-annotator Agreement Using the
Conversation Analysis Modelling Schema for Dialogue, Communication Methods and
Measures
The work in this paper is presented in chapter 4.

2. Duran, N., Battle, S. and Smith, J. (2021) Sentence encoding for Dialogue Act
classification. Natural Language Engineering
The work in this paper is presented throughout the first section (5.1) of chapter 5.

3. Duran, N. and Battle, S. (2018) Conversation Analysis Structured Dialogue for
Multi-Domain Dialogue Management. The International Workshop on Dialogue,
Explanation and Argumentation in Human-Agent Interaction (DEXAHAI)

4. Duran, N. and Battle, S. (2018) Probabilistic Word Association for Dialogue Act
Classification with Recurrent Neural Networks. EANN 2018

1.4 Thesis Structure

This thesis is divided into 8 chapters. In this first chapter, we have explained the re-
search motivation and problem and then outlined the aim, hypotheses, objectives and
contributions of the work. The rest of this thesis is organised as follows:

• Chapter 2 provides a comprehensive literature review of CA and DA, followed by
an overview of previous dialogue annotation studies and procedures, and finally, a
discussion of task-oriented dialogue modelling.

• Chapter 3 describes the research framework that we have designed, and which aligns
with the research questions and objectives discussed above. First, we discuss schema
development, corpus annotation, and data collection. Next, we provide an overview
for the development and evaluation of our automatic dialogue classification archi-
tectures. Finally, we outline our approach for evaluating the resulting dialogue
representations in terms of dialogue management and modelling structure.

• Chapter 4 introduces the process used in the first stage of the research framework,
developing and evaluating a CA annotation schema, and applying said schema to
create a gold-standard CA labelled corpus.

• Chapter 5 describes the processes used in the second stage of our framework. We
investigate several text pre-processing and input representation considerations, as
well as single sentence and contextual model architectures, for the purpose of DA
classification.

• Chapter 6 continues work on the second stage of our framework. Here we apply and
evaluate the dialogue classification architecture developed in the previous chapter
to automatically label task-oriented dialogue with our proposed method. Including,
the as yet largely unexplored task of identifying AP, and AP-types.

• Chapter 7 outlines three experiments that comprise the final stage of our framework.
We evaluate our proposed method in terms of response selection and generation for
dialogue management, and use χ2 analysis to produce dialogue structure graphs in
order to consider structural qualities of our dialogue representations.

• Chapter 8 summarises our work and evaluates the findings with respect to our stated
hypothesis, objectives and research questions. We also discuss possible limitations,
the applications of our findings, and future directions of this research.
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Chapter 2

Literature Review

Within the domain of Sociolinguistics, both CA, and DA, represent an extensive body of
research. In the first section of this chapter we review these two fields, and in particular,
those aspects that are relevant to the aims and objectives of this research. In relation to
O1, we initially discuss the background of CA, and its key component of AP, followed
by Speech Act Theory, and the development of DA. With respect to O2, we also outline
several widely studied DA taxonomies. Regarding O3, O4, and O5, in sections 2.2 and
2.3, we review current approaches to DA classification and the identification of AP or
dialogue structure. Finally, in section 2.4 we discuss the problem domain and define some
key terms with respect to this research and O5.

2.1 Conversation Analysis and Dialogue Acts

Historically, conversation has received a great deal of attention, and been the subject
of intellectual inquiry, for centuries. Yet, until the middle of the 20th century, much
of what was written is prescriptive in nature, and describes a set of rules for what a
conversation should be, or what makes a good ‘conversationalist’ (Burke, 1993). This
approach frames conversation as an elite activity, a skill that must be taught, and learned.
Of course, in reality, it is an everyday activity, with a fundamental role in human social
life (Liddicoat, 2007). In contrast, CA is a descriptive approach to the study of talk as
interaction, which grew from the ethnomethodological tradition developed by Garfinkel
(1967). Ethnomethodology studies the “common sense resources, practices and procedures
through which members of a society produce and recognise mutually intelligible objects,
events and actions” (Liddicoat, 2007). From this viewpoint, conversation can only be
understood by studying actual instances of naturally occurring social interaction, and it is
this notion that was taken up by Harvey Sacks in the early 1960s (Coulter, 1995). CA later
emerged from its sociological background – through the work of Harvey Sacks, Emmanuel
A. Schegloff, and Gail Jefferson, in the late 1960s and early 1970s (Liddicoat, 2007; Sacks,
Schegloff, and Jefferson, 1974; Schegloff and Sacks, 1973) – as an independent area of
enquiry intended to understand the organisational structure of talk. The CA approach
to the study of conversation is characterised by the idea that talk is an activity through
which speakers accomplish their communicative goals, or actions, and that this is achieved
through the orderly nature of talk. Clift (2016), considers these two characteristics of CA
as, “the two things from which all else follows”. That is, action – the things we do with
words – and sequence, or sequence organisation – “the ways in which turns-at-talk are
ordered and combined to make actions take place in conversation, such as requests, offers,
complaints, and announcements” (Schegloff, 2007). From these ‘two things’ we can begin
to consider the association between DA theory, and CA. DA are, naturally, considered
conversational actions, or communicative functions, for single utterances of dialogue. The
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CA view differs, in that, the actions are an emergent property of the order, or sequence,
in which multiple utterances are produced. In fact, from the above quote by Schegloff
(2007), request and offer are commonly featured labels in DA annotation schema (Bunt,
2012; Shriberg et al., 2004; Jurafsky, Shriberg, and Biasca, 1997), and so there are clear
similarities between the kinds of actions these two paradigms attempt to describe. Thus
we have two different approaches, one focused on actions, the other, oriented towards the
sequences that make up dialogue. It is these two notions that motivate the union of DA,
with CA, that underpins this research. Specifically, DA theory provides a more direct and
immediate description of the current actions being undertaken during talk, while CA is
better suited to express the sequential, orderly, relationship between utterances, and hence
the structure of the interaction. DA theory is discussed further in section 2.1.2, however,
we first explore further the methods with which CA ascribes order within dialogue.

Psathas (1995), elaborates on the core assumptions of CA, and how order is produced:

1. Order is produced orderliness. Order does not occur on its own, or pre-exist the
interaction, but rather, as the result of the coordinated practices of the participants.

2. Order is produced, situated and occasioned. Order is produced by the participants
themselves for the conversation in which it occurs.

3. Order is repeatable and recurrent. Patterns of orderliness, not only in the talk of an
individual speaker, but across groups of speakers, are repeated.

The first two points appear self-evident, and imply that, while CA assumes there is order
within a given conversation, it is not generalisable across all conversations (Wooffitt, 2005),
but rather produced by the speakers as the interaction develops. Of course, if this were not
the case, we may find conversation a rather inflexible, unproductive, and tedious method
of communication. However, the final point suggests that there are repeated patterns
that are common between speakers, and by extension, between different conversations. In
other words, the order that is produced is the result of a shared understanding between
speakers for how conversations should be structured. A key goal of CA then, is to identify,
and analyse, the activities performed by speakers in order to produce the orderly patterns
observed through successive utterances of an interaction (Wooffitt, 2005; Luff, Gilbert,
and Frolich, 1990). In order to achieve this, CA has a number of commonly employed
analytical tools at its disposal, the most prominent of which are outlined in the following:

• Turn-taking. Initially this may sound similar to the concept of an AP. However,
this component of CA is concerned with the social organisation that facilitate the
most intuitive and commonplace unit of conversation, taking turns, that was initially
outlined by Sacks, Schegloff, and Jefferson (1974). Though an obvious component of
conversation, the manner in which we transition from one speaker to the next, with
minimal silence between turns, and with little overlapping speech (in most cases), is
remarkably complex. Central to the Sacks, Schegloff, and Jefferson (1974), view is
that a speaker, upon initiating a turn, has the primary right to speak and that the
transfer of speakership only becomes a possibility at certain junctures.

• Repair. When people talk together they frequently encounter problems of hearing,
speaking, and understanding. The concept of repair refers to an organised set of
practices through which participants are able to address and potentially resolve
such problems (Liddicoat, 2007; Schegloff, Jefferson, and Sacks, 1977). Repair can
be initiated by either the speaker or the recipient, and similarly the repair itself can
be done by by either the speaker of the trouble source or someone else (Liddicoat,
2007). In either case however, repair is treated as a ‘priority activity’, which takes
precedence over other rules of turn taking (Clift, 2016).
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2.1. Conversation Analysis and Dialogue Acts

• Preference Organisation. The concept of preference refers to the different ways in
which a conversational action may be achieved, and is closely linked with social and
cultural norms. For example, the acceptance of an invitation is a preferred action,
while declining is dispreferred. Yet, there is a further, more subtle, social element to
preference organisation which suggests that dispreferred turns must be constructed in
different ways. For instance, immediately declining an invitation may be considered
rude, whereas delaying the declination response appears less so (Liddicoat, 2007).
Preference organisation, therefore, typically operates over the SPP of AP, while the
FPP proposes agendas or constraints on the next turn, which must be accepted or
resisted (Clift, 2016).

Of course, each of these components of CA can be recognised as having a crucial role
in social interaction. Certainly, they would also be interesting avenues of research for fu-
ture CAI and computational modelling applications. However, while each of these aspects
describe ways in which speakers produce orderly patterns within conversation, we exclude
them from this research for a number of reasons. Primarily, they are all intrinsically linked
with social or environmental cue’s which are either difficult to incorporate, or entirely ir-
relevant, for most computational modelling purposes; speaker intonation, gaze, and pauses
in speech require additional sources of input, and methods of representation, beyond the
scope of the proposed text-based computational model. These components also relate
to localised phenomenon within a conversation, typically two utterances for repair and
preference organisation, or the transition between them for turn-taking, and are therefore
too limited in scope to incorporate into a generalised representation of dialogue. Further,
they may all be represented, or are directly associated, with AP, and would therefore be
more effectively implemented via a higher-level AP-based computational model. Thus, we
choose instead to focus on the primary method of sequence organisation within CA, the
AP, and discuss this component in detail in the following section.

2.1.1 Adjacency Pairs

The concept of the AP begins with the observation that each utterance is associated with
what comes prior, and what comes next (Schegloff, 2007, 1968); a notion that differs from
that of linguistics and psychology, which have generally focused on the composition of
the singular utterance in terms of a phrase or sentence. CA views the positioning of an
utterance as fundamental to the understanding of its meaning, and the significance of
it as an action. This view facilitates an understanding of social actions as positioned,
either to initiate a possible sequence of action, or to respond to an already initiated action
within the sequence (Sidnell and Stivers, 2013, Chapter 10). The minimal sequence in
interaction consists of two paired utterances: the adjacency pair, and Schegloff and Sacks
(1973), defined the characteristics of the AP in the following. They are:

1. Composed of two turns.

2. Produced by different speakers.

3. Adjacent to one another (in their basic unexpanded form).

4. Sequentially ordered into First Pair Part (FPP) and Second Pair Part (SPP).

5. Type related, so that a particular FPP suggests the relevance of a particular SPP,
or a range of SPP.

The first two features in this list are straightforward, but the latter three warrant further
explanation. Firstly, it is typically the case that the two turns of an AP occur immediately
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adjacent to one another, with no intervening talk. However, in some cases talk can come
between the two turns via insert-expansions, discussed in the following section. Secondly,
the two turns which make up an AP are ordered so that one always occurs first (FPP),
initiating an exchange, and the other occurs second (SPP), and is responsive to the prior
FPP; for example, a question always precedes its answer. Thirdly, the FPP and SPP of
an AP are pair-type related. That is, when a FPP initiates a sequence, not every SPP
can properly follow the FPP, but rather the second must be of an appropriate type for
the action initiated by the first (Schegloff, 2007). For example, a question followed by
an answer, or an offer may be accepted, declined, or perhaps an alternative suggested
(conditionally accepted). Table 2.1 shows a number of common type-related AP, though
is by no means exhaustive list (Sidnell and Stivers, 2013).

Table 2.1: Adjacency pair type relations.

FPP Action SPP Action

Summons Answer

Greeting Greeting

Invitation Acceptance/declination

Offer Acceptance/declination

Request for action Granting/denial

Request for information Informative answer

Accusation Admission/denial

Farewell Farewell

In each of the examples in table 2.1 the FPP initiates some action and makes some next
action relevant. The SPP responds to the prior turn and completes the action that was
initiated, and together they accomplish the action (Liddicoat, 2007). Schegloff (1968),
referred to this concept as conditional relevance, meaning, given the production of a FPP
by a speaker, the SPP from the next speaker is immediately relevant and expectable.

The relationship between the two turns in an AP is not only prospective, but also
retrospective, in that, a SPP also signifies its speaker’s understanding of the FPP to which
it responds. Thus, AP allow for a framework of understanding that is constructed and
maintained on a turn-by-turn basis (Sidnell, 2010). Participants in conversation orient
to this basic structure when constructing orderly sequences of talk and setting up expec-
tations about how talk will proceed. The basic two-turn AP sequences described here
are the primary building blocks of interaction, what Schegloff (2007) calls the ‘base pair’,
and are common in the opening and closing sections of conversations and other types of
interaction; as in the following simple telling-accept example from Liddicoat (2007).

john: I’ve jus’ finished by las’ exam.
betty: That’s great.

2.1.1.1 Sequence Expansion

The basic two-turn AP sequences are notable for their presence in most interactions but
also because many other sequences are built around them. To account for more complex
dialogue structures AP also include the concept of sequence expansion, which allows the
construction of sequences of talk that are made up of more than one AP, while still
contributing to the same basic action (Liddicoat, 2007). Sequence expansion is constructed
in relation to a base sequence of a FPP and SPP in which the core action under way is
achieved and are themselves AP, in that they consist of a FPP and SPP, with all the
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associated characteristics previously discussed. There are three types of expansion pairs:
pre-expansion, post-expansion, and insert-expansion, which respectively take place before
the FPP, after the SPP, or between the first and second pair parts.

Pre-expansion The first place at which a base pair may be expanded is before the
occurrence of a base FPP. Pre-expansions are preparatory, or preliminary, to some other
projected work, or action, to be implemented by the FPP of the base AP (Sacks, 1995;
Schegloff, 1979). Thus, participants in pre-expansion sequences orient themselves towards
a base AP which may subsequently develop. The initial turn of a pre-sequence, such as a
pre-invitation, does two things: it suggests the possibility that a base FPP (for example,
an invitation) will be produced; and indicates the production of a SPP, in response to the
pre-invitation, is now relevant. From this response the expected occurrence of the base
FPP (the invitation) is made relevant and the base pair is produced, as in the following
example (Schegloff, 2007).

a: What you doing? FPP-pre
b: Not much. SPP-pre
a: Wanna drink? FPP-base
b: Sure. SPP-base

Like the example above, most pre-expansions are ‘type-specific’, in that they project
towards a specific base FPP; for example, pre-invitations (“hey, are you busy tonight?”),
pre-announcements (“Guess what happened to me?”), or pre-requests (“You wouldn’t
happen to be going my way would you?”) (Sidnell, 2010). However, there is one pre-
sequence that is not intended to reference the base pair action that it precedes, and is
instead a generic pre-sequence that can be used to begin any kind of talk. The summons-
answer sequence is simply designed to gain the attention of the recipient, for example
“hey”, “excuse me”, or simply uttering their name (Liddicoat, 2007). One final point
on pre-expansions, and which is in fact common to all expansion types, is that there
are no restrictions on the number that may be produced. While there are some forms
of pre-sequences that are more likely to come first, such as a summons-answer, multiple
pre-expansions can be initiated and concluded prior to the FPP of a base AP (Schegloff,
2007).

Insert-expansion As alluded to in the previous section, the third characteristic of an
AP, that the FPP and SPP are adjacent to one another, need not always be the case. In
some instances a sequence may be inserted between the first and second pair parts of an
AP (Schegloff, 1972). Insert-expansions interrupt the activity previously underway but are
still relevant to that action and allows the second speaker (who must produce the SPP) to
do interactional work relevant to the SPP. Once the sequence is completed the SPP once
again becomes relevant as the next action. For example, a question (FPP-base) could be
followed by a question (FPP-insert), to elicit information required to better answer the
initial question. The insert-expansion is then concluded before completing the original
base pair, as in the following example.

a: Do you know the directions to the zoo? FPP-base
b: Are you driving or walking? FPP-insert
a: Walking. SPP-insert
b: Get on the subway. . . SPP-base

11



2.1. Conversation Analysis and Dialogue Acts

Insert-expansions can be divided into two categories, pre-seconds and post-firsts, de-
pending on the interactional activity they address (Schegloff, 2007). Pre-second insert-
expansions, such as the example above, are type-specific, just as some of the pre-expansions
discussed previously. That is, they are preliminary to a particular type (or types) of SPP,
which is made relevant by the type of FPP to which it is responding. On the other hand,
post-first insert-expansions are retrospective in that they are intended to ‘repair’ prob-
lems of hearing or understanding from the preceding talk, for example “sorry what?”,
or “huh?”. Insert-expansions, like pre and post-expansions, have no restrictions on the
number that may occur between the first and second pair part of an AP. So, for exam-
ple, a post-first and pre-second insert-expansion may both take place, one after the other,
within a base AP. Additionally, all AP may take insert-expansions, including expansions
themselves. This implies, not only that base AP may take insert-expansions, but so too
can pre, post and insert AP. The latter case results in a kind of ‘nested’ insert-sequence,
where each subsequent level fulfils the same kind of interactional role for its enclosing
insert-expansion as the pre-seconds or pre-firsts described previously. Though, Schegloff
(2007, p. 110), notes that there is rarely more than a second level of nesting that occurs
between the first and second pair parts of the base AP, as in the following example.

a: Do you know the directions to the zoo? FPP-base
b: Are you driving or walking? FPP-insert1

a: Which is faster? FPP-insert2

b: Walking. SPP-insert2

a: I’ll walk then. SPP-insert1

b: Get on the subway. . . SPP-base

Post-expansion Once a base SPP has been completed, the sequence itself is potentially
complete. The action initiated by the FPP is accomplished and a new action could begin,
or the interaction concluded. However, it is possible for sequences to be expanded after
their SPP with talk that is recognisably associated with the preceding sequence, a post-
expansion (Liddicoat, 2007). In this respect Schegloff and Sacks (1973), consider sequences
like a turn, a conversation, or any other structured unit that does not just end, but has
a recognisable form of closure. Schegloff (2007), identifies two sorts of post-expansion:
minimal and non-minimal.

Beginning with non-minimal post-expansions; these are made up of first and second
pair parts and therefore behave much like all the AP previously discussed. These expan-
sions are designed to project talk at least one further turn and can take many different
forms. For example: repairing problems of hearing or understanding which may occur just
as easily in SPPs as FPPs; rejecting, challenging, or disagreeing with a dispreferred SPP;
reworking a FPP as a consequence of a dispreferred SPP; clarifying or confirming a SPP;
and so on (Liddicoat, 2007; Schegloff, 2007). Hoewever, perhaps the most common and
easily recognisable non-minimal post-expansions are sequence-closings, such as ‘goodbyes’,
‘thankings’, and ‘acknowledgements’, such as the following example.

a: What is the weather like today? FPP-base
b: Forecast for cloudy skies today. SPP-base
a: Okay. FPP-post
b: No problem. SPP-post

On the other hand, minimal post-expansions, or ‘sequence-closing thirds’ (Schegloff,
2007), are unique in relation to the expansion types discussed so far. Firstly, they consist
of only one additional turn that takes place after a SPP. Secondly, they are not intended
to project any further talk beyond itself. Minimal post-expansions, then, offer a reaction
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to the SPP response, but this reaction does not initiate a new sequence (AP) (Sidnell and
Stivers, 2013). Responses are typically short (minimal) and designed to propose, or move
towards, a sequence-closing, or conveying that the response to the action was adequate,
for example, “Oh”, “Okay”, “Great”, and so on. This can be illustrated using the above
example, where speaker A’s second utterance (“Okay”) could reasonably be interpreted
as a sequence-closing, with no further need for the production of a SPP by speaker B.

With these descriptions of AP in mind, we can begin to outline their utility within the
context of computational dialogue modelling, NLP, and dialogue systems. Beginning with
the first four of the five characteristics of AP defined at the beginning of this section; that
they are composed of two turns by different speakers, adjacent, and sequentially ordered.
These are indicative of structured, orderly patterns within talk, that are recurrent, and
emerge from instances of natural conversation. Turns are either initiating, or responsive to,
a particular desired action or conversational goal, and that they are produced by different
speakers signals clear occasions for turn-taking. Together, these provide indications of the
participants’ (user) intent and the current dialogue state. Sequence expansions develop
upon this basic structure and facilitate more complex sequences, beyond the simple two-
turn AP, that are a necessary requirement for sophisticated dialogue modelling. As we
have seen, expansions also fulfil important interactional roles in their own right, such as
work preliminary to the action initiated by a base AP (pre), repair or elaboration required
to complete an AP (inserts), or reworking, clarifying, and closings of previous first and
second pair parts (post). The fifth characteristic, that AP are type-related, is particularly
advantageous when considered from a computational perspective. The production of a
given FPP type signifies the relevance, or expectation, of a particular set (or subset) of
SPP types, as illustrated in table 2.1. Thus, system response selection is simplified by
reducing the set of all possible responses to just a few types, or conversely, indicating a
range of expected user responses for a given system utterance. Similarly the type-specific
properties of sequence expansions contribute further information as to the nature of the
current or future utterances, for example, the prospective pre-seconds, or retrospective
post-firsts, for insert expansions. These qualities not only assists the process response
generation, but also provides a flexible form of conversational flow, identifying dialogue
state, and user intent induction.

This knowledge can be formulated in terms of structures to be employed in interac-
tional sequences between a system and the user (Norman and Thomas, 1990). It is also
important to note, that these features are not based on any theoretical speculation as
to the ‘nature’ of conversation. Rather, they are insights about the character of con-
versational interaction that are obtained from empirical investigation (Wooffitt, 1990).
However, despite these advantageous qualities, AP alone are not descriptive enough for a
robust computational model of dialogue. Most notably, while there are extensive descrip-
tions of many commonly occurring types of AP (Sidnell and Stivers, 2013; Liddicoat, 2007;
Schegloff, 2007), there exists no formal, definitive, list of all possible types. Indeed, the
existence of such a list would suggest only a limited set of such pairs are ever enacted, a
notion too inflexible for the complex nature of conversations. Further, these type-relations
are typically highlighted to fulfil the current analytic objectives of the CA practitioner,
and no formal annotation conventions exist. For computational purposes then, we have
a well founded set of structures for describing conversational actions across multiple ut-
terances, and are yet lacking methods for explicitly, and flexibly, representing what those
actions are. For this we turn to DA.
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2.1.2 Dialogue Acts

While CA is regarded as a sociological approach to analysing conversation, Speech Act
Theory has its origins in the philosophical study of meaning and how speakers intentions
are expressed in language. The notion that uses of language can, and often do, have
a ‘character of action’ was largely unrealised by the study of language before the 20th

century (Smith, 1990). Wittgenstein (1953), posited that the meaning of a word is sys-
tematically related to its use in language, and this influenced Grice (1975), Searle (1969),
and Austin (1962), among others, to form a new philosophical trend devoted to ordinary
language analysis (Vanderveken and Kubo, 2001). Austin (1962), observed that in saying
something the speaker is normally also doing something – making a request, promise,
offer, apology, and so forth – or in Austin’s terminology, performing an ‘illocutionary
act’. According to Austin, in performing an illocutionary act the speaker may also be
performing: a ‘locutionary act’, uttering words with a certain sense of reference, and a
‘perlocutionary act’, that is, the effect the utterance has on the hearer, to convince, please,
amuse, influence, and so on (Geis, 1995). With ‘speech acts’ Searle (1969), later developed
upon Austin’s theory and proposed five ‘illocutionary points’ that speakers can achieve
on propositions in an utterance, they are: the assertive, commissive, directive, declara-
tory, and expressive. As described by Vanderveken and Kubo (2001), speakers achieve
the assertive point when they represent how things are in the world, the commissive point
when they commit themselves to doing something, the directive point when they make an
attempt to get the recipient to do something, the declaratory point when they do things in
the world at the moment of the utterance solely by virtue of saying that they do, and the
expressive point when they express their opinions about objects and facts of the world.
Another important insight from speech act theory is that the performance of a speech
act requires that certain conditions be fulfilled. Of course these conditions will differ in
form and number depending on the requirements of a given speech act. However, they
do provide the intuition that speech acts convey not only the communicative goal, or ac-
tion, of the speaker, but also the expectation of a certain effect on the addressee (akin to
Austin’s perlocutionary act). For example, to make them aware of the speakers presence
(greeting), make certain information available to them (inform or statement), request or
command and action, and so on. McTear, Callejas, and Griol (2016), referencing Searle
(1969), provide an example for an utterance to be intended as a command by a speaker
and understood as such by an addressee, the following conditions are required:

1. The utterance is concerned with some future act that the hearer should perform.

2. The hearer is able to do the act, and the speaker believes that the hearer can do the
act.

3. It is not obvious to the speaker and hearer that the hearer will do the act in the
normal course of events.

4. The speaker wants the hearer to do the act.

Thus, philosophers such as Austin (1962), and Searle (1969), reconceptualised speech as
‘actions’ and attempted to describe how spoken utterances can be classified according to
a finite (and relatively limited) set of functions (Thornbury and Slade, 2006). It should be
noted that communicative acts (Allwood, 1976), conversation act (Traum and Hinkelman,
1992), and conversational moves (Carletta et al., 1997), among others, are all broadly
synonymous with speech acts.

The term dialogue act was introduced by Bunt (1978), and is the more frequently used
term within contemporary Computer Science and NLP research, while perhaps also being
the most generic in the context of dialogue (Traum, 2000). Bunt (2000), explains that,
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while speech act theory inspired the action-based approaches to language, and is a useful
conceptual framework for human-computer dialogue, there are several points where it is
not satisfactory for application to real dialogue or dialogue system design:

1. In speech act theory utterance interpretation is the assignment of an illocutionary
force and propositional content, yet it is unclear exactly which illocutionary forces
should be distinguished, and why. The illocutionary points defined by Searle (1969),
do provide a taxonomic grouping of the basic semantic concepts. However, Bunt
(2000), argues that a notion of communicative functions is required, which establish
semantic definitions in terms of dialogue context changes.

2. Speech act theory considers that each utterance corresponds with a single illocution-
ary act, which may be functionally ambiguous. For example, Searle (1979, ch 2),
demonstrates that “Can you pass me the salt?”, is both a question about the hearer’s
ability to pass the salt and request to pass the salt. In contrast Bunt (2000), believes
that communication has many ‘dimensions’ that a speaker can address simultane-
ously, and that some utterances can be considered to have several functions at the
same time.

3. Crucially, although speech act theory naturally considers the interactive use of lan-
guage, certain characteristics of spoken dialogue are somewhat overlooked. Common
phenomenon, such as the use of feedback utterances (“Okay”, “Uh-huh”, “Hm”, and
such like), hesitations, self-corrections, greetings, apologies, and so on. Speech act
theory unhelpfully classifies all of these as ‘expressives’.

4. Finally, Bunt (2000), suggests that for application in the design of dialogue systems
a formalised theory is needed, which takes into account the types of communicative
acts that are relevant in the situation where the system is to be used. Moreover, that
such a theory should be based on general principles like speech act theory, and also
acknowledge that the set of communicative action types to be considered depends
on the social environment, the linguistic community, the use of media, the kind of
task, and so on.

These considerations illustrate some conceptual ‘gaps’ in traditional speech act theory and
in part prompted the development of Dynamic Interpretation Theory (DIT) (Bunt, 1990),
and by extension DA theory. Inspired by the study of spoken human-human information
exchange dialogues (or simply information dialogues), DIT aims to identify fundamental
principles of dialogue for the purpose of understanding natural dialogue phenomena, and
for designing effective computer dialogue systems (Bunt, 2000). Information dialogues,
that facilitate the exchange of factual information, have obvious practical applications for
human-computer interaction. However, Bunt (2000, 1990), argues that all communication
relies on conveying intentions and information, and therefore dialogues with more complex
purposes will also require the concepts needed for information dialogues. Thus, it is
important to make some distinctions between speech act theory, which is primarily rooted
in the philosophy of language, and DA theory, which is a data driven approach to the
computational modelling of language (Bunt, 2009); hence the widespread adoption of DA
theory within NLP and dialogue system research (Eisenstein, 2018; Jurafsky and Martin,
2017).

A fundamental principle of DIT is the way meaning in communicative behaviour is
described in terms of information-state-updates, or context changes within the interaction.
In this view, DA are semantic concepts that are defined by the way it is intended to affect
the information-state of an addressee. For instance, if the utterance “Do you know what
time it is?”, is interpreted as a question, then the addressee’s information-state is updated
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with the information that the speaker does not know what time it is and would like to
know. On the other hand, if the utterance is interpreted as reprimanding the addressee for
being late, then the addressee’s information-state is updated to include the information
that the speaker does know what time it is. From this example we can define DA in terms
of two components: i) its communicative function, what the speaker is trying to achieve
(question or reprimand), and ii) the semantic content, which describes the information
that is being addressed and should be used to update the information state – the entities,
their properties, and relations that are referred to (Bunt, 2009). DIT defines a range
of communicative function categories for DA, and this was later developed into a more
general purpose taxonomy in DIT++ (Bunt, 2009). Additionally, as alluded to in point 2
above, DIT considers DA to be multidimensional. That is, DA are not mutually exclusive,
and each utterance of dialogue may be assigned more than one DA to indicate that it is
performing more than one communicative function. These concepts, and DIT in general,
have proved to be highly influential to development of DA theory, and appear in various
forms within the DA taxonomies discussed in the next section.

2.1.2.1 Dialogue Act Taxonomies

In contrast to CA, where there appears to be consensus on the conventions for annota-
tion of the various phenomena, for DA a wide range of taxonomies have been proposed
for different kinds of dialogue activities. For example, casual conversations (Jurafsky,
Shriberg, and Biasca, 1997), classroom interactions (Sinclair and Coulthard, 1974), clin-
ical research mediation (Hoxha et al., 2016), direction following (Carletta et al., 1997),
multi-party meetings (Mccowan et al., 2005), and task scheduling (Alexandersson et al.,
1997). Yet, despite their popularity, there have been relatively few attempts at formalisa-
tion (see Poesio and Traum (1998), for one example), and are often reduced to informal,
intuitive concepts which lack proper definition (Bunt, 2011). Comparing the distributions
of DA types across different domains, schemes, and corpora, Traum (2000), found that
taxonomies for different tasks or genres of dialogue tend to be quite different; even within
similar task-oriented dialogue domains, such as task scheduling and direction following.
Though, to some extent this is expected given that different tasks will have different fre-
quencies of DA types. The large number of DA taxonomies has led to a similarly large
number of corpora annotated with DA. Indeed, corpora that are created to aid in the de-
velopment of dialogue systems, or other NLP tasks, are frequently accompanied by their
own bespoke task-related set of DA (Asri et al., 2017; Williams, Raux, and Henderson,
2016; Weston et al., 2015). The diversity in taxonomic approaches and the associated
corpora has led to confusion over terminology and conceptual definitions, and problems
reusing annotated corpora because it may be difficult to determine if equivalent categories
exist between any two schema, or indeed if any functionally equivalent categories exist at
all (Mezza et al., 2018; Bunt, Fang, and Liu, 2013; Bunt, 2011). Within the context of ML
and NLP applications, models developed with a particular corpus, and for a given task,
may be highly domain or task-specific. Thus, any kind of comparison between corpora
and their labelling scheme (such as that of Traum (2000)), or data produced through anal-
ysis or experimentation, is made much more challenging. Here we provide an overview of
two prominent DA taxonomies that are frequently used within NLP and DA classification
research (see section 2.2), and are therefore relevant to this work.

DAMSL Dialogue Act Markup in Several Layers (DAMSL) (Allen and Core, 1997) is
one of the most widely used DA taxonomies in computational linguistics and was primarily
developed for two party task-oriented dialogues in which participants collaborate to solve
a problem. The scheme has been applied in the annotation of both the TRAINS corpus
(Allen et al., 1996), and the widely studied Switchboard corpus using the more elaborate
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Switchboard Shallow-Discourse Function Annotation (SWBD-DAMSL) scheme (Jurafsky,
Shriberg, and Biasca, 1997) (see section 2.2.1), among others. DAMSL defines four main
categories of DA which indicate some aspect of the utterance itself, summarising the
intentions of the speaker and the content of the utterance:

1. Communicative Status - records whether the utterance is intelligible and whether it
was successfully completed.

2. Information Level - a characterisation of the semantic content of the utterance.

3. Forward Looking Function - how the current utterance constrains the future beliefs
and actions of the participants and affects the discourse.

4. Backward Looking Function - how the current utterance relates to the previous
discourse.

Note that the Information Level, Forward, and Backward Looking Function categories
are effectively synonymous with the concepts of semantic content and communicative func-
tion from our previous definition of DA (Bunt, 2009). However, that DAMSL separates
the forward and backward looking functions highlights an additional feature of DAs that is
akin to the initiation and response relationship of AP that was discussed previously. That
is: they may be prospective, and are intended to have a particular affect on the recipient,
such as creating expectations of a certain action or response-type (questions, statements,
greetings, and so on; or they may be retrospective, if they are responsive to a previous
utterance (agreements, answers, and so on). Therefore, while DA generally considered to
be representations of a single utterance, they may also convey the structure or relationship
between localised utterances of dialogue.

DiAML The large number of bespoke DA taxonomies, and lack of formalisation, moti-
vated the recent development of the ISO standard 24617-2 “Semantic annotation frame-
work, Part 2: Dialogue acts” (British Standards Institution, 2012; Bunt et al., 2012), which
defines the Dialogue Act Markup Language (DiAML), which originated from DIT (Bunt,
2009, 1990). DiAML is intended as an application-independent annotation scheme that is
empirically and theoretically well founded, that can be used to annotate typed, spoken,
and multimodal dialogue (where speech is used in combination with nonverbal behaviour)
via human or automatic annotation methods (Bunt et al., 2012). As yet no corpora have
been fully annotated with DiAML scheme, though several attempts have been made to
map existing data to the scheme (Mezza et al., 2018; Petukhova, Malchanau, and Bunt,
2014; Fang, Bunt, and Cao, 2012).

DiAML accommodates all of the characteristics of DA examined so far and each of
these can be represented within the DiAML notation for a single utterance. That a
given utterances DA (in DiAML parlance, a functional segment) can have a relation to a
previous, or future, DA is referred to as a functional dependency. The notion of multidi-
mensionality is represented as the dimension. For example, the Task dimension, or Turn,
Time, and Social Obligations Management dimensions. DA can also have additional qual-
ifiers which encode the various ways in which a speaker can specify certain conditions,
qualifications, or feelings accompanying a DA (Bunt, 2017). However, the core set of DA
are defined within categories according to their communicative function, of which there are
two classes: dimension-specific (such as Pause, Apology, and Take Turn), which can only
be used in one specific dimension, and general-purpose ones, like Question, Answer, Offer,
and Instruct, which can be combined with any kind of semantic content and form a DA in
the corresponding dimension (Bunt et al., 2012). Table 2.2 shows the categories of com-
municative functions and their associated DA labels, organised into the general-purpose
and dimension-specific classes.
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Table 2.2: The DiAML categories of communicative functions and associated DA labels.

Communicative Function DA Labels

General-purpose

Information-seeking
Question, setQuestion, choiceQuestion,
propositionalQuestion, checkQuestion

Information-providing
answer, inform, correction, agreement,

disagreement, confirm, disconfirm

Commissive

promise, offer, addressRequest,
acceptRequest, declineRequest,
addressSuggest, acceptSuggest,

declineSuggest

Directive
suggest, request, instruct, addressOffer,

acceptOffer, declineOffer

Dimension-specific

Feedback
autoPositive, alloPositive, autoNegative,

alloNegative, feedbackElicitation

Turn Management
turnAccept, turnAssign, turnGrab,
turnKeep, turnRelease, turnTake

Time Management stalling, pausing

Owner and Partner Management
completion, correctMisspeaking, selfError,

retraction, selfCorrection

Discourse Structuring interactionStructuring, opening

Social Management

initialGreeting, returnGreeting,
initialSelfIntroduction,

returnSelfIntroduction, apology,
acceptApology, thanking, acceptThanking,

initialGoodbye, returnGoodbye

2.1.3 Summary

As we have seen, DA, and the various taxonomies, provide an empirically well founded
method of expressing the intended communicative function (or action), and semantic con-
tent, of a single utterance of dialogue; hence, their widespread use in many NLP appli-
cations (Jurafsky and Martin, 2017; McTear, Callejas, and Griol, 2016). However, while
DA’s provide valuable semantic and intentional information, as Clift (2016) points out,
“the form of an utterance alone cannot necessarily be relied upon to deliver how it is un-
derstood by its recipient”. For example, “Is that your coat on the floor?”, said by parent
to child, is not the propositional question that its form suggests, but rather a directive
to pick the coat up. In a further criticism of DA theory, Geis (1995) and Patten, Geis,
and Becker (1992), illustrate that conversational actions, such as making a request, is-
suing an invitation, conveying information, and so on, are not normally concluded in a
single turn of conversation. Instead, these kinds of actions are completed over several
turns and should therefore be viewed as properties of conversational sequences, rather
than individual utterances. Indeed, Searle (1992) himself noted that speech act theory
does not provide a promising foundation for the account of conversation. It is perhaps
surprising then, given these limitations, that DA have been so widely adopted within the
field of NLP and dialogue systems. Yet, DA are uniquely suited to explicitly, and flexibly,
represent the individual actions of utterances within the wider structure of conversational
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action provided by AP. Thus, we propose that DA and AP theory can be unified into
a single taxonomy for describing the structure and meaning for sequences of utterances
within conversations. In this view, DA can be considered the type label for an individual
utterance, and when combined with AP, accommodate the pair-type relations associated
with the component utterances of an AP. Or, viewed another way, we can consider DA
labels as descriptions of the intra-utterance features of a dialogue, while AP represent the
inter-utterance features. In this way we can overcome the aforementioned drawbacks of
DA, as a method of representing contextual or structural meaning of dialogue, and those of
AP, lacking any formalisation and flexibility for the crucial pair-type relationships between
utterances.

It should be noted that the utility of CA and AP for the purpose of HCI (Luff, Gilbert,
and Frolich, 1990), and NLP (Jurafsky and Martin, 2017; McTear, Callejas, and Griol,
2016; Patten, Geis, and Becker, 1992) has been recognised previously. However, thus far
this has primarily been an acknowledgement of the benefits of a conversational agent,
or dialogue-state model (Jurafsky and Martin, 2017), that emulates or recognises the
processes of human conversation. For example, determining the type of response the
system should make to a users utterance (McTear, Callejas, and Griol, 2016), or initiating
repair (Alloatti, Caro, and Bosca, 2020). To the best of our knowledge, no attempt has
been made to directly incorporate CA theory into a computational model of dialogue, nor
to combine DA and AP into a more descriptive representation. Instead, dialogues are
generally represented as a sequence of DA alone (Griol et al., 2014, 2008).

2.2 Dialogue Act Classification

The task of automatic DA classification, sometimes referred to as short text classification,
simply put, is the task of assigning a DA label, or labels – from a chosen DA taxonomy
– to a given input sentence, or sequence of sentences. Typically, input sentences are
utterances from human-human or human-machine dialogues, but DA classification has
also been applied to emails and forum posts (Wang et al., 2011; Jeong, Lin, and Lee,
2009), for example, Wikipedia discussions (Jamison and Gurevych, 2014). Within the field
of NLP many applications have been developed that utilise the automatic identification,
or classification, of DA. Most prominently, within dialogue management systems, they
have been used as high-level representations for user intents, system actions and dialogue
state (Firdaus et al., 2020; Liu et al., 2018; Cuayáhuitl et al., 2016; Wen et al., 2016;
Ge and Xu, 2015; Griol et al., 2008). DAs have also been applied to: spoken language
translation (Sridhar, Narayanan, and Bangalore, 2009; Kumar et al., 2008; Reithinger et
al., 1996); team communication in the domain of robot-assisted disaster response (Anikina
and Kruijff-Korbayova, 2019); and understanding the flow of conversation within therapy
sessions or psychiatric interviews (Bifis et al., 2021; Lee et al., 2019).

With respect to this research, specifically objectives O3 and O4, DA classification is of
particular interest. It has received a considerable amount of attention within the literature,
and of course, this is directly relevant to the identification of DAs that is intrinsic to our
proposed approach. However, given that the task is to classify utterances of dialogue with
a chosen set of labels, we surmise that there is no fundamental difference between DA
and AP, especially considering the contextual approaches to DA classification discussed in
section 2.2.3. Thus, much of the previous work on DA classification will also be relevant
to the identification of AP. This is particularly valuable, given the comparatively sparse
literature on the automatic identification of AP (see section 2.3). In the following we
provide an overview of DA labelled corpora, before discussing approaches to automatic
DA classification in the subsequent sections.
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2.2.1 Dialogue Act Corpora

As discussed in section 2.1.2.1, a large number of DA taxonomies have been developed
for various kinds of dialogue activities, and this has led to a similarly large number of
corpora annotated with DA. Typically, the corpora and their accompanying DA schema
are created to aid in the development of dialogue systems for a particular task, for example,
question answering (Weston et al., 2015), or information retrieval and customer services
(Asri et al., 2017; Williams, Raux, and Henderson, 2016). However, several corpora of
human-human interactions, in both task-oriented and non-task-oriented domains, have
been annotated with DA. The following provides a brief overview of several that are the
most widely studied within DA classification research.

HCRC Maptask Developed at the Human Communication Research Centre (HCRC)
at the University of Edinburgh, the HCRC Maptask corpus (Anderson et al., 1991; Thomp-
son et al., 1991), is intended to facilitate the study of natural dialogues from many differ-
ent perspectives in a task-oriented cooperative problem solving domain. It contains 128
conversations that were produced by pairs of participants, 64 total, who worked collabora-
tively on a map annotation task. In the task, both participants have a map which is only
visible to them and not to the other participant. Each map consisted of an outline and
around a dozen labelled features, for example, “white mountain” or “oak forest”. Most
features are common to the two maps, but not all, and the participants were informed of
this. One map had a route drawn in, the other did not. The task was for the participant
without the route (the instruction follower) to draw one on the basis of discussion with
the participant with the route (the instruction giver) (Thompson et al., 1991).

The transcribed dialogue utterances were annotated with one of 12 different conver-
sational moves, or DA, and these are primarily either initiations or responses, according
to their purpose (Carletta et al., 1996). Initiating moves set up the expectation of a
response, such as: instructions (instruct); stating information (explain); confirming infor-
mation (check); checking attention, agreement or readiness (align); “yes” or “no” questions
(query-yn); and “who”, “what” “where” type questions (query-w). Responsive moves fulfil
the expectations of initiations by: acknowledging a move is understood (acknowledge); re-
plying “yes” (reply-y); replying “no” (reply-n); replying in a form that is not “yes” or “no”
(reply-w); and a reply in which the speaker includes information beyond what was strictly
asked (clarify). In addition to the initiation and response moves, the (ready) moves occur
when one section of the task (and thus dialogue) is complete and signify readiness for more
instructions, for example “OK” or “right”. Maptask was annotated with an additional
higher-level grouping of these conversational moves, known as conversational games. That
is, a set of utterances starting with an initiation and encompassing all utterances up until
the game has been fulfilled. For example, a request for information has been completed
or abandoned.

The Maptask coding scheme is a good example of a task-specific set of DA that are
appropriate for the kind of interactions found in Maptask dialogues, but do not generalise
to all task-oriented, or even general, conversations. Nevertheless, the Maptask corpus
has been used in several DA classification studies (Wan et al., 2018; Tran, Haffari, and
Zukerman, 2017; Tran, Zukerman, and Haffari, 2017), where it has proven to be one of
the most difficult datasets to achieve high accuracy for the task.

a: okay Align
a: and then we’re going to turn east Instruct
b: mmhmm Acknowledge

20



2.2. Dialogue Act Classification

Switchboard The Switchboard corpus of spontaneous conversational speech was auto-
matically gathered by Texas Instruments for the purpose of training and testing speech
processing algorithms (Godfrey, Holliman, and McDaniel, 1992). It contains 2500 natural-
istic conversations by 500 paid participants from around the U.S, and consists of telephone
conversations between two participants, who did not know each other, and were assigned
one of 70 topics to discuss. Jurafsky, Shriberg, and Biasca (1997), later annotated a subset
of the Switchboard corpus using a slightly modified version of DAMSL (SWBD-DAMSL),
to form the Switchboard Dialogue Act corpus (SwDA). The SwDA corpus contains 1,155
conversations, comprising 205,000 utterances, and 42 unique DA labels. The SWBD-
DAMSL label set is multidimensional; approximately 50 basic labels (such as, Question,
Statement) could each be combined with additional dialogue function information, for ex-
ample, Task-Management and Communication-Management. However, the many possible
combinations were reduced to a set of 42 mutually exclusive DA labels and annotation was
carried out over a three-month period in 1997 by eight linguistics graduate students at CU
Boulder. Inter-annotator agreement (IAA) for the 42-label set used was 84%, resulting in
a Kappa statistic of 0.80 (Cohen, 1960). Though, it should be noted that the DA labels
within SwDA are highly imbalanced, with the three most frequent DA (Statement-opinion,
Statement-non-opinion, and Acknowledge (Backchannel)) comprising ˜70% of all labels.
Further, the training (1,115 conversations) and test (19 conversations) data split suggested
by Stolcke et al. (2000) is also imbalanced with regards to the label distributions, and yet
has been widely adopted throughout the literature. Nevertheless, SwDA is one of the
largest and most frequently studied non-task-oriented corpora within DA classification
research (Colombo et al., 2020; Bothe et al., 2018a; Wan et al., 2018; Cerisara, Král, and
Lenc, 2017; Papalampidi, Iosif, and Potamianos, 2017; Tran, Haffari, and Zukerman, 2017;
Ribeiro, Ribeiro, and De Matos, 2015; Stolcke et al., 2000).

a: I’m more out in the suburbs, Statement-non-opinion
a: but I certainly work near a city. Statement-non-opinion
b: Okay, Acknowledge

MRDA The Meeting Recorder Dialogue Act (MRDA) corpus (Shriberg et al., 2004),
was developed as part of the International Computer Science Institute (ICSI) Meeting
Recorder Project (Janin et al., 2004). It is intended to provide a resource for studying
the complex discourse phenomenon present in meetings, such as regions of high speaker
overlap, complicated interaction structures, abandoned or interrupted utterances, and
other turn-taking and discourse-level features. It contains transcriptions of 72 hours of
speech from 75 naturally-occurring multi-party meetings with 53 unique speakers and an
average of ˜6 speakers per meeting. In total ˜108,000 utterances were labelled with a
modified version of the SWBD-DAMSL (Dhillon et al., 2004), with three different levels of
granularity. The specific set contains 52 labels, most, but not all, are compatible with the
SWBD-DAMSL scheme. The general set contains 12 labels that are generalised versions of
the specific set, and the basic set contains just 6 labels that are generalised versions of the
general set. The MRDA corpus is unique because it was also annotated with AP and, to
the best of our knowledge, is the only large corpus created for the purpose of computational
modelling or analysis that is annotated with both DA and AP. Unfortunately, only some
FPP and SPP utterance pairs were labelled with AP, and the schema contains no concept
of expansion. AP annotations are therefore quite sparse within the corpus making it
unsuitable for our purpose without complete re-annotation. Regardless, MRDA is the
largest task-oriented DA labelled corpora and is frequently studied within DA classification
research, typically using the basic label set (Colombo et al., 2020; Ribeiro, Ribeiro, and
De Matos, 2019; Chen et al., 2018; Kumar et al., 2017; Ortega and Vu, 2017; Lee and
Dernoncourt, 2016).
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a: okay FloorGrabber
a: some some introductions are in order. Statement
b: oh okay. Statement

2.2.2 Unsupervised, Supervised, and Probabilistic

Much of the extensive earlier literature on automatic DA classification focuses on conven-
tional (non-ANN) supervised, unsupervised, and probabilistic approaches. Some of the
earliest examples applied statistical methods to the problem. For example, Reithinger and
Klesen (1997), formulated the problem as:

DA = argmax
D́

P (D́|W ) (2.1)

Where D́ is the set of probabilities that each DA is associated with the string of words
W , which consists of varying length n-grams. The argmax component then selects the
most probable DA, of all possible labels, given the range of probabilities in D́. They
additionally noticed that including knowledge about the previous dialogue history H, the
predicted DA, improved classification by 3%. Their final classifier was therefore:

DA = argmax
D́

P (D́|W )P (D́|H) (2.2)

Using this approach Reithinger and Klesen (1997) achieved classification accuracy of
67% on the German, and 74% on the English, versions of the VERBMOBILE-2 corpus
(Alexandersson et al., 1997). Similar use of Bayesian classifiers with n-gram features was
employed by Grau et al. (2004), who investigated the effect of different smoothing meth-
ods, and both Louwerse and Crossley (2006) and Webb and Hepple (2005), explored the
association between DAs and occurrences of varying length n-grams within the utterance.
Keizer (2001), alternatively formulated the problem using a Bayesian Network with three
components: the belief state (of the previous DA), the DA of the current utterance, and
the linguistic features of continuation patterns or question marks. With a similar approach
Král, Pavelka, and Cerisara (2008) instead modelled the position of each word or n-gram
within the utterances, as well as prosodic information.

A similar, and perhaps one of the most common, statistical methods applied to the
problem, is Hidden Markov Models (HMM) combined with a range of techniques for cre-
ating textual feature representations and generating predictions. For example, Ries (1999)
created a hybrid HMM with an ANN classifier and Julia and Iftekharuddin (2008) and
Surendran and Levow (2006) both combined Support Vector Machines (SVM) with HMM
using text and acoustic features. The former created an ensemble of HMM and SVM clas-
sifiers for each of the different feature types, and the latter used SVM for local information
of the current DA and a HMM for previous DA within the sequence. Other examples of
HMM hybrids, or similar statistical methods, include the use of Latent Dirichlet Alloca-
tion (Zhai and Williams, 2014), Maximum Likelihood (Boyer et al., 2010a), Maximum
Entropy (Sridhar, Narayanan, and Bangalore, 2009), and Conditional Random Fields
(CRF) (Quarteroni, Ivanov, and Riccardi, 2011). One of the seminal studies on DA classi-
fication and the use of HMM, applied to the SwDA corpus, explored the use of transcribed
words, speech recognised words, and prosody, such as pitch, duration and energy, as input
features for the classifier (Stolcke et al., 2000). Unsurprisingly they found performance was
better using transcribed words (71.0%), than with the added uncertainty of automatically
recognised words (64.8%). For the prosodic features they also explored the use of decision
trees and ANN classifiers, with accuracies of 45.4% and 46.0% respectively. Nevertheless,
the training and test data split suggested by Stolcke et al. (2000) (despite the imbalanced
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classes), and the 71% accuracy reached with transcribed words remains a benchmark for
the SwDA corpus.

Considering other supervised, unsupervised and semi-supervised approaches. Both
Jeong, Lin, and Lee (2009) and Shriberg et al. (1998) applied decision trees to the prob-
lem, the former trained an ensemble of trees on the MRDA and SwDA corpora, with Bag
of Words (BOW) and n-gram features, before exploring the generalisability to DA classi-
fication of emails and forum posts. Yang et al. (2015) computed sentence similarity with
word embeddings and sentence syntax before applying k-means clustering, while Ezen-Can
and Boyer (2015) employ Markov Random Field clustering. Milajevs and Purver (2014)
encoded distributional information of word and utterance order using BOW, n-gram and
previous utterance features before applying k-nearest neighbours for classification, and
Ribeiro, Ribeiro, and De Matos (2015) used the frequencies of n-grams as features with a
SVM classifier. Finally, Novielli and Strapparava (2009), Serafin and Di Eugenio (2004),
and Serafin, Eugenio, and Glass (2003), applied Latent Semantic Analysis (LSA) to the
task, though the former also found that SVM was much more effective on the same (SwDA)
task.

We can summarise these approaches in terms of two aspects, i) the representation of
words and utterances, and ii) other contextual discourse information for a given utterance,
for example, its positioning within the dialogue itself, the sequence of DAs, or speakers.
In other words, how (or what) words compose to form the meaning of an utterance,
and hence its associated DA, and the relationship between a given utterance and the
surrounding utterances. This latter point is particularly salient when we recall that both
DA and AP may have a forward and backward looking component. Many of these studies
used conventional NLP techniques for utterance representation, or features. Primarily,
varying length n-grams or BOW, but in some cases acoustic (Julia and Iftekharuddin,
2008; Surendran and Levow, 2006) or prosodic (Stolcke et al., 2000) information was
used. However, most were also conducted before the advent of word embeddings, and
so were unable to take advantage of these representations. In terms of dialogue context,
Reithinger and Klesen (1997) found that including predictions for previous DA within
the sequence improved classification accuracy, and indeed many of the HMM, and similar
probabilistic approaches, incorporated this notion – predicting sequences of DA. In most
cases including predictions, or previous utterance features, improves performance, though
often contextual and non-contextual approaches were not compared. Table 2.3 provides
an overview of several of the studies discussed in this section that report results for two of
the corpora reviewed in section 2.2.1, SwDA and Maptask. It is worth noting that, for the
SwDA corpus, the two studies that report higher performance than Stolcke et al. (2000)
use either a much simplified labelling scheme (Yang et al., 2015), or deviate from the
conventional training and test split (Cross-validation) (Ribeiro, Ribeiro, and De Matos,
2015), which significantly effects results for this corpus and makes comparison difficult.
Similarly, Serafin and Di Eugenio (2004) utilised the ‘conversational game’ annotations
for Maptask, which are a feature unique to this corpus. Thus, despite the wide range
of approaches summarised here, many of which are far more contemporary than that
of Stolcke et al. (2000), there are relatively small differences in performance between
conventional NLP models when applied to the DA classification problem. More recently
Deep Learning (DL) neural network approaches have yielded greater improvements, and
we review these in the following section.

2.2.3 Neural Architectures and Language Models

The performance of contemporary DL neural network techniques, often based on recur-
rent, convolutional, and more recently Transformer architectures (Vaswani et al., 2017),
have surpassed that of the more traditional NLP approaches discussed in the previous
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Table 2.3: Summary of conventional Unsupervised, Supervised, and Probabilistic, DA
classification Studies.

Study Model Features SwDA Maptask

Grau et al. (2004) Naive Bayes 3-gram 66.0% -

Webb and Hepple (2005) Cue Phrase Selection 1 to 4-gram 69.1% -

Stolcke et al. (2000) HMM n-gram 71.0% -

SVM and HMM Text - 59.1%
Surendran and Levow (2006)

SVM and HMM Text + Acoustic - 65.5%

SVM and HMM Text - 55.4%
Julia and Iftekharuddin (2008)

SVM and HMM Text + Acoustic - 68.6%

Sridhar, Narayanan, and Bangalore (2009) Maximum Entropy - 70.4% -

Quarteroni, Ivanov, and Riccardi (2011) CRF - 70.9% -

KNN Bag of bi-grams 62.1% -
Milajevs and Purver (2014)

KNN Bag of bi-grams + Prev Utt 63.9% -

Jeong, Lin, and Lee (2009) Tree Ensemble BOW + n-gram 63.7% -

Embedding Similarity - 78.6% -
Yang et al. (2015)†

K-means Embedding Similarity 81.6% -

LSA Game + Speaker + Prev DA - 73.3%
Serafin and Di Eugenio (2004)‡

LSA Game + Speaker - 73.9%

SVM 2 n-gram frequency 73.7% -
Ribeiro, Ribeiro, and De Matos (2015)+

SVM 2 n-gram frequency + Prev Utt 74.9% -

† Uses 10 simplified DA labels from the set of 42 SwDA labels, thus not directly comparable to other SwDA results.
‡ The ‘conversational game’ features are unique to the Maptask corpus, so not generalisable to other corpora.
+ Uses Cross-validation rather than the standard training and test split suggested by Stolcke et al. (2000), thus not directly comparable to other SwDA

results.

section. Similar to the conventional NLP approaches, much of the prior work on neural
networks has considered the problem in terms of i) how to appropriately represent words
and utterances, and ii) how to incorporate other contextual discourse information. Thus,
regardless of architectural variations, neural network models may be broadly split into two
categories, referred to here as single-sentence and contextual. Single-sentence models take
one utterance of dialogue as input and assign a predicted DA label for that utterance. On
the other hand, input for contextual models includes additional historical or contextual
information, for example, indicating a change in speaker, previous dialogue utterances or
previously predicted DA labels. In some cases, the contextual information may also include
future utterances or DA labels, in other words, those that appear after the current utter-
ance requiring classification; though, the utility of such future information for real-time
applications such as dialogue systems is questionable. Within DA classification research,
it has been widely shown that including such contextual information yields improved per-
formance over single-sentence approaches (Ribeiro, Ribeiro, and De Matos, 2019; Bothe
et al., 2018a; Liu and Lane, 2017; Lee and Dernoncourt, 2016). Consequently, much of
the contemporary research has focused on representing contextual information and re-
lated architectures. Yet, both single-sentence and contextual classification models share
some commonalities. Primarily, that is, each input utterance, or utterances, must first
be encoded into a format conducive to classification – most commonly with several Feed
Forward Neural Network (FFNN) layers – or for further down-stream operations, such as
combining additional contextual information (Bothe et al., 2018b; Ortega and Vu, 2017;
Papalampidi, Iosif, and Potamianos, 2017; Lee and Dernoncourt, 2016; Kalchbrenner and
Blunsom, 2013). In other words, the plain text input utterances must be converted into
a vector representation that ‘encodes’ the semantics of the given utterance. Hence, both
single-sentence and contextual models tend to share a common sentence encoding module.
Though specific implementation details may vary, most may be described with the generic
DA classification architecture diagram shown in Figure 2.1. In short, the encoding mod-
ule converts the plain text input sentences into the vectorised representations necessary
for classification or other downstream tasks, such as concatenation with other contextual
data. The following sections discuss each component of Figure 2.1 (numbered 1 through
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5) in more detail.

Figure 2.1: A generic DA classification architecture, including the Sen-
tence Encoding Module (components 1-3), and example parameters (Se-
quence Length, Vocabulary, etc), additional context information (4), and
final classifier (5).

2.2.3.1 Input Sequence Processing

The input sequence processing component (1), takes as input a plain text sentence and
produces a tokenised sequence. Generally, this procedure is carried out as part of pre-
processing the data prior to training, or inference. Sequence processing involves several
text pre-processing steps, however, very few studies have explored the impact that differ-
ent parameters may have on the resulting sentence encodings. Here, we discuss several
different, in some cases optional, aspects of the sequence processing component: letter
case and punctuation, vocabulary size, tokenisation and sequence length.

Letter Case and Punctuation Letter case simply refers to the optional pre-processing
step of converting the letters in all words to lower case, or not, which helps to reduce ‘noise’
within the data. Firstly, by reducing repeated words in the vocabulary, for example,
removing words that are capitalised at the beginning of a sentence and appear lower
cased elsewhere. Secondly, by removing capitals from names, abbreviations, and so on.
Converting all words to lower case is common practice in many NLP applications and the
same appears true for DA classification (Chen et al., 2018; Wan et al., 2018; Kumar et al.,
2017; Ji, Haffari, and Eisenstein, 2016).

Whether to remove punctuation, or not, is another optional pre-processing step. It
seems reasonable to assume that, for the DA classification task, some punctuation marks
may contain valuable information which should not be removed. Certainly, an interroga-
tion mark at the end of a sentence should indicate a high probability that it was a question.
For instance, Wan et al. (2018) removed all punctuation marks except for interrogation,
Kumar et al. (2017) removed only exclamation marks and commas, and Webb and Hepple
(2005) removed all punctuation. Yet, Ortega et al. (2019) found that keeping punctuation
was beneficial for DA classification using the MRDA dataset, as did Żelasko, Pappagari,
and Dehak (2021) for the MRDA and SwDA corpora.

In addition to case and punctuation, lemmatising words or converting them to their
Parts of Speech (POS) is a frequently used pre-processing step within NLP applications.
However, previous studies have shown that, whether used as additional features (Kumar
et al., 2017), or replacing words entirely (Ribeiro, Ribeiro, and De Matos, 2019), they
result in an unfavourable effect on performance.
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Vocabulary Size Corpora often contain a large number of unique words within their
vocabulary. It is common practice, within NLP and DA classification tasks, to remove
words that appear less frequently within the corpus. Or in other words, to keep only a
certain number – the vocabulary size – of the most frequent words, and consider the rest
out-of-vocabulary (OOV); which are often replaced with a special ‘unknown’ token, such
as <unk> (Wan et al., 2018; Ji, Haffari, and Eisenstein, 2016). Though a vocabulary size
is often stated within DA classification studies, it is generally not accompanied with an
explanation of why that value was chosen. For example, the SwDA corpus contains ˜22,000
unique words (this varies depending on certain pre-processing decisions), yet different
studies have elected to use vocabulary sizes in the range of 10,000 to 20,000 words (Li et
al., 2019b; Raheja and Tetreault, 2019; Chen et al., 2018; Kumar et al., 2017; Ji, Haffari,
and Eisenstein, 2016; Lee and Dernoncourt, 2016), while Wan et al. (2018), kept only words
that appeared more than once within the corpus. Only one previous study has explored
the effect of different vocabulary sizes on the DA classification task. Cerisara, Král, and
Lenc (2017), conducted experiments on the SwDA corpus using different vocabulary sizes
in the range 500 to 10,000. They found that, with their model, the best performance
was achieved with a vocabulary size of between 1,000 and 2,000 words and that accuracy
slightly decreased with larger vocabularies.

Tokenisation and Sequence Length The final stage of preparing the input sequence
is that of transforming the plain text sentence into a fixed length sequence of word or
character tokens. Tokenisation at the word level is the most common approach for DA
classification because it enables the mapping of words to pre-trained embeddings, and
hence facilitates transfer learning. Though, recently some studies have also explored char-
acter based language models (LM) (Bothe et al., 2018b), or a combination of character and
word embeddings (Raheja and Tetreault, 2019; Ribeiro, Ribeiro, and De Matos, 2019).
In any case, once the text has been tokenised, it is padded, or truncated, to a fixed size
sequence length, or maximum sequence length. In cases where the number of tokens is
less than the maximum sequence length, extra ‘padding’ tokens, such as <pad>, are used
to extend the sequence to the desired size. Input sequences must be converted to a fixed
length because many sentence encoding and classification models require the size of the
input data to be defined before run-time, or before processing a batch of data, for example,
to determine the number of iterations over the input sequence for recurrent models. The
final tokenisation step is to simply map each word, or character, to an integer representa-
tion. In the case of word tokens this is typically the words’ index within the vocabulary.

Choosing a sequence length equal to the number of tokens in the longest sentence
in the corpus may result in the majority of sequences consisting predominantly of the
padding token, and hence, increasing the computational effort without adding any useful
information. For instance, the SwDA corpus has an average of ˜9.6 tokens per utterance,
yet the maximum utterance length is 133 tokens. On the other hand, if an input sequence
is too short, the process of truncation could remove information valuable to the encoding
and classification process. However, considerations around appropriate values for input
sequence length are rarely discussed within the literature. To the best of our knowledge,
thus far only two studies have explored the impact of different sequence lengths on the
DA classification task. Cerisara, Král, and Lenc (2017), tested different sequence lengths
in the range 5 to 30 on the SwDA corpus. They found the best performance was achieved
using 15 to 20 tokens, with further increases not yielding any improvement. Similarly,
Wan et al. (2018), using the same corpus, tested sequence lengths in the range 10 to 80
and achieved their best results with a sequence length of 40, with further increases actually
reducing performance.
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2.2.3.2 Word Embeddings

The embedding component (2), is often the first layer of a DA classification model.
Though, this is typically not the case with many pre-trained LM, where input is sim-
ply the tokenised sentence (see Section 2.2.3.3). In contrast to the n-gram and BOW
features discussed in section 2.2.2, word embeddings offer a far richer semantic and rela-
tional word representation that can be used as features for a wide range of downstream
tasks, such as sequence labelling.

The embedding layer maps each word in the tokenised input sequences to higher di-
mensional vector representations, most frequently with pre-trained embeddings, such as
Word2Vec (Mikolov et al., 2013), and GloVe (Pennington, Socher, and Manning, 2014).
However, within the literature a number of studies simply state the type and dimensions
of the embeddings used (Ahmadvand, Choi, and Agichtein, 2019; Li et al., 2019b; Ortega
and Vu, 2017; Lee and Dernoncourt, 2016), while others have explored several different
types or dimensions (Cerisara, Král, and Lenc, 2017; Papalampidi, Iosif, and Potamianos,
2017). For instance, Ribeiro, Ribeiro, and De Matos (2019) examined a number of 300
dimensional pre-trained embeddings: Word2Vec, FastText (Joulin et al., 2017), and De-
pendency (Levy and Goldberg, 2014), with the latter yielding the best results. In contrast,
it appears 200 to 300 dimensional GloVe embeddings, are used more frequently within DA
classification studies (Li et al., 2019b; Chen et al., 2018; Wan et al., 2018; Kumar et al.,
2017; Papalampidi, Iosif, and Potamianos, 2017; Lee and Dernoncourt, 2016). As such, it
is unclear what impact different types of pre-trained embedding, or dimensionality, choices
may have on classification results. As an example, according to the results reported by
Ribeiro, Ribeiro, and De Matos (2019), the difference between their best and worst per-
forming pre-trained embeddings, Dependency and FastText respectively, is 0.66%. While
the difference between FastText and Word2Vec was only 0.2%.

2.2.3.3 Sentence Encoding

The encoder model component (3), is, of course, the key aspect of the sentence encoding
process. Here we discuss sentence encoders in terms of two categories; (i) models that
have been trained in a supervised fashion, which is the predominant approach within
DA classification research, and (ii), those that use a language model – or pre-trained
language model – to generate sentence encodings, an approach which, despite widespread
application to many NLP tasks, has thus far received little attention for DA classification.
Table 2.4 provides a summary of several of the models and input features used within the
single-sentence DA classification studies discussed in the following sections.

Supervised Models Supervised encoder models take as input a sequence of tokens that
have been mapped to higher dimensional representations via the embedding layer. Input
is therefore an n × e matrix E, where n is the number of tokens in the input sentence (or
maximum sequence length), and e is the dimension of the embedding. The encoder model
itself is then typically based on either convolutional or recurrent architectures, or a hybrid
of the two (Ribeiro, Ribeiro, and De Matos, 2019). Though, in each case the purpose is
the same, to produce a vectorised representation of the input sentence that captures, or
encodes, its semantic and communicative intent. Note that, the shape of the output vector
representation is highly dependent on the model architecture and parameters, for example,
the kernel size and number of filters in convolutional models, or the dimensionality of the
hidden units in recurrent models. Regardless of approach, the goal of convolutional and
recurrent architectures is the same, though they both consider the encoding problem from
a different perspective. Broadly, convolutional models attempt to encode the important
features – words or characters within the text – that are indicative of an utterances DA

27



2.2. Dialogue Act Classification

Table 2.4: Summary of single-sentence neural network DA classification studies.

Study Model Features SwDA MRDA

Supervised

Max Entropy + LSTM BoW + Oracle Embedding 69.3% -
Cerisara, Král, and Lenc (2017)

Max Entropy + LSTM BoW + Word2vec 2-300 dim 69.1% -

Papalampidi, Iosif, and Potamianos (2017) LSTM GloVe 200 dim 73.8% -

LSTM 400 dim Embedding 69.7% -
Shen and Lee (2016)

LSTM + Attn (Smoothing) 400 dim Embedding 70.4% -

LSTM GloVe 200 dim 66.3% 82.8%
Lee and Dernoncourt (2016)

CNN GloVe 200 dim 67.0% 83.2%

Liu et al. (2017)† CNN 200 dim Embedding + Speaker 77.1% -

Ribeiro, Ribeiro, and De Matos (2018) RCNN Dependency 200 dim 74.3% -

Language Model

ELMo Dependency 300 dim 77.9% 80.7%

BERT Dependency 300 dim 79.2% 88.7%Ribeiro, Ribeiro, and De Matos (2019)‡

BERT Dependency 300 dim + Character 79.3% 88.7%

Bothe et al. (2018b) mLSTM ConceptNet 300 dim 74.0% -

† Does not use standard SwDA training/test split, thus not directly comparable to other SwDA results.
‡ Results reported are for the validation set, thus not directly comparable to other SwDA test set results which are typically several percentage points lower.

label, and recurrent models focus on the sequential, or temporal, relationships between
the tokens of the input sequence. Certainly, both paradigms are motivated by the sound
reasoning that the constituent words, and their order within the sentence, are both key
to interpreting its meaning, and hence both have been extensively explored within the
literature. Figure 2.2 illustrates a generalised sentence encoding architecture with an
example of parallel convolutional, or recurrent, encoding layers to form the utterance
matrix U.

Convolutional approaches typically apply a collection of convolution and pooling layers,
either in parallel or sequence, to the sentence embedding matrix E. Parallel encoders apply
separate convolutional layers – with varying kernel sizes k – and pooling operations, before
combining the pooling outputs, while sequential encoders apply a ‘stack’ of convolution and
pooling layers one after the other to form U. In both cases, the output of a final pooling,
or concatenation operation, over U is then considered the sentences vector representation
u . Ahmadvand, Choi, and Agichtein (2019), Liu and Lane (2017), Ortega and Vu (2017),
Rojas-Barahona et al. (2016), and Kalchbrenner and Blunsom (2013), all use variations of
convolutional models as sentence encoders. For example, Ahmadvand, Choi, and Agichtein
(2019) employed two different convolutional models, one taking Part of Speech (POS)
features and the other word embeddings as input, and Liu et al. (2017) applied two
separate convolution and pooling layers, with kernel sizes of 2 and 3, before concatenating
the result of the pooling operation to form the sentence vector. Kalchbrenner and Blunsom
(2013) instead use a hierarchy of convolutional layers, across the same feature of all word
vectors in the sentence, and increased the kernel size from 2 to 4 for each subsequent layer,
resulting in a u dimensional sentence vector.

On the other hand, recurrent models process each word vector of the matrix E in turn.
The resulting sentence representation is then either: the final hidden-state of the recurrent
layer h , where h is the dimensionality of the hidden units (Cerisara, Král, and Lenc, 2017);
or the output of each time-step, and therefore an n × h matrix U (Papalampidi, Iosif,
and Potamianos, 2017; Shen and Lee, 2016). In this latter case, U typically undergoes
some form of dimensionality reduction, such as pooling, to reduce U to a single vector
representation u . Li et al. (2019b), Cerisara, Král, and Lenc (2017), Liu and Lane (2017),
Papalampidi, Iosif, and Potamianos (2017), Tran, Haffari, and Zukerman (2017), and Shen
and Lee (2016), all employed recurrent architectures; either Long Short-term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997a), or Gated Recurrent Units (GRU) (Cho
et al., 2014b).

However, considering previous work, it is not clear if either paradigm produces optimal
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Figure 2.2: A generalised sentence encoder architecture using either, a)
parallel convolutional encoder, or b) recurrent encoder layers.

sentence encodings for the DA classification task. For instance, Lee and Dernoncourt
(2016) experimented with both convolutional and recurrent sentence encoders on several
different corpora and found that neither approach was superior in all cases. While Ribeiro,
Ribeiro, and De Matos (2019) tested a Recurrent Convolutional Neural Network (RCNN),
based on the work of Lai et al. (2015), and found that it did not result in any improvement
over convolutional or recurrent models. Further, several studies have explored variations,
or additions, to the convolutional and recurrent architectures described above. Primarily,
the use of bi-directional or multi-layer recurrent models (Ribeiro, Ribeiro, and De Matos,
2019; Bothe et al., 2018a; Chen et al., 2018; Kumar et al., 2017). Bi-directional models
process the input sequence in the forwards and then backwards directions, and multi-layer
models simply stack multiple recurrent layers on top of each other, with the output for
a given layer, at each timestep, becoming the input for the following layer. Numerous
studies have also explored the use of different attention mechanisms (Bothe et al., 2018a;
Chen et al., 2018; Ortega and Vu, 2017; Tran, Haffari, and Zukerman, 2017; Shen and Lee,
2016). Though different attention mechanisms have been proposed, in various contexts,
these are typically based on additive attention (Bahdanau, Cho, and Bengio, 2015), or
multiplicative attention (Luong, Pham, and Manning, 2015). Yet, much of this work
does not include appropriate ablation studies, thus it is not clear what impact variations
of recurrent architecture, or the inclusion of attention mechanisms, may have on DA
classification results.
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Language Models Though the joint-training of LM and classifiers has been successfully
applied to DA classification (Liu and Lane, 2017; Ji, Haffari, and Eisenstein, 2016), in both
cases the LM is conditioned on contextual information, such as sequences of utterances,
speakers or DA labels (see section 2.2.3.4). Thus, due to their ability to produce single
sentence encoding, and recent prevalence within NLP, here we only discuss the fine-tuning
approach. Using this method, a LM is first pre-trained on large amounts of unlabelled
text data, with a language modelling objective, and then fine-tuned for a particular task.
In essence, this form of transfer learning is very similar in concept to the use of pre-trained
word embeddings, the primary difference being, that the LM itself is used to generate the
embeddings and effectively treated as an embedding layer within the classification model.
This method of fine-tuning has proved to be highly effective for many NLP tasks and has
therefore received considerable attention within the literature. Particularly the contextual
embedding LM, such as ELMo (Peters et al., 2018), BERT (Devlin et al., 2019), and many
others (Henderson et al., 2020; Zhang et al., 2020a; Lan et al., 2019; Yang et al., 2019;
Cer et al., 2018).

However, despite their success on a wide range of NLP tasks, comparatively few stud-
ies have explored language model fine-tuning for DA classification. Both Malhotra et
al. (2021) and Tavabi et al. (2021) generate contextual sentence representations with
RoBERTa (Liu et al., 2019) for the purpose of DA classification in counselling conversa-
tions, and behaviour classification in motivational interviewing, respectively and Żelasko,
Pappagari, and Dehak (2021) applied XLNet (Yang et al., 2019) and Longformer (Belt-
agy, Peters, and Cohan, 2020) to the task of joint segmentation and identification of DA’s.
In regards to the benchmark corpora we have discussed Bothe et al. (2018a,b), utilised
multiplicative long-short-term memory (mLSTM) (Krause et al., 2016a), pre-trained as
a character language model on ˜80 million Amazon product reviews (Radford, Jozefow-
icz, and Sutskever, 2017), as a sentence encoder. While Ribeiro, Ribeiro, and De Matos
(2019), explored the contextual embedding representations generated by ELMo (Peters
et al., 2018), and BERT (Devlin et al., 2019), and He et al. (2021) those of RoBERTa.
These studies reported notable results and therefore the fine-tuning of language models
seems a promising direction for further research.

2.2.3.4 Context Encoding

The contextual data and discourse model component (4) incorporates additional histori-
cal, or future, conversational data into the DA classification process. As previously men-
tioned, incorporating contextual information, such as surrounding utterances, speaker, or
DA labels, has been widely shown to improve performance for the DA classification task
(Colombo et al., 2020; Ahmadvand, Choi, and Agichtein, 2019; Ribeiro, Ribeiro, and De
Matos, 2019; Bothe et al., 2018b; Liu and Lane, 2017; Papalampidi, Iosif, and Potamianos,
2017; Lee and Dernoncourt, 2016; Kalchbrenner and Blunsom, 2013). The utility of these
kinds of contextual information is intuitive if we consider the implication of some future
or past action that DA have, and the importance of context in interpreting their meaning,
that was discussed in section 2.1.3. Contextual DA classification models typically employ a
hierarchical architecture which first processes inputs at the utterance level – the sequence
of utterances, speakers, or labels – and then at the discourse level, to capture the sequen-
tial relationship between the inputs and produce an encoded dialogue segment. Within
the literature the discourse model is frequently based on recurrent architecture, and often
with a bi-directional or attentional component (He et al., 2021; Colombo et al., 2020; Li
et al., 2019b; Ribeiro, Ribeiro, and De Matos, 2019; Chen et al., 2018; Kumar et al., 2017;
Ortega and Vu, 2017), though convolutional (Liu et al., 2017), and recurrent-convolutional
models have also been explored (Ribeiro, Ribeiro, and De Matos, 2018; Kalchbrenner and
Blunsom, 2013). A generalised contextual, or hierarchical, DA classification architecture
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is shown in Figure 2.3. Note that, speaker and label representations can be combined in
sequence with each utterance encoding, that is, each utterance they are associate with,
and prior to input to the discourse context layers (He et al., 2021; Colombo et al., 2020),
or appended as a summary to the resulting dialogue segment encoding as extra features
(Tavabi et al., 2021; Ribeiro, Ribeiro, and De Matos, 2019).

Figure 2.3: A generalised contextual, or hierarchical, DA classifica-
tion architecture. Um is the current target utterance for classification.
Speaker (s) and label (l) information can be included as a sequence
before input to the context encoder, or as a summary after context en-
coding.

Utterance Contextual information is most often included in the form of several utter-
ances that surround the current classification target utterance. The predominant approach
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within the literature is to include context utterances that only occur prior to the current
utterance, that is, they represent historical dialogue information. In most cases it has been
shown that between 2 and 4 context utterances yield the best performance (He et al., 2021;
Ahmadvand, Choi, and Agichtein, 2019; Ortega et al., 2019; Bothe et al., 2018b; Ortega
and Vu, 2017; Papalampidi, Iosif, and Potamianos, 2017; Lee and Dernoncourt, 2016).
However, several studies have also experimented with including future dialogue utterances
(Ribeiro, Ribeiro, and De Matos, 2019), or even the entire conversation as input (Chen
et al., 2018; Kumar et al., 2017). These latter approaches, while shown to marginally
improve results, are of course only applicable in situations where the complete dialogue is
available and are therefore not appropriate for dialogue systems or similar applications.

Crucially, each utterance U is encoded using the same sentence encoding model (Colombo
et al., 2020; Ahmadvand, Choi, and Agichtein, 2019; Ribeiro, Ribeiro, and De Matos, 2019;
Bothe et al., 2018b; Liu and Lane, 2017; Papalampidi, Iosif, and Potamianos, 2017; Lee
and Dernoncourt, 2016; Rojas-Barahona et al., 2016). If the input dialogue segment con-
tains m utterances, each is first encoded with the sentence model to produce an m × u
matrix D, where u is the dimension of the sentence encoder output. D is then the input to
the discourse model and in the case of recurrent architectures each utterance encoding u
is the input at each timestep. As with the recurrent sentence encoder described in section
2.2.3.3, the discourse segment vector d is then either: the final hidden-state of the context
encoder layer, or the result of dimensionality reduction, such as pooling, over the output
at each time-step. d can then be considered a representation of all utterances (1 to m) in
the discourse segment, including the current classification target and surrounding context.

Speakers In addition to surrounding utterances, the use of speaker contextual data
has also been investigated. For example, conditioning model parameters on a particular
speaker (Shang et al., 2020; Kalchbrenner and Blunsom, 2013), concatenating change-in-
speaker information to sequence representations (Liu and Lane, 2017; Li and Wu, 2016),
or a summary of all previous speaker turns (Ribeiro, Ribeiro, and De Matos, 2019). Intu-
itively including speaker information can provide clues to the intention of a given utterance
and has been shown to produce small improvements in most cases. Though as demon-
strated by Shang et al. (2020), this may vary across different DA labels, as some utterances
contain unambiguous lexical cues that do not benefit from speaker information.

Typically speaker information is is represented as either: a sequence of binary speaker-
change or turn-taking flags, which indicates if the current utterance is produced by the
same (0) or a different speaker (1) (He et al., 2021; Colombo et al., 2020; Ribeiro, Ribeiro,
and De Matos, 2019, 2018; Liu and Lane, 2017; Li and Wu, 2016); or as one-hot encoded
speaker identifiers, for example speaker A as [1, 0] and B as [0, 1] (Bothe et al., 2018b). In
addition to the different speaker input representations, as depicted in Figure 2.3 there are
several different approaches to incorporating this information into the model. The first
approach aims to preserve the sequential relationship by joining the speaker and utterance
representations, s and u respectively, before the sequence of utterances is processed by the
discourse context model. For example: Colombo et al. (2020) employ a ‘persona’ GRU
layer to encode the sequence of speakers into higher dimensional representations before
concatenating each with u ; He et al. (2021) simply sum the binary sequence of speakers
with u ; and Bothe et al. (2018b) concatenate their one-hot representations with u . The
second approach is to instead produce a summary of the sequence of speakers – either as a
simple flattened sequence, or product of a pooling or recurrent layer – and later join with
the discourse segment representation d as extra features prior to classification (Ribeiro,
Ribeiro, and De Matos, 2019).
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Labels In a similar manner to speakers, surrounding utterances DA label information
may also be included, using either predicted, or ‘gold standard’ DA labels (Ahmadvand,
Choi, and Agichtein, 2019; Li et al., 2019a; Ribeiro, Ribeiro, and De Matos, 2019; Liu and
Lane, 2017; Tran, Zukerman, and Haffari, 2017; Kalchbrenner and Blunsom, 2013). Again,
the benefit of including such information is apparent when considering the implication
of some future or past action that DA have. Though, comparatively few studies have
explored the inclusion of contextual label information, and fewer still have reported the
affect that such information has. Nevertheless, Ribeiro, Ribeiro, and De Matos (2019)
demonstrated that contextual label information does indeed improve performance on the
SwDA corpus, and further, that using gold standard labels from the corpus resulted in
a 1.38% improvement over predicted labels. Label information may be incorporated in
much the same way as speaker, as a sequence of predicted labels, or actual labels from the
corpus. With the exception that, the label (or prediction) for the current target utterance
for classification cannot be included. Thus, as shown in Figure 2.3, m − 1 labels can
be joined in a sequential manner before the sequence of utterances is processed by the
discourse context model, or as a summary prior to classification.

2.2.3.5 Classification

The final classification model component (5), produces DA label prediction(s) from the
input discourse segment representation d , or in the case if single sentence models, u .
Most frequently this involves one or more FFNN layer(s), where the number of output
units is equal to the number of DA labels. Softmax activation produces a probability
distribution over all possible labels and the final prediction is considered the label with
the highest probability. However, rather than predicting each label independently, recently
several studies have re-framed the problem as a sequence labelling task (Li et al., 2019b;
Ortega et al., 2019; Raheja and Tetreault, 2019; Chen et al., 2018; Kumar et al., 2017),
similar to the HMM of Julia and Iftekharuddin (2008), Surendran and Levow (2006), and
Stolcke et al. (2000). These works instead employ a CRF as the final classification layer in
order to produce a sequence of classifications for each utterance in the discourse segment
(Li et al., 2019b; Ortega et al., 2019; Kumar et al., 2017). In some cases the discourse
segment is much larger than the previously discussed approaches, using 100 (Raheja and
Tetreault, 2019), or even the entire conversational history (Chen et al., 2018). Similarly,
Colombo et al. (2020) apply a sequence to sequence (seq2seq) (Sutskever, Vinyals, and Le,
2014), or encoder-decoder, architecture to the problem. That is, the encoded discourse
segment d is used to initialise the hidden state of a further recurrent decoder layer. The
decoder is then conditioned to generate DA predictions for each utterance in the discourse
segment (in this case of length 5). By conditioning the classifier, not just the encoders, on
the sequential relationship between utterances, both CRF and seq2seq approaches have
shown to improve overall classification accuracy over traditional FFNN layers. Thus DA
classification models are likely to benefit from incorporating the sequence classification
approach. Table 2.5 provides a summary of several of the models and context features
used within the contextual DA classification studies discussed in the following sections.

2.3 Adjacency Pair Identification and Dialogue Structure

In contrast to DA, the automatic identification of AP has received relatively little attention
within the literature. Using a corpus of human-human dialogues Boyer et al. (2009a,b)
attempted to model the dialogue structure by identifying AP within the domain of intel-
ligent tutoring systems. The corpus was first manually annotated with DA, and AP were
found using the χ2 test for independence over all sequential pairs of DA’s that occurred
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Table 2.5: Summary of contextual neural network DA classification studies.

Study Model Features SwDA MRDA Maptask

Ahmadvand, Choi, and Agichtein (2019)† CNN + Prev State 3 Utts Context 76.7% - -

Cerisara, Král, and Lenc (2017) LSTM + FFNN 3 Utts Context (BoW) 72.8% - -

Papalampidi, Iosif, and Potamianos (2017) LSTM + FFNN 2 Utts Context 75.6% - -

Shen and Lee (2016) LSTM + Attn (Smoothing) 3 Utts Context 72.6% - -

Tran, Haffari, and Zukerman (2017) Gated Attn RNN + HMM 1 Utts Context 74.2% - 65.9%

Tran, Zukerman, and Haffari (2017) Hierarchical Attn RNN 1 Utts Context 74.5% - 63.3%

LSTM + FFNN 2 Utts Context 69.5% 84.1% -
Lee and Dernoncourt (2016)

CNN + FFNN 2 Utts Context 73.1% 84.6% -

CNN + Bi-LSTM 3 Utts Context 76.9% - -
Liu et al. (2017)†

CNN + CNN 3 Utts Context 77.2% - -

CNN + LSTM + Attn 2/3 Utts Context 73.8% 84.1% -
Ortega and Vu (2017)

CNN + Attn + LSTM 2/3 Utts Context 73.3% 84.3% -

Kalchbrenner and Blunsom (2013) RCNN 2 Speaker + DA Label 73.9% - -

4 Utts Context 78.8% - -
Ribeiro, Ribeiro, and De Matos (2018) RCNN

4 Utts + Speaker Turn + DA Label 79.4% - -

Wan et al. (2018)† DMN All Utts Context 81.5% - 68.5%

Chen et al. (2018) Bi-Gru + Bi-Gru + Attn + CRF All Utts Context 81.3% 91.7% -

Kumar et al. (2017) Bi-LSTM + Bi-LSTM and CRF All Utts Context 79.2% 90.9% -

Raheja and Tetreault (2019) Bi-Gru + Bi-Gru + Self Attn + CRF All Utts Context 82.9% 91.1% -

Li et al. (2019b) Bi-Gru + Bi-Gru + Dual Attn + CRF All Utts Context + Topic 78.3% 91.7% -

Colombo et al. (2020)+ Seq2Seq 5 Utts Context 85.0% 91.6% -

Language Models

3 Utts Context (Summary) 82.5% 89.2% -

All Utts Context (Summary) 82.8% 89.2% -

Prev DA Pred + Speaker Turn 83.2% 89.3% -
Ribeiro, Ribeiro, and De Matos (2019)‡ BERT + GRU

Prev + Future DA Pred + Speaker Turn 84.4% 89.6% -

3 Utts Context 77.3% - -
Bothe et al. (2018b) mLSTM + RNN

3 Utts Context + Speaker ID 76.5% - -

4 Utts Context 82.4% 90.7% -
He et al. (2021) RoBERTA + Bi-GRU

4 Utts Context + Speaker Encoding 83.2% 91.4% -

Ji, Haffari, and Eisenstein (2016) DrLM Document Context 77.0% - -

† Does not use standard SwDA training/test split, thus not directly comparable to other SwDA results.
‡ Results reported are for the validation set, thus not directly comparable to other SwDA test set results which are typically several percentage points lower.
+ Reported validation set accuracy is the same as the test set, so it is not clear which result is reported here.

within the corpus. That is, pairs of DA that showed statistical significance (p < 0.01)
were joined to form AP. Beginning with a set of 8 DA they were able to identify 23 AP
using this method, though it should be noted that these AP are of basic two-turn AP, and
therefore lack the richer representations afforded by sequence expansions. Two separate
HMM were then trained on the sequence of DAs and sequence of identified AP. They found
that the AP model achieved an average log-likelihood fit on the training data that was
5.8% better than the same measure achieved by the DA model, despite the input sequences
containing more than twice the number of unique symbols. For the purposes of tutorial
dialogue management systems they concluded that the AP model was more preferable,
because its structure lends itself more readily to interpretation as a set of dialogue modes
that encompass more than one dialogue move (for example, Tutor Evaluation, Student
Question/Answer). This model was used in later work (Boyer et al., 2010b) in order to
select appropriate responses given the dialogue context for a tutorial dialogue system.
Using a similar approach Midgley, Harrison, and Macnish (2006) were also able to iden-
tify AP within the Verbmobil-2 corpus (Alexandersson et al., 1997). First the dialogues
were segmented, where everything from the last utterance of one speaker’s turn to the
last-but-one utterance of the next speaker as a segment. Again, basic two-turn AP were
identified by applying χ2 analysis to the dialogue segments to show the most frequent DA
pairs. Midgley, Harrison, and Macnish (2006) suggest that these results yield information
about what is likely to happen, not just for the next utterance, but somewhere in the next
segment. Further, they were able to use the χ2 values to produce a Conversational Map,
in the form of a directed acyclic graph shown in Figure 2.4, which depicts the transition
probabilities between DA.

Several further works attempted to identify AP within online forum thread data. Ex-
ploring dependency parsing and CRF approaches Wang et al. (2011) jointly classified
‘inter-post links’ (relationships) between posts and the DA of each link to learn the struc-
ture of CNET forum threads, and Jamison and Gurevych (2014) used lexical pairs, in the
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Figure 2.4: A Conversational Map (Midgley, Harrison, and Macnish,
2006), in the form of a directed acyclic graph using the χ2 data for
the 40 highest pairs. For any pair of connected nodes, the first node
represents the last utterance in a speaker’s turn, and the second could
be any utterance in the other speaker’s turn.

form of two n-grams, to identify AP within Wikipedia discussions. However, all of the
aforementioned work focus only on the basic two-turn AP and thus lack the full descrip-
tive quality that AP sequence expansions allow. In work closely related to this research,
Tewari and Suna (2018) proposed the use of Sequence Organisation (AP) as one of sev-
eral features used to develop a dialogue management system within the domain of social
robots for assisted living. Dialogues tagged with topic, DA, sequence organisation, and
keywords were organised into a tree structure which could be further used to extract rules
for a distributed grammar system. Compared to rule-based, finite state, or data-driven
approaches, they suggest that this method has the advantage of describing dialogue as
a cooperation among agents, instead of only capturing the machine’s perspective, and
gaining insight into the structure of dialogues. In later work, Maitreyee (2020) discuss the
drawbacks of only two-turn AP that we have previously discussed and highlight the need
for flexibility via sequence expansions. To identify AP and sequence expansions within
dialogues annotated with DiAML and AP, Maitreyee (2020) first extract several syntactic
features in the form of POS tags as unigram and subject-object-verb tuples as tri-grams.
Principal Component Analysis was then applied to the syntactic features and DAs be-
fore Hierarchical Agglomerative Clustering is used to identify AP. Using this unsupervised
method Maitreyee (2020) were able to successfully identify base, insert, pre, and post
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AP sequences from the corpus. Interestingly, they noted that “the model doesn’t predict
the nodes to be in perfect pairs” and therefore basic two-turn AP “will be insufficient in
extracting knowledge that is not distributed with-in pairs”. In other words, sequence ex-
pansions, and by extension minimal expansions, must be incorporated into any CA model
of dialogue. To the best of our knowledge the work of Maitreyee (2020) and Tewari and
Suna (2018) is thus far the only work to explore the automatic identification of AP with
sequence expansions.

2.3.1 Dialogue Structure

The literature discussed in the previous section related to the identification of AP, or AP-
like structures, within dialogues. Here we briefly review several approaches to modelling
or ascertaining dialogue structure from different perspectives.

Several earlier works utilise finite-state, graphs, or tree diagrams to represent the
relationships, or transitions, between dialogue moves (DA). For example, the finite-state-
machine of (Morelli, Brozino, and Goethe, 1991), the hierarchical plan-tree described by
Alexandersson et al. (1997), or parse-tree-like structures that encapsulated the task, sub-
task, and DA sequences within task-oriented dialogues Bangalore, Di Fabbrizio, and Stent,
2008. HMM have also been used to identify the latent structure of task-oriented dialogues
(Zhai and Williams, 2014; Chotimongkol, 2008), and in determining the relationship be-
tween dialogue structure and tutoring effectiveness (Boyer et al., 2011).

Though it is difficult to formally evaluate the performance of dialogue structure in-
duction algorithms (Qiu et al., 2020), as with DA classification, much of these earlier
approaches have now been superseded by supervised and semi-supervised ML methods.
Several related works propose an unsupervised approach to dialogue structure learning.
Qiu et al. (2020) and Shi, Zhao, and Yu (2019) employ a Variational RNN (the former with
an additional structured attention component) to learn latent states and transitions by
jointly re-generating training dialogues in several domains, including restaurant booking
(Henderson, Thomson, and Williams, 2014), and simulated dialogues (Zhao and Eskenazi,
2018). In both cases Qiu et al. (2020) and Shi, Zhao, and Yu (2019) were able to re-create
‘an utterance dependency tree’ of different dialogue types, qualitatively evaluating their
similarity to the ground truth dialogue structure, and quantitatively showing improved
performance over previous HMM methods, such as that of (Zhai and Williams, 2014).
Several supervised approaches have focused, not on the identification or generation of the
overall dialogue structure, but instead on modelling the relation between utterances or
discourse segments. For example, Li et al. (2021) who propose a ‘DialoFlow’ model which
attempts to model the context and information flow across dialogue utterances by keeping
track of the semantic influence brought about by each utterance. While Son and Schwartz
(2021), using a hierarchical Bi-directional RNN similar to those discussed in 2.2.3.4, to
generate Discourse Relation Embeddings that represent the relation between discourse
segments in social media data.

One particular work of note for this research – in that it relates to schema which
represent dialogue structure – is the ’Hierarchical Schema of Linked DA’ proposed by
Pareti and Lando (2019). The schema models dialogue structure as linked units of intent
(DA) that take place within minimal spans of text, or functional segments. The DA
labels are derived from DiAML and the schema is intended to, i) be independent from
semantic or domain specific representations, ii) support any kind of dialogue relevant to
the development of dialogue systems, regardless of the number, type, and role of the
participants or the domain or topic discussed, and iii) supports extensible granularity
through a set of coarse and fine grained tags hierarchically organised. Crucially, within
the schema, linked DA need not necessarily be connected to the immediately preceding
utterances. These features, particularly the latter, are closely related to the concept
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of AP-types proposed by this research, and is in contrast to much of the prior work
discussed in this section which only considers relations between immediately adjacent
utterances. However, while the work of Pareti and Lando (2019) outlines the schema and
the annotation process of a corpus, it does not empirically establish the benefits of this
representation method for downstream dialogue modelling tasks.

2.4 Task-oriented Dialogue Modelling

The following provides a concrete definition of the problem domain, as the areas of linguis-
tics, NLP, and computational modelling to which it is directly associated. We make the
distinction between task-oriented and non-task-oriented dialogue, and define the purpose
of computational dialogue modelling within the context of this research.

2.4.1 Task-oriented Dialogue

There are many different terms for the process of spoken human interaction. The terms
‘discourse’, ‘conversation’, ‘talk’, and ‘dialogue’, are used in various disciplines, and thus
far we have used these words interchangeably. Yet it is not the case that they always refer
to three separate areas (Weigand, 1994). For example, there is no widely accepted defini-
tion of conversation as a speech event, and within the literature a range of discourse types
are referred to as conversation (Warren, 2006). We will make no attempt to provide a
more concrete definition of these terms, but for the purpose of this research it is important
to make some distinctions between those that refer to task-oriented and non-task-oriented
interactions. According to Warren (2006), a conversation, i) involves at least two par-
ticipants, ii) who have equal rights in terms of initiating, interrupting and responding,
iii) where topic is open-ended, with ‘randomness of subject matter’, and iv) which is not
motivated by any clear pragmatic purpose. The final two points here suggest that conver-
sation is not goal driven, or task-oriented, but rather, informal communication and social
interaction. This definition aligns with that of Thornbury and Slade (2006), who state
that, “conversation is the informal, interactive talk between two or more people, which
happens in real time, is spontaneous, has a largely interpersonal function, and in which
participants share symmetrical rights”. A dialogue, on the other hand, can be considered
more goal-defined and structure oriented (Weigand, 1994). Thus, we define a task-oriented
dialogue as, an interaction in which at least one participant has some predetermined goal,
such as asking for directions, and engages in the conversation in order to meet that goal.
Once that goal is met, or if it is unsuccessful, the interaction is concluded. In contrast, a
non-task-oriented dialogue, a conversation, or general talk, is one in which no participant
has a specific predetermined purpose for the interaction other than social communication.
Topics may change frequently, and while information may be exchanged it is not in the
pursuit of some external predetermined purpose.

While CA, and DA, theory is applicable to any form of interaction, not only task or
goal driven, we have chosen to limit the scope of this research to task-oriented dialogues.
This is because they are more likely to have a well defined structure, that is not merely
linear sequences of utterances, or a collection of question-answer pairs. Rather, they are a
structured collection of multiple utterances that can be grouped into segments of dialogue,
and this structure mirrors the structure of the task (Grosz, 2018).

2.4.2 Computational Dialogue Modelling

Within NLP the phrase ‘dialogue model’ is sometimes used synonymously to mean dialogue
management, or a dialogue system. Particularly within end-to-end neural network (Wen et
al., 2017; Luan, Ji, and Ostendorf, 2016; Vinyals and Quoc, 2015), and statistical dialogue
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systems (Gašić, 2011), the dialogue (or conversation) model typically refers to the model
learned by the algorithm. While it is true that such data-driven systems can be said to
have learned a model of dialogue, and may be capable of interpreting input and generating
responses, the model itself is entirely derived from the data by the algorithm. These
kinds of dialogue model behave like black-boxes, and for example, the same algorithm
trained independently with two different sets of data would produce two distinct dialogue
models. However, the term has mostly been used to refer to components within a dialogue
system that manage the conversational flow aspects of dialogue, organising the coherence,
and relevance, of utterances and cooperation on the task (Schlangen, 2005). Dialogue
management systems may integrate a dialogue model with other components for, task
completion, a database, natural language understanding (NLU), and natural language
generation (NLG) (Shum, He, and Li, 2018). From this viewpoint, dialogue modelling may
also be considered more akin to the process of building grammars for sentence parsing.
Given that there are differences between syntax at the sentence level and the structures
found at the discourse level (Kühnlein and Piwek, 2007); this may include representing
the regularities and patterns that dialogues exhibit, linguistic features, and communicative
actions, or behaviour, at the semantic-pragmatic level (Petukhova, 2011). Computational
dialogue modelling is therefore, the task of finding the right structural descriptions for
these phenomenon and designing a formal system to represent them in a computationally
compatible format.

This research is more closely related to the latter definition of dialogue modelling,
in that, the concept of an AP-type may be used to describe the semantic and syntactic
features that exist within dialogue. However, the purpose of applying the proposed CA
model is to facilitate the development of ML algorithms that are able to automatically
capture, and analyse, the structure of AP-type labelled dialogues. As such it should
not be considered completely independent of the purely data-driven approaches discussed
previously.

In order to more clearly define the scope of the proposed dialogue model the following
elaborates on several other considerations. Firstly, Bunt (2006), and Petukhova (2011),
consider DA in terms of multidimensional actions. That is, dialogue utterances may often
be multi-functional, and therefore, a single DA label is not semantically rich enough to
convey the meaning of all utterances. For example, “Yes, but what is it?”, indicates both
an understanding of what was previously said, and a request for more information. While
the validity of this viewpoint is clear, it has not yet been widely adopted within the NLP
literature. We have therefore chosen to avoid adding unnecessary complexity, and consider
DA within our model to have only one ‘dimension’, or meaning. In the previous example,
“Yes, but what is it?”, would be considered a question, or a request, depending on the
context, as this is the higher priority function of the utterance. Finally, AP and DA are,
of course, not a phenomena exclusive to the English language, and are also not limited to
only two-party dialogues. The proposed approach could therefore be applied to data from
multiple languages, or multi-party dialogues. However, although multi-party DA labelled
corpora do exist (Shriberg et al., 2004), and studies have shown the same techniques may
be applied to identify DA in multiple different languages (Cerisara, Král, and Lenc, 2017),
we have chosen to limit the scope of this research to two-party English dialogues.
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Chapter 3

Methodology

In this chapter we provide an overview of our experimental design and methodology imple-
mented to evaluate our objectives and hypotheses. Having proposed our novel approach to
task-oriented dialogue modelling and reviewing the relevant literature, we briefly discuss
methodological considerations with respect to the objectives outlined in section 1.2.3.

The initial stage of our methodology will be to develop an annotation schema, and
accompanying guidelines, which defines two sets of labels, DA and AP, which combine to
form AP-type labels (O1). Both sets of labels should be derived from, or informed by, the
relevant theories from DA and CA literature, thus maintaining consistency with these well
established linguistic disciplines. We evaluate the schema, to determine whether it can
be reliably understood and applied, by means of an annotation study which is assessed
via inter-annotator agreement (IAA) scores and various other measures. Following this,
a suitable task-oriented corpus of dialogues can be selected and annotated with the CA
annotation schema, which will enable us to overcome the issues of sparsely labelled AP,
and limited data availability discussed previously (O2).

The corpus, annotated with AP-types, will facilitate the second stage of our methodol-
ogy; developing an ML algorithm that is capable of automatic classification of utterances
with AP-types, thus creating a CA dialogue model (O3 and O4). This can initially be
thought of as a short-text, or utterance classification task. That is, given a sequence of
utterances, an ML algorithm that is capable of correctly identifying appropriate AP-types
can be considered a model of dialogue. Additionally, because we are not rigidly defining a
set of AP-type labels, but rather, allowing flexibility through two distinct sets of DA and
AP labels, this process can initially be decomposed into separate DA and AP classification
tasks. Though DA classification is well established within NLP (2.2), the identification
of AP has received comparatively little attention, and thus far no modern ML, or DL,
approaches have been applied to the task (2.3). This research, therefore, aims to extend
the existing work on DA classification, and develop an ML algorithm that is capable of
multi-label (DA and AP) classification over sequences of dialogue utterances.

In the final stage of our methodology the resulting dialogue model, and structure, may
then be evaluated on further dialogue modelling tasks (O5). First we assess our model’s
ability to predict future utterance AP-types, given the current dialogue state. Next, we
evaluate the effect of our proposed dialogue representations for system response generation
using a state-of-the-art generative language model, GPT-3 (Brown et al., 2020). Finally,
we evaluate the representation of dialogue structure facilitated by CAMS via dialogue
graph representations produced with χ2 analysis of the gold-standard annotations within
CAMS-KVRET.

In summary, our methodology comprises of three major stages; schema development
and data preparation, DA and AP classification, and evaluation of the dialogue structure.
We examine each of these in the following sections.
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3.1 Schema Development, Data Collection, and Preparation

3.1.1 Conversation Analysis Modelling Schema

To the best of our knowledge, and unlike DA, within the CA literature there is no specif-
ically defined, or generally accepted, set of type-related AP labels. Indeed, this flexibility
is one of the attractive properties for our approach, in that it facilitates the combina-
tion of AP with a much more extensively defined set of DA labels. Additionally, while
CA annotated dialogues are available, they typically feature several properties that make
them unsuitable for our purposes. Firstly, AP are not the only form of annotation a CA
practitioner may wish to assign to dialogue. For example, symbols for intonation, em-
phasis, pace of speech, pauses, and non-verbal sounds (Schegloff, 2007, p. 265), may all
be added, sometimes within a word, which makes pre-processing text for the purpose of
ML much more difficult. Secondly, pre-processing issues aside, the extensive and costly
process of annotation (Sidnell and Stivers, 2013, Chapter 4), at least in part, results in
only a limited quantity of CA annotated dialogues being available, and many of these are
not task-oriented. This is problematic when developing an automated ML-based annota-
tion algorithm, and particularly for DL approaches, as these benefit from larger datasets.
Thirdly, and most importantly, the standard annotation process for CA does not strictly
require each utterance of dialogue to be labelled with an AP, or indeed any at all. Rather,
within CA, the AP is viewed as a tool for the analyst, and may or may not be explicitly
included in the annotations (Sidnell, 2010; Liddicoat, 2007). Of course, within the context
of CA, a practitioner may want to identify specific utterances, or pairs of utterances, with
AP, and any ‘gaps’ created by unlabelled utterances may be inconsequential. However,
for the purpose of computational modelling, we require all utterances to be labelled with
both DA and AP, to create AP-types. Any information-gaps would simply result in an
incomplete model of dialogue, regardless of how inconsequential a particular unlabelled
utterance may be.

With these aspects in mind we will develop our novel Conversation Analysis Modelling
Schema (CAMS) (O1). CAMS is intended to combine concepts of DA and AP into a
single annotation scheme that is able to capture the semantic and syntactic structure of
a dialogue at the inter and intra utterance level, for the purpose of computational task-
oriented dialogue modelling. The schema defines two sets of labels, DA and AP, which
are combined to form AP-type labels. When applying the schema, the intent is to assign
each utterance of a dialogue one DA and one AP label, which together are considered
the AP-type label for that utterance. The AP-type labels, for a fully annotated dialogue,
can then be viewed as a representation of its semantic and syntactic structure. CAMS,
therefore, is an attempt to define these concepts, and how they may be applied, into a
computationally compatible format where each utterance is labelled with an AP-type.

We have elected to use the DiAML (British Standards Institution, 2012; Bunt et al.,
2012) as our base set of DA labels within CAMS. As discussed previously (2.1.2.1), this
allows us to maintain compatibility with existing DiAML annotated dialogues, support
the standardisation of DA labelling schema, and avoid creating our own bespoke set of DA
labels, including the accompanying issues surrounding the large number of DA taxonomies.
The AP component of CAMS will follow standard CA definitions for base pair and sequence
expansion AP types. However, within CAMS we will extend the concept of minimal post-
expansions, discussed in section 2.1.1.1, to apply to all sequence expansion types. That is,
in addition to the minimal single utterance post-expansions, or ‘sequence-closing thirds’
(Schegloff, 2007), we will allow single utterance pre-expansions, and insert-expansions also.
Thus CAMS can facilitate annotation of each utterance of dialogue and avoid the issues
discussed above.
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3.1.2 Schema Evaluation

With CAMS definitions and annotation guidelines in place we must evaluate whether the
schema can be reliably interpreted and applied by human annotators, and whether the
annotation process produces a set of meaningfully labelled dialogues (O1). For this pur-
pose IAA measures can be used as a means of assessing the reproducibility of a coding
scheme or determining the reliability of a produced ‘gold-standard’ labelled dataset. That
is, determining if the schema is inherently learnable, that the labels applied to utterances
are not entirely dependent on the biases of an individual annotator, and that there is a
common understanding of the meaning of labels and the utterances to which they are
applicable (Craggs and Wood, 2005). It should be noted, that reproducibility is a natural
prerequisite to demonstrating reliability of a coding scheme. If annotators produce similar
results, they likely have a similar understanding of the annotation scheme and guidelines,
and that these are able to represent the desired characteristics of the data (Artstein and
Poesio, 2008). Within the literature chance-corrected coefficients, which account for the
probability that annotators select the same label by chance, such as Cohen’s Kappa (Co-
hen, 1960), or Scott’s Pi (Scott, 1955), are the preferable measures of IAA (Craggs and
Wood, 2005; Di Eugenio, 2000; Carletta, 1996). However, weighted coefficients, such as
Krippendorff’s Alpha (Krippendorff, 2004), are more suitable to annotation tasks such as
this, which require an element of semantic interpretation. Thus, we evaluate CAMS via
an annotation study conducted with novice annotators and using two weighted agreement
coefficients to assess IAA.

To evaluate the results of our IAA study we perform hypothesis testing in the form of
Two-sided t-tests or Analysis of Variance (ANOVA), where appropriate. Where the results
of an ANOVA reveal a significant overall effect, we perform a further Tukey’s Honest
Significant Difference (Tukey-HSD) post-hoc analysis, in order to determine the factors
contributing to the observed effect. Due to relatively small sample sizes, we calculate the
ω2 effect size and adopt the standard ranges for interpretation, low (.01 - .059), medium
(.06 – .139) and large (.14+). For t-tests we report Cohen’s d effect size, with standard
interpretations of small (.2), medium (.5), and large (.8+). Throughout the analysis, we
use a significance level α = .05, and, unless otherwise stated, the statistical power is ≥ .8.
In chapter 4.1 we provide more details of our schema and evaluation procedure: including,
selection and evaluation of agreement coefficients, the dialogue material annotated, and
selection of participants.

3.1.3 Corpora Annotation

In conjunction with the evaluation of CAMS we will annotate a suitable task-oriented
corpus of dialogues (02). This corpus will ultimately facilitate the development of an ML
algorithm that is capable of automatic classification of utterances with AP-types. While
there are a large number of DA annotated corpora, comparatively few also include AP
annotations. To the best of our knowledge, only the Augmented Multi-party Interaction
(AMI) corpus (Mccowan et al., 2005), and MRDA corpus (Shriberg et al., 2004), have
been annotated with AP and DA. However, both of these corpora only identify base AP –
denoted ‘a’ and ‘b’ and numbered in order of occurrence – and therefore do not include the
crucial concepts of sequence expansion. Further, because not all utterances belong to a
base pair, neither of these two corpora contain AP annotations for all utterances. Indeed,
the AP annotations are quite sparsely distributed within the data, making it unfit for our
purposes. Thus, we have instead elected to annotate an existing corpus, the Key-Value Re-
trieval Networks for Task-Oriented Dialogue (KVRET) corpus (Eric and Manning, 2017b).
KVRET was developed as a multi-turn, multi-domain dataset which contains 3,031 dia-
logues in three distinct domains appropriate for an in-car assistant: calendar scheduling,
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weather information retrieval, and point-of-interest navigation. For our purposes KVRET
is therefore, i) task-oriented, with three distinct tasks, ii) large enough to meaningfully
train a ML model to identify the annotated AP-types, yet small enough to annotate within
a reasonable amount of time, and iii) contains slot and task information for developing
task-oriented dialogue systems, and hence is applicable to future applications of this work.
We annotate KVRET with a specially developed tool to produce CAMS-KVRET, which
extends the KVRET format to include the DA and AP defined within CAMS. Further
details of the annotation procedure and resulting corpus are presented in section 4.3.

3.1.4 Other Dialogue Act Annotated Corpora

In addition to the development of CAMS-KVRET we make use of existing DA annotated
corpora to aid in the development of our ML dialogue classification models. If we consider
that AP are alternative, or additional, labels for utterances of dialogue, then we can frame
the identification of AP in the same manner as DA classification. Thus, using large and
well studied DA annotated corpora provides performance baselines for comparison when
developing our classification models. Further, it allows us to begin developing said models
immediately, without being hindered by the lengthy task of corpus annotation. We use
two additional corpora throughout our DA classification experiments, the Switchboard
(SwDA) and Maptask corpus, discussed in Section 2.2.1. These corpora were selected
primarily due to several contrasting features between them, which allows for some inter-
esting comparisons between two quite different datasets. Firstly, SwDA contains many
more utterances and has a larger vocabulary than Maptask. Secondly, the conversations
within SwDA can also be considered open-domain, or non-task-oriented, while maptask is
task-oriented, and therefore the type of language used, and problem domain, is contrasted
between the two.

3.2 Dialogue Classification Systems

For our second stage – developing an ML algorithm that is capable of automatic classifica-
tion of utterances with AP-types (O3 and Q2) – we follow the same general architecture
and procedure outlined in 2.2.3, and illustrated in Figure 2.1. That is, (1) input sequence
representations and (2) embedding, (3) sentence encoding, (4) context encoding, and (5)
classification. We group these components into three phases of experiments. The first
phase, sentence encoding, encompasses components 1, 2, and 3. Here we focus on the var-
ious text pre-processing considerations and single-sentence classification models, without
any additional contextual information, in order to explore the factors that contribute to
creating high quality sentence encodings for the purpose of DA classification. Our intu-
ition is that sentence encodings, with high information content, are a vital prerequisite
for contextual models, where the primary form of input is segments of dialogue. Thus,
the second phase will be context encoding, which extends the sentence encoding models
with components 4 and 5. Here we explore different forms of contextual input (speakers,
labels, and utterances), multi-sentence architectures, and sequence classification models.
Once this contextual classification model is in place, for the third phase we apply it to AP
identification, and further extend the architecture into multi-label classification for both
DA and AP, and thus AP-types (O4 and Q2).

3.2.1 Phase 1: Sentence Encoding

For our sentence encoding phase of experiments the primary focus is exploring the impact
of different text pre-processing parameters (component 1), and embeddings (component
2), on the quality of single-sentence encodings – with regard to classification performance
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– produced by various sentence encoder models (component 3). Throughout the sentence
encoding experiments we use the SwDA and Maptask corpora.

Each input example consists of a single sentence, which is tokenised to form an input
sequence of the maximum sequence length (n). As discussed previously (2.2.3.1), there
are several important, and yet within the literature often under-reported, considerations
with regards to input sequence processing for DA classification. Thus, we conduct a set of
input sequence representation experiments which explore several aspects of the sequence
processing component: letter case and punctuation, vocabulary size, tokenisation and
sequence length. For letter case and punctuation we investigate the impact of converting all
letters in the input sequence to lower-case, or not, and similarly for punctuation keeping or
removing all punctuation marks. We also explore varying vocabulary sizes, the number of
most frequently occurring words to keep within the input sequence, and sequence lengths,
the maximum number of tokens per sequence.

In a series of word embedding experiments we also examine the impact of various
different pre-trained embedding types; Word2Vec (Mikolov et al., 2013), trained on 100
billion words of Google News data, GloVe (Pennington, Socher, and Manning, 2014),
trained on 840 billion tokens of the Common Crawl dataset, FastText (Joulin et al., 2017),
Dependency (Levy and Goldberg, 2014), which were both trained on Wikipedia data, and
Numberbatch (Speer, Chin, and Havasi, 2016), which combines data from ConceptNet,
Word2vec, GloVe, and OpenSubtitles. We test each these with different dimensions (e)
in the range [100, 300].

We evaluate all of our input sequence and word embedding experiments with respect
to six supervised encoder models. Further, we assess the impact of several architectural
variations of our supervised encoders, such as bi-directional recurrent models, and the
addition of attention layers. Finally, we also apply ten pre-trained LMs to the sentence
encoding task, in order to compare performance to the supervised approach. Details for
each of these models is presented in 5.1.2.

3.2.2 Phase 2: Context Encoding

With a suitable selection of sentence encoding models in place, for our context encod-
ing phase we extend their architecture to incorporate additional contextual information
(component 4). In most cases we use the same two-layer FFNN as the final classifier com-
ponent. However, we additionally explore several alternative approaches to classification
that are appropriate for predicting over sequences of inputs, CRF and Seq2seq (component
5). Throughout our context encoding experiments we again use the SwDA and Maptask
corpora, and additionally our annotated CAMS-KVRET corpus.

As discussed in 2.2.3.4, context encoding can be considered in terms of three different
components: context utterances, speakers, and labels. We begin with the primary focus,
the inclusion of context utterances, and experiment with varying numbers, and combi-
nations, of historical or future utterances that surround the current target utterance for
classification. Therefore, each input example is a dialogue segment of m utterances, the
current utterance to be classified and one or more contextual utterances that occur imme-
diately prior, or after, within the dialogue. Each input utterance is individually processed
and encoded in the same manner, as determined by our sentence encoding phase (3.2.1),
to produce an m ×u matrix D, where u is the dimension of the sentence encoder output.
D is then passed to the dialogue context encoding layers to produce an encoding of the
dialogue segment (d).

In addition to contextual utterances we also experiment with including combinations
of speaker and label information. That is, for each input utterance in m we also input the
given utterances speaker, s, and so as to exclude the current classification targets label,
we input m− 1 labels, l. Both the speaker and label for a given utterance are represented
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as one-hot vectors. For speakers, this allows a variable number to be represented, rather
than simply indicating speaker change with a binary flag. Thus, for each example, speaker
inputs consist of a m × |S | matrix, and label inputs are an m-1 × |L| matrix. Details
for each of these is presented in section 5.2.1, along with an overview of the sequential
classifier models.

3.2.3 Phase 3: AP and Multi-label Identification

For the final phase of dialogue classification we apply our context encoding model, de-
veloped in phases 1 and 2, to the task of AP classification. We repeat several of the
experiments conducted during the context encoding phase, context utterances, speakers,
and labels, with the AP and AP-type labels from our annotated CAMS-KVRET corpus.
These single-label experiments will primarily allow us to determine the efficacy of apply-
ing modern DL approaches to this as yet unexplored problem domain. Further, we can
establish whether any differences exist between the optimal parameters for DA context
information (determined in phase 2) and that of AP, or AP-types. In other words, whether
a different number of context utterances, speakers, or labels is optimal for AP prediction.

Finally, we again extend our context encoding model to multi-label classification. That
is, an architecture that is capable of simultaneously identifying both the DA and AP of
a given utterance, and hence its AP-type. We speculate that some DA may be highly
correlated with certain AP, and conversely, some AP may be more often associated with
certain DA. Thus we propose three novel architectures, DA First, AP First, and Parallel.
Each of these use the dialogue segment vector d produced by the context encoder model,
and then apply different arrangements of classifier layers. For example, in the case of
DA First, classifier layers first generate predictions for the current DA label and these are
concatenated with d for input into the AP classifier layers. We may then evaluate whether
predictions for the current DA are beneficial for predicting AP, or vice versa.

3.2.4 Training and Evaluation

We train models for at most 15 epochs, using mini-batches of 32, and training the examples
are shuffled before each epoch. Typically models converge within 10 epochs or less, but
where no improvement in validation loss is observed for at least 3 epochs we use early
stopping to prevent overfitting. Experiments are carried out on an 8 core i7-9800x, with
32GB of RAM, and a Titan RTX GPU with 24GB VRAM.

Generally, DA classification studies evaluate performance using the accuracy metric
and so to allow comparison with previous work, we also use accuracy to evaluate our
models. In order to account for the effects of random initialisation and non-deterministic
nature of the learning algorithms, results reported are the average (µ), and standard devia-
tion (σ), of the accuracy obtained by training and testing the model for 10 runs. However,
in order to compare between different approaches or configurations, as appropriate we also
report per-label F1 scores, macro averaged or weighted average per-label F1 scores, and
top-k accuracy. The latter being the accuracy obtained if the correct label appears in the
top-k predictions, and we choose a value of k = 3. Results for the validation set are the
highest validation accuracy achieved over all epochs. To obtain results on the test set,
we first load the model weights from the point at which validation loss was lowest during
training, before applying it to the test set. Therefore, results for the test set were obtained
using the model that achieved the best performance on the validation set during train-
ing. Throughout our experiments, while tuning hyperparameters, or making comparisons
between different models, we only consider the mean validation accuracy scores.
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3.2.4.1 Significance Testing

Within much of the previous DA classification literature, results reported for different
models and parameter combinations often amount to very small differences in performance,
usually in the region of 1-2% accuracy or less. Yet, even where results are the average over
multiple runs, it is difficult to draw firm conclusions from such small differences. Thus,
in order to determine if the reported mean accuracies are indeed significant, or not, we
perform additional hypothesis testing. However, it is acknowledged that applying NHST,
can be problematic in the context of machine learning problems (Demšar, 2008; Bouckaert,
2003; Dietterich, 1998; Salzberg, 1997), and that the lack of independent sampling when
using the same training and test data split may lead to an increased probability of type
I errors (Dietterich, 1998). With this in mind, the following outlines our approach to
significance testing; based on the recommendations of Demšar (2006), and employing the
Bayesian techniques of (Benavoli et al., 2017).

Wherever we make direct comparisons between two, or more, classifiers results, we
employ the Bayesian Signed-rank (BSR) test (Benavoli et al., 2017). The BSR test was
introduced by Benavoli et al. (2017), specifically to avoid “the pitfalls of black and white
thinking” that accompany NHST, by analysing the likelihood that observations are signif-
icantly different. In essence, the BSR test uses Monte Carlo sampling to generate a large
number of samples (50,000) from the posterior distribution – our set of results over 10 runs.
These samples can then be used to calculate the probability that, for example, classifier
A performs better than B, P (A > B), and conversely whether B performs better than
A, P (B > A). Further, with BSR tests we can select what Benavoli et al. (2017) term,
a “region of practical equivalence”, or rope. That is, a region, or value, within which we
consider A and B to be equivalent. Though, selecting a value of rope is dependant on the
properties of the domain and the practitioners judgement for what constitutes practical
equivalence. Thus, for any two classifiers, A and B, we are given P (A > B), P (A == B),
and P (B > A), and we are able to make a more nuanced interpretation of results than
would be possible with p-values alone. Indeed, BSR tests allow us to answer the question,
“what is the probability that the performance of two classifiers is different (or equal)?”,
unlike a p-value, which simply represents the probability of getting the observed (or larger)
differences, assuming that the performance of the classifiers are equal (H0) (Benavoli et al.,
2017). Further, it does not require the same independence, or distribution, assumptions
that many NHSTs do, and is therefore an entirely alternative, method of evaluating the
differences between two classifiers.

Throughout these experiments we consider a result to be statistically significant if
P (A > B) or P (B > A) ≥ 0.8, and statistically equivalent if P (A == B) ≥ 0.8. Given the
marginal differences in performances that are often reported within the DA classification
literature (for example, shown in table 2.5), we select a value of 0.5% for rope. By reporting
and discussing the most relevant probabilities produced by BSR tests, we hope to alleviate
some of the concerns surrounding the potential issues of NHST discussed earlier, allow the
reader to draw conclusions about the extent of the significance of the result, and in so
doing, establish more confidence in our reported conclusions.

3.3 Dialogue Structure Evaluation and Analysis

In our final methodological stage we evaluate, and analyse, our ML model and proposed
method of dialogue representation against several dialogue modelling related tasks (O5
and Q4). First we evaluate our models ability to predict the next likely DA, AP, and
AP-types given the current dialogue state. Relatedly, we use a generative language model,
GPT-3, to produce appropriate responses given a segment of dialogue and next label as a
prompt. Together these two tasks can be considered analogous to two key components of
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dialogue management systems, that is, the dialogue policy and NLG respectively. Dialogue
policy, refers to the selection of next system actions based on the current dialogue state,
while the NLG component, given the DA generated by the dialogue policy, maps the
act to a natural language utterance (Dai et al., 2020; Zhang et al., 2020b; Chen et al.,
2017). Finally, we analyse dialogue graph representations produced with χ2 analysis of
the gold-standard annotations within CAMS-KVRET.

3.3.1 Next-Label Prediction

Our next-label prediction experiments are intended to approximate dialogue policy learning
for a dialogue management system (or at least an important component of it). We utilise
the same contextual single-label and multi-label models developed during the latter part of
our second stage. However, we alter the training objective such that the current target for
prediction is the next label (DA, AP, or AP-type) that is likely to occur in the sequence,
given the current segment of dialogue. In other words, given a dialogue segment of m
utterances, and optionally m speakers and labels, the classification target becomes the
m+1th label. Thus, the model is only provided historical information and is not presented
with the utterance, or speaker, for which it is making predictions.

Aside from the new training objective we train and evaluate the models in the same
manner as our previous ML experiments discussed in section 3.2. Again we report the
top-k accuracy because there may not always be a single objectively correct label for any
given sequence of dialogue. On the contrary, there may be several valid response types
(Feng et al., 2021; Zhang, Ou, and Yu, 2020). Therefore, knowing the 3 most likely
response types the model has selected, how often the correct label appears within them,
and the magnitude of difference between probabilities of any two potentially valid labels,
may yield valuable insights into the application of our approach to dialogue system policy
learning.

3.3.2 Response Generation

The response generation experiments are intended to evaluate the extent to which our
proposed dialogue representation method affects the generation of appropriate natural
language system responses in a dialogue management scenario. That is, given a dialogue
segment of m utterances, speakers, and labels (the dialogue state), and the m+1th response
type (DA, AP, or AP-type) produced by the dialogue policy, the NLG component must
generate a suitable response. Given the relatively small size of our CAMS-KVRET dataset
we opted to utilise the remarkable NLG abilities of GPT-3, which is specifically intended for
few-shot learning (Brown et al., 2020). We fine-tune GPT-3 and the generated responses
are then evaluated with a range of well-known language modelling and generation metrics
(Yeh, Eskenazi, and Mehri, 2021; Finch and Choi, 2020; Sharma et al., 2017; Liu et al.,
2016):

1. BLEU (Papineni et al., 2002), and METEOR (Banerjee and Lavie, 2005), were
developed to automatically evaluate the results of machine translation given some
reference sentences. The BLEU metric compares the number of common n-grams,
typically 1 to 4, over all the candidate and reference utterances in the corpus. ME-
TEOR first calculates the alignment (exact matches, as well as stem, synonym, and
paraphrase matches) between the candidate and the reference utterances by mapping
each uni-gram in the candidate sentence to 0 or 1 uni-gram in the reference sentence.
The METEOR F1 is then computed, which is is the harmonic mean between preci-
sion and recall alignment, with the weight for recall 9 times as high as the weight
for precision. Similarly, ROUGE (Lin, 2004) is a set of metrics proposed for the au-
tomatic evaluation of summaries. ROUGE-N calculates the n-gram co-occurrence,
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while ROUGE-L is an F-measure based on the longest common sub-sequence be-
tween the candidate and reference utterances.

Some have questioned the suitability of these word-overlap metrics for evaluating
NLG in the context of dialogue systems (Deriu et al., 2020; Liu et al., 2016). Either
because they do not correlate well with human evaluation, or due to the larger
number of grammatically correct responses that can be generated within dialogue,
as opposed to translation. Nevertheless, it has been shown that these metrics have a
stronger correlation with human judgements in the task-oriented setting compared
to the non-task-oriented setting (Sharma et al., 2017), and may therefore provide
some useful metrics for evaluating our task.

2. Semantic Similarity of generated sentences with respect to the reference sentences
within the corpus. We calculate cosine distance for each sentence pair using the
contextual embeddings generated by the RoBERTa-large model (Liu et al., 2019).
As suggested by Sharma et al. (2017) and Liu et al. (2016), we also evaluate several
different metrics using pre-trained GloVe embeddings:

• Embedding average (Mitchell and Lapata, 2008; Foltz, Kintsch, and Landauer,
1998) is the most common method for computing the meanings of phrases. It
creates sentence-level embeddings by averaging the vector representations of
their constituent words, which are then compared using cosine distance.

• Greedy matching (Rus and Lintean, 2012) does not compute sentence-level em-
beddings. Instead, given two sequences r and r̂, each token w ∈ r is ‘greedily’
matched with a token ŵ ∈ r̂ based on the cosine similarity of their word em-
beddings (greedily, because the maximum similarity is chosen). The total score
is then averaged across all words. The intention is to favour responses with key
words that are semantically similar to those in the reference sentences.

• Vector extrema (Forgues et al., 2014) takes the most extreme value (high or
low) amongst all word vectors in the sentence and uses that value to produce
a sentence-level embedding. Again, similarity between generated and reference
sentences is calculated using cosine distance. This approach is intended to
prioritise informative words over common ones, because words that appear in
similar contexts will be close together in the vector space.

3. Perplexity can be considered a measure of a language models uncertainty when
predicting the next word wt+1, given the previous words in the sequence (w1, ..., wt).
Perplexity is closely linked to the models entropy (Brown et al., 1992). That is, the
similarity between the distribution the model has learned from the training text Q,
and the actual distribution P . The cross-entropy H(P,Q) is then defined as:

H(P,Q) = −
t∑
i=1

P (wi)logQ(wi) (3.1)

Perplexity is then simply:

PPL(P,Q) = 2H(P,Q) (3.2)

Perplexity does not inform us of the quality, nor topical relevance, of the generated
utterance. However, it does provide us with a kind of ‘confidence’ value for the
language model when generating responses. In other words, a the lower perplexity
indicates a higher confidence that the correct words are being generated for the
current dialogue context.
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3.3.3 Analysis of Dialogue Structure

In order to analyse and evaluate the dialogue structure representations facilitated by the
different label types within CAMS we adopt a similar technique to that of Midgley, Har-
rison, and Macnish (2006). Using a modified χ2 analysis (Schutze, Hull, and Pedersen,
1995), Midgley, Harrison, and Macnish (2006) produced dialogue structure graphs showing
the relationship between pairs of utterances within dialogue. Thus, we adopt the same
technique using the gold-standard label annotations within the CAMS-KVRET corpus.
For our purposes the χ2 test allows us to determine if the observed frequency of a given
label (A) being followed by another (B) can be attributed to random chance, or whether
their co-occurrence is statistically significant. We apply the χ2 analysis in two ways.
Firstly, for DA and AP, we calculate χ2 for all label pairs by creating a contingency table
with counts for the number of times an utterance with label A (or not) is followed by an
utterance with label B (or not), as in Table 3.1.

Table 3.1: χ2 contingency table for a pair of labels A and B.

Ui = A Ui 6= A

Ui+1 = B AB ¬AB
Ui+1 6= B A¬B ¬A¬B

Next, these counts are used in the following equation, where N is the total number of
utterances, to produce a χ2 value for each label pair:

χ2 =
N(AB × ¬A¬B −A¬B × ¬AB)

(AB +A¬B)(AB + ¬AB)(A¬B + ¬A¬B)(¬AB + ¬A¬B)
(3.3)

The resulting χ2 values can then be used to create a directed dialogue structure graph
for the given label type. Where each node is represented by a label and edges represent the
transition from one utterance with that label to another, with the edge weight determined
by the χ2 value. To produce AP-type graphs the process is similar to that of AP, except
we calculate separate χ2 values based on the frequency that one AP label follows another
(or not), for each DA label. Therefore, within the AP-type graph, between any pair of
nodes (AP) there may be multiple edges, each representing a DA and weighted by its χ2

value. Note that we calculate the χ2 critical value (χ2
crit) with a significance level α = .05

and only keep edges where χ2 > χ2
crit. Thus only statistically significant transitions are

represented in the graphs.
The resulting dialogue structure graph can then be evaluated in terms of the similarity

between adjacent nodes, or the graphs themselves, and also measuring how efficiently they
exchange information:

1. SimRank Similarity is a measure of structural-context similarity between nodes,
which states that “two objects are similar if they are related to similar objects” (Jeh
and Widom, 2002). For any pair of nodes a and b in a graph, SimRank similarity
is calculated as the average similarity between in-neighbours of a and in-neighbours
of b, and produces a score in the range [0, 1], where 0 represents the nodes are com-
pletely dissimilar and 1 identical. Thus, if SimRank similarity provides an additional
measure of local and structural relationships between pairs of nodes, we may use the
scores to identify pairs of labels that frequently occur at similar positions within a
sequence of utterances. For example, one might expect FPP-insert and SPP-base
to have a high similarity score because they are both likely to follow (be referenced
by) a FPP-base.
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2. Similarity Edit Distance determines the minimum sequence of edit operations on
nodes or edges (insertion, deletion, or substitution), in order to transform one graph
into another (Abu-Aisheh et al., 2015). For any two graphs g1 and g2, the algorithm
produces an integer value which represents the number of node or edge edit opera-
tions that are required to transform g1 into g2. We can therefore use the similarity
edit distance to compare the dialogue structure representations facilitated by the
different label types within the schema. In particular, for each label type we can
compare the dialogue structure graphs for the different tasks within the KVRET
corpus, weather, navigation, and scheduling. Thus we can determine whether the
representations are highly similar between the tasks, or not. High similarity would
suggest a more generalised representation, while low similarity indicates the repre-
sentation is task-specific.

3. Efficiency is a measure of how efficiently information is exchanged between nodes of
a graph (Latora and Marchiori, 2001). The efficiency of two nodes i and j is inversely
proportional to the shortest distance (d) between them εij = 1/dij. Global efficiency
is the average efficiency of all node pairs within the graph, and local efficiency is
the average efficiency of local sub-graphs – node i and all nodes adjacent to i. Note
that, the local efficiency around a node with fewer than two neighbours is taken
to be 0, and when there is no path in the graph between i and j, dij = +∞ and
therefore εij = 0. Thus, we may use these measures of global and local efficiency
as an indication of the effectiveness of a given label types dialogue representation
at the macro and micro level. In other words, high global efficiency suggests a
representation of the entire dialogue where, for example, the interaction can be
conducted in fewer steps. On the other hand, high local efficiency is a measure of
fault tolerance – the efficiency of communication between the neighbours of i when
i is removed.
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Chapter 4

Conversation Analysis Modelling
Schema and Corpora Annotation

In this chapter we first provide an overview of our proposed CAMS, including the set of
labels and brief annotation considerations. Then, in Section 4.2, we evaluate CAMS by
means of an annotation study that was conducted with novice annotators, assessed via two
IAA coefficients (Alpha and Beta), and several other quantitative and qualitative measures
(O1 and Q1). Finally, in Section 4.3, we provide details of the annotation process that
was used to develop CAMS-KVRET, a multi-turn, multi-domain dataset annotated with
CAMS (O2).

4.1 CAMS Definition and Guidelines

The schema defines two sets of labels, DA and AP, which are combined to form AP-type
labels. When applying the schema, the intent is to assign each utterance one DA and
one AP, which together are considered the AP-type for that utterance, and capture the
semantic and syntactic structure of a dialogue at the inter and intra utterance level. The
AP-type labels, for a fully annotated dialogue, can then be viewed as a representation
of its semantic and syntactic structure. It should be noted that the concept of a typed
AP is a key feature of AP present within the CA literature (Clift, 2016; Sidnell, 2010;
Liddicoat, 2007; Schegloff, 2007). However, the standard annotation schemes for CA do
not strictly require each utterance of dialogue to be labelled with an AP. Additionally,
CA annotation often includes non-verbal sounds, pauses and other types of disfluencies.
Gaps in annotations, where utterances are not labelled with AP, and other forms of non-
verbal annotation, for example ‘breathing’, are generally undesirable for computational
purposes. CAMS, therefore, is an attempt to define these concepts, and how they may be
applied, into a computationally compatible format where each utterance is labelled with
an AP-type. The following sections provide an overview of DA, AP, and AP-types, their
respective sets of labels defined within the schema, and some brief guidelines for applying
the schema to dialogue.1

4.1.1 Dialogue Acts

As discussed in 3.1.1, we have elected to use DiAML as our base set of DA labels within
CAMS. For the initial iteration we adopt a subset of 27 DiAML labels that were most
relevant to task-oriented dialogues. Though, this could simply be extended to include
the full range of DiAML labels. As shown in table 4.1, they are grouped by their com-
municative function (though this differs slightly from the original DiAML organisation):

1Full label definitions and annotation guidelines are shown in Appendix A.
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Table 4.1: The CAMS categories of DA labels, organised by their asso-
ciated communicative function.

Communicative Function DA Labels

Information-seeking
setQuestion, choiceQuestion,

propositionalQuestion, checkQuestion

Information-providing answer, inform, correction

Commissive offer

Directive suggest, request

Feedback Positive
accept, conditionalAccept, agree, confirm,

feedbackPos

Feedback Negative decline, disagree, disconfirm, feedbackNeg

Time and Communication stalling, retraction

Social Management
greeting, goodbye, thanking,

acceptThanking, apology, acceptApology

Information-seeking, information-providing, commissives, directives, feedback, time man-
agement, communication management, and social obligations management. Note that,
we have also made several small changes to the conventional DiAML DA names, outlined
below. However, we were careful to maintain backwards compatibility, in that, the CAMS
labels can simply be expanded back to the original DiAML.

• Within DiAML, the labels autoPositive and autoNegative represent positive or neg-
ative understanding of the previous utterance, for example “Okay”, or “What?”.
Within CAMS we have converted these into the slightly more intuitive labels of
feedbackPos and feedbackNeg.

• For simplicity we have also collapsed several groups of labels into a smaller subset.
Our reasoning and method is similar to that of Pareti and Lando (2019). That is,
because responsive DA are linked via AP within CAMS, it should be unnecessary to
specify their type. Specifically, acceptRequest, acceptSuggest, and acceptOffer have
been collapsed to simply accept ; declineRequest, declineSuggest, and declineOffer
to decline; and addressRequest, addressSuggest, and addressOffer – which normally
signify the acceptance of a request, suggestion, or offer possibly depending on certain
conditions – to conditionalAccept.

• Similarly, initialGreeting and returnGreeting have been collapsed to greeting, and
initialGoodbye and returnGoodbye have been collapsed to goodbye

4.1.2 Adjacency Pairs

Within CAMS we utilise the full range of AP discussed in section 2.1.1. That is, base pairs,
sequence expansions, and minimal expansions. With the exception of extending minimal
expansions (discussed below), we make no alterations to the meaning or application of
AP within CAMS, and they are therefore applied in the same manner outlined within the
CA literature. In the following we provide a brief overview of each AP category, their
respective labels, and annotation guidelines:

Base CAMS defines two base AP, with the characteristics defined by Schegloff and Sacks
(1973) and Schegloff (1968). Within CAMS these are denoted FPP-base and SPP-base.
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Once a FPP-base has initiated a sequence, that sequence must be concluded with a SPP-
base before any further base-type sequences are initiated. In other words, a base-type
sequence may not be ‘nested’ within another base-type sequence.

Pre-expansions are denoted FPP-pre and SPP-pre. Pre-expansions must be initiated
and concluded prior to any base sequence and are not permitted within base-type se-
quences. Once a FPP-pre has initiated a sequence, that sequence must be concluded with
a SPP-pre before any further sequences. That is, a Pre-expansion sequence may not be
‘nested’ within another Pre-expansion sequence.

Post-expansions are denoted FPP-post and SPP-post. As with Pre-expansions, Post-
expansions must be initiated and concluded after any base sequence and are not permitted
within base-type sequences. Once a FPP-post has initiated a sequence, that sequence must
be concluded with a SPP-post before any further sequences, and may not be ‘nested’ within
another Post-expansion sequence.

Insert-expansions are denoted FPP-insert and SPP-insert. Insert-expansions are the
only expansions permitted within a base-type sequence, and they are not permitted outside
of a base-type sequence, such as a Pre-expansion. However, unlike base, pre, and post
type sequences, Insert-expansions are permitted to be ‘nested’, provided they abide by
the usual constraints for AP: different speakers for FPP and SPP, not overlapping, and so
on.

Minimal-Expansions Because dialogue does not always contain even numbers of ut-
terances, there are also single-utterance minimal-expansions, for utterances that do not
belong to conventional AP. CAMS defines three types of minimal-expansion Pre, Post, and
Insert, which behave in a similar manner to their expansion counterparts. That is, they
must be produced before, after, or inside a base sequence. These are closely related to the
idea of minimal post-expansions (Sidnell and Stivers, 2013; Schegloff, 2007), in that they
are not designed to project any further sequences of talk, but rather open, close or add to
sequences respectively. The primary role is to allow for additional turns that behave as
expansions but consist only of one turn, and allows CAMS to account for instances where,
for example, a single utterance opens the interaction before the base pair is initiated, or
a single utterance takes place between the initiation and conclusion of a base pair (or
insert pair). There is no restriction on speaker order for minimal-expansions, which allows
the same speaker to produce more than one utterance of different types in succession, or
for a speaker to produce one utterance that does not belong to (initiate or conclude) an
AP. However, they should abide by their semantic intent. For example, a pre-minimal-
expansion should be relating to a future base sequence, a post-minimal-expansion to a
previous base sequence and an insert-minimal-expansion within a sequence.

In summary, there are 11 AP in the schema and the set includes: Two labels for the
base pair, FPP-base and SPP-base. Six labels for expansion pairs. That is, FPP and SPP
for pre, post and insert expansions, as described by Liddicoat (2007) and Sidnell (2010).
And three labels for minimal expansions, pre, post, and insert. Within CAMS, for all AP
sequence-types: base, pre, insert, and post expansions the following rules apply:

1. The speaker of a FPP must be different to the speaker of a SPP.

2. A FPP must be an initiation of a sequence and the SPP a response to that initiating
FPP.
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3. Once a FPP has initiated a sequence, that sequence must be concluded with a SPP
of the same type.

4. The initiation and conclusion of two different sequences may not overlap each other.

For example, the following sequence is not permitted. Firstly, the base pair is concluded
in utterance 3 by the same speaker that initiated it in utterance 1, thus violating 1 above.
Secondly, the insert expansion initiated in utterance 2 is not concluded before the base
sequence (that it is inserted within) is completed, violating 4 above.

a: Utterance 1 FPP-base
b: Utterance 2 FPP-insert
a: Utterance 3 SPP-base

4.1.3 Adjacency Pair Types

In CAMS an AP-type is simply the product of one AP label, and one DA label, for an
utterance of dialogue. The combination of these two labels is considered an AP-type
label. Due to the large number of possible combinations, and to allow flexibility, the
schema does not explicitly define all valid DA and AP combinations. Instead, annotators
should consider the meaning and context within which the individual labels being applied
produce AP-types. The following shows a previous example, now fully labelled with both
AP and DA, to create AP-types. In the example, propQ (propositionalQuestion) is a
question that implies, but does not necessitate, a ‘yes’ or ‘no’ answer, and a choiceQ
(choiceQuestion) where the speaker provides a list of alternatives with the assumption that
the addressee knows which one is true, or will select one. The alternative question-type
labels are: setQuestion, which corresponds to what is commonly termed a ‘WH-question’
in the linguistic literature, that is, questions that typically begin with words such as,
‘Who’, ‘What’ or ‘How’; and checkQuestion, which is produced by the speaker in order to
know whether a proposition is true.

a: Do you know the directions to the zoo? FPP-base - propQ
b: Are you driving or walking? FPP-insert - choiceQ
a: Walking. SPP-insert - answer
b: Get on the subway. . . SPP-base - answer

4.2 CAMS Evaluation

The following outlines details of the annotation procedure that was conducted to assess
CAMS with respect to: (1) the extent to which multiple annotators agree when applying
the schema to dialogue, the IAA, (2), its suitability for application to both task-oriented
and non-task-oriented (general talk) dialogues, and (3), evaluate additional characteristics
of the material, or annotator behaviours, which may affect application of the schema and
the resulting agreement scores. These objectives are intended to establish whether CAMS
is comprehensively and explicitly defined, such that it can be reliably applied by multiple
annotators, and that it is generalisable to any conversation type, topic, or domain, in order
to create corpora annotated with labels that express the syntactic and semantic structure
(O1 and Q1).

The study participants were asked to label 5 dialogues, containing both task and non-
task-oriented conversations, using a specially developed software annotation tool2 (figure

2The annotation tool, an example of dialogue for each corpus, and all data generated by this study is
available at: github.com/NathanDuran/CAMS-Dialogue-Annotation
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4.1). In total, 15 participants took part in the study (see 4.2.2), and each was assigned
one of 5 different sets of dialogue for annotation (see 4.2.1). The dialogue sets were evenly
distributed among the participants, resulting in 3 annotators per set. The first dialogue
in each set is a practice dialogue, followed by the 4 dialogues in their respective set (2
task-oriented and 2 non-task-oriented). The latter 4 dialogues were shown to participants
in a random order to encourage independent annotation, and mitigate any learning effect
of the software, or schema, on annotation results. The participants were given one hour to
annotate all dialogues and had no previous training using the annotation tool or CAMS.
Upon completion of each dialogue, participants were asked to rate, by means of a Likert
Scale, how well their annotations fit the data. Timing data was also collected during the
annotation process, which recorded how long participants spent annotating each utterance
of dialogue. The timing and rating data were used, in addition to the calculated IAA,
for further analysis of the manner in which annotators apply the schema, and comparison
of task and non-task-oriented dialogues. The following discusses the evaluation measures,
and the selection of participants and dialogues in more detail.

Figure 4.1: Annotation screen of the software annotation tool.

4.2.1 Dialogue Selection

A key objective of this study is to assess CAMS when it is applied in both task-oriented
and non-task-oriented settings, as defined in 2.4. The dialogues selected for this study are
therefore representative of these two groups, and in order to provide a more representative
selection between them, dialogues were chosen from 4 different corpora, with varying
numbers of utterances, participants and formats.

In total 20 dialogues were chosen, 5 from each corpus. These were then split into 5
dialogue sets, each containing one dialogue from each corpus, and grouped in order to
keep the total number of utterances in each set roughly equivalent. Additionally, each
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Table 4.2: Summary of dialogues, and number of utterances, per dialogue set. Total
column includes 6 utterances for the practice dialogue.

Set KVRET Utts bAbI Utts CABNC Utts SCoSE Utts Total

1 test 28 7 test 290 7 KB7RE015 9 mammoth 19 48

2 test 52 8 test 428 7 KBKRE03G 6 clone 19 46

3 test 96 4 test 555 5 KDARE00G 4 accident 29 48

4 test 129 6 test 564 5 KE2RE00Y 4 hunter 25 46

5 test 102 4 test 894 5 KBERE00G 5 tipsy 26 46

µ 5.8 5.8 5.6 23.6 46.8

set contained the same short practice dialogue, selected from the KVRET corpus. The
practice dialogue is intended to mitigate any learning effect associated with the annotation
software, and also provide a control dialogue annotated by each participant regardless of
the dialogue set they are assigned. Table 4.2 provides an overview of each dialogue set
used within the study. Next is a brief overview of each corpus.

KVRET As discussed in section 3.1.3, for O2 we aim to annotate the KVRET corpus
(Eric and Manning, 2017b) with CAMS. Therefore, we also include KVRET as one of
our task-oriented corpora for the annotation study. The dialogues were randomly selected
from the 304 dialogues in the KVRET test set.

bAbI The Dialogue bAbI Tasks data is a subset of the bAbI project by the Facebook AI
Research group (Weston et al., 2015). The set of 6 tasks are designed to test end-to-end
dialogue systems in the restaurant booking domain. The dialogues used for this study
were randomly selected from the 100 dialogues in the bAbI task 1 test set. Each dialogue
follows a similar format. First greetings are exchanged, and the automated system asks
the user what it can help them with. The user states their preference of cuisine, location,
price range, and number of diners, and in some cases extra system turns clarify these
preferences.

CABNC The Jeffersonian Transcription of the Spoken British National Corpus is a
conversation analytic re-transcription of naturalistic conversations from a sub corpus of the
British National Corpus (Albert, Ruiter, and Ruiter, 2015). It contains 1436 conversations
with a total of 4.2 million words. There is a wide range in the number of utterances within
the CABNC dialogues, in many cases hundreds or thousands of utterances. In order to, as
much as possible, maintain a similar number of utterances across all dialogues and dialogue
sets, and due to time constraints, those used for this study were randomly selected from
dialogues with less than 10 utterances.

SCoSE The Saarbrucken Corpus of Spoken English consists of 14 transcribed dialogues
of general talk on a range of topics between two or more participants (Norrick, 2004). As
with the CABNC corpus, due to the large number of utterances, and time constraints,
those chosen for this study were the 5 dialogues with the fewest utterances. In our set, the
mammoth, clone, and accident dialogues take place between up to three undergraduate
students sharing an apartment, while hunter, and tipsy take place between Helen and her
three adult daughters before a late-afternoon Thanksgiving dinner.

55



4.2. CAMS Evaluation

4.2.2 Participant Selection

The study participants comprised of 15 undergraduate students from the 1st year of an
English Language and Linguistics course. For 5 weeks prior to the study the participants
received instruction on CA and AP as part of their linguistics syllabus. However, we also
wanted to assess how intuitive the schema is to apply with only minimal prior knowledge.
Given its purpose is for computational dialogue modelling, CAMS should ideally be usable
by as wide a range of people as possible. For example, Conversation Analysts, Computer
Scientists, Computational Linguists, and other NLP practitioners, who either already have
some familiarity with CA and AP, or who simply intend to follow the annotation guidelines
and label definitions. This is particularly important when considering the application of
the schema for further annotation tasks, such as creating large datasets for training and
evaluating deep-learning NLP models. Therefore, our participants were not provided any
specific instruction regarding CAMS and did not receive any training in its application.
As such, participants could reasonably be considered novice annotators, in that, they had
some prior knowledge of CA theory but no previous experience in annotation or applying
CAMS. The selection of Linguistics students as annotators was largely for pragmatic
reasons:

1. While DA labels could be considered somewhat intuitive, even for novice annotators,
AP require some level of previous CA knowledge. Therefore, conducting a large-
scale crowed-sourced annotation experiment, where we cannot guarantee any prior
understanding of CA concepts, would be inappropriate.

2. Even though expert annotators are more likely to produce high agreement (Nowak
and Rüger, 2010; Geertzen, Petukhova, and Bunt, 2008; Snow et al., 2008), the
number of available expert annotators is limited. Further, both Krippendorff (2004),
and Carletta (1996), argue that, for discourse and dialogue annotation schemes there
are no real experts, and that what counts is how totally näıve annotators manage
based on written instructions. While using näıve annotators is not appropriate here,
the use of non-expert annotators should still provide some insight into the clarity of
the CAMS label definitions and annotation guidelines.

3. Bayerl and Paul (2011), suggest using annotators with the same level of domain
expertise. Using participants from the same student cohort, with a similar level of
experience, should therefore reduce external factors which may influence the inter-
pretation of the schema definitions and guidelines.

4.2.3 Inter-annotator Agreement

IAA measures can be used as a means of assessing the reproducibility of a coding scheme or
determining the reliability of a produced ‘gold standard’ labelled dataset. Given that the
focus of this study is the labelling schema itself, the purpose of measuring IAA refers to the
former. That is, determining if the schema is inherently learnable, that the labels applied
to utterances are not entirely dependent on the biases of an individual annotator, and that
there is a common understanding of the meaning of labels and the utterances to which
they are applicable (Craggs and Wood, 2005). The following provides a brief overview
of our selection of IAA coefficients and evaluation criteria. Appendix B contains full
definitions of all IAA coefficients discussed here, further discussion of coefficients selection
and evaluation criteria, and formulations of our weighted agreement distance functions for
DA, AP, and AP-types.
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4.2.3.1 Coefficient Selection

Within the literature chance-corrected coefficients, which account for the probability that
annotators select the same label by chance, such as Cohen’s Kappa (Cohen, 1960), or
Scott’s Pi (Scott, 1955), are the preferable measures of IAA (Craggs and Wood, 2005; Di
Eugenio, 2000; Carletta, 1996). However, for some annotation tasks it does not make sense
to treat all disagreements equally. For example, the DA choiceQuestion and checkQuestion
are semantically more similar than request and accept. Both Pi and Kappa are limited in
such circumstances because they only consider identical labels for agreement. A solution to
this problem is the use of weighted agreement coefficients, which consider the magnitude
of disagreement between assigned labels. Weighted coefficients use a distance function
(for the distance functions used within this study see B.2), which returns a value in the
range [0, 1] representing the similarity between an arbitrary pair of labels. 0 indicates the
two labels are identical and 1 indicates they are completely dissimilar. This value is then
used to weight pairs of assigned labels, penalising those that are more dissimilar. Cohen
(1968), proposed a weighted variation of Kappa for two annotators. More frequently used
however, and more appropriate for this study, is Alpha (Krippendorff, 2004), and the Beta
statistic, proposed by Artstein and Poesio (2005b).

Both Alpha and Beta are calculated from the observed and expected disagreements,
rather than the agreement of Kappa and Pi. The ratio of observed (Do) and expected
(De) disagreement is subtracted from 1 to produce the final agreement value:

α, β = 1− Do

De
(4.1)

Where Alpha and Beta differ, is in their estimations of the distribution of assigned labels
for an annotator operating only by chance, that is, how De is estimated. When calculating
De, Alpha estimates disagreement on the basis that each annotator assigns labels with the
same distribution and therefore considered an unbiased coefficient, whereas Beta is biased,
in that it calculates De from the observed distribution of individual annotators.

With respect to CAMS, the DA within the schema can be grouped into semantically
similar communicative functions (Bunt, 2011), such as, information seeking and informa-
tion providing. Further, some utterances can be thought of as multidimensional (Bunt,
2006), that is, they could be assigned two equally valid DA labels (or arguably both). A
similar semantic grouping is also true for AP, where, for example, FPP-insert and SPP-
insert are more closely related to an insert-expansion than AP from the Pre and Post
groups. It seems reasonable to treat assignments that belong to different expansion types
more seriously than those from the same group. As with DA, there is also an element
of subjective interpretation involved when assigning AP labels. For example, identifying
which utterances represent the ‘core action’ for a given sub-sequence of dialogue, and
therefore should be assigned base-type labels, and those that should be considered expan-
sions. The above, and the use of weighted agreement for DA annotation by (Geertzen and
Bunt, 2006), indicates the use of weighted agreement measures, such as Alpha and Beta,
are the appropriate choice for DA and AP annotation because the labels are not equally
distinct from each other.

What is less clear, however, is the choice between these two coefficients. There has
been much debate on this matter, largely concerning the so called ‘bias problem’ dis-
cussed by Krippendorff (2004) and others (Di Eugenio and Glass, 2004; Byrt, Bishop, and
Carlin, 1993; Zwick, 1988). Though biased measures, such as Kappa and Beta, estimate
expected agreement on the basis of individual annotator label distributions, they fail to
account for unequal distributions between annotators, and effectively discount some of the
disagreement resulting from different annotator distributions. Thus, for a fixed observed
agreement, when annotators produce unequal distributions for the available categories –
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when bias is present – the values of biased coefficients will exceed those of non-biased
coefficients. However, Artstein and Poesio (2005b) point out that in practice the differ-
ence between biased and non-biased measures often doesn’t amount to much, and that
bias is a source of disagreement in its own right. Further, as stated by Di Eugenio and
Glass (2004), the biased and non-biased paradigms reflect distinct conceptualisations of
the problem, and in agreement with Artstein and Poesio (2008), the choice should depend
on the desired interpretation of chance agreement. Yet, Di Eugenio and Glass (2004), also
believed a bias coefficient is more appropriate for discourse and DA tagging, because it is
questionable to assume equal annotator distributions for discourse and dialogue, and in-
stead suggested reporting bias and unbiased coefficients together. Here a similar approach
is taken, and both Alpha and Beta will be reported.

4.2.3.2 Coefficient Evaluation

Unfortunately, the question of what constitutes reliable agreement when interpreting
agreement coefficients seems to be an unanswered question. The principal approach is
based on a range of values proposed by Landis and Koch (1977), where below zero is con-
sidered ‘Poor’ agreement, and values between 0 and 1 are separated into five ranges: Slight
(.0 - .2), Fair (.21 - .4), Moderate (.41 - .6), Substantial (.61 - .8), and Perfect (>.81). In
Computational Linguistics, it is generally accepted that values of > 0.8 can be considered
‘good reliability’, and values in the range [.67, .8] allow for ‘tentative conclusions to be
drawn’ (Krippendorff, 2004; Carletta, 1996). Though it is acknowledged that, as with the
Landis and Koch (1977) values, because of diversity in both the phenomena being anno-
tated and the applications of results, these ranges are not suitable in all cases (Craggs
and Wood, 2005; Di Eugenio and Glass, 2004; Krippendorff, 2004; Carletta, 1996). This
is especially true for annotation tasks such as this, where there is a degree of subjectivity
in choosing an appropriate label, where some prior subject-specific knowledge is required,
and notably for AP, prefect agreement will generally require annotators to agree on two
(or more) labels, rather than one for DA. Indeed, it has been shown that achieving even
the minimum 0.67 value is extremely difficult for discourse annotation (Poesio and Vieira,
1998; Hearst, 1997). Furthermore, in the presence of bias, a biased coefficient will always
be larger than a non-biased one, and for this reason Geiß (2021) suggests that applying the
same range of values is not appropriate, because they warrant different interpretations.
Unfortunately, to the best of our knowledge no alternative scale for interpreting biased
coefficients has been proposed. We therefore choose to evaluate both coefficients, Alpha
and Beta, with respect to the ranges typically adopted throughout the literature; with
the caveat that, for Beta it is necessary to be cautious when drawing conclusions if there
is a significant difference between the two coefficients. In agreement with Artstein and
Poesio, 2008; Craggs and Wood, 2005, choosing an agreement threshold should not be
the sole measure upon which an annotation schema, or labelled corpus, should be consid-
ered reliable, and instead, the methodology for calculating reliability should be thoroughly
communicated, so that conclusions can be drawn based on the characteristics and motiva-
tions of the particular study. The following annotation methodology considerations were
suggested by Krippendorff (2004, ch. 11), and reiterated by (Artstein, 2018):

1. Annotators must work independently, so agreements come from a shared under-
standing not through discussion.

2. Annotators should come from a well-defined population, so that researchers are aware
of previous knowledge or assumptions they bring to the annotation process.

3. Annotation instructions should be exhaustively formulated, clear and contain step-
by-step instructions on how to use it.
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4.2.4 Timing and Rating Measures

The annotation tool collected additional utterance annotation timing and label confidence
data for each annotator. The purpose is to augment the comparison between task-oriented
and non-task-oriented dialogues, and the different label types within the schema, that
would not be possible with agreement coefficient data alone. It also provides additional
insight into the participants annotation behaviour, such as a change in confidence, or the
amount of time spent selecting labels, which may indicate how well annotators are able to
learn and internalise the annotation scheme.

4.2.4.1 Annotation Timing

The annotation software allows users to select an utterance of dialogue, which is then
highlighted to signal it is the ‘target’ for annotation. With an utterance selected, the
user chooses a single DA and AP label to assign by clicking on their respective buttons.
An utterance is considered labelled when it has been assigned one of each label type. At
which point the software automatically selects the next unlabelled, or partially labelled,
utterance. The time taken to annotate an utterance is measured as the total time the
utterance is selected and unlabelled. This time is cumulative, so if a previously assigned
label is removed, so that a different label can be selected, or it is unselected and re-selected
later, any further annotation time is added to the previous total.

4.2.4.2 Annotation Confidence

Once a dialogue is fully labelled users are presented with a questionnaire screen. Here,
they are asked to rate how well their assigned labels fit the dialogue in question. Ratings
are provided by means of a Likert Scale between 1 (not at all) and 7 (perfectly). There
are 3 questions, one for each label type; and the prompts emphasise the purpose of these
label types. For example, how well the DA describe the communicative meaning of the
utterances, AP the structure, and for AP-types, how well they combine to convey both
structure and meaning. Since users must label every utterance, they are also given the
option to highlight any cases where they felt certain labels did not adequately describe
the utterance, or selection of utterances.

4.2.5 Results and Discussion

In this section the results of the annotation procedure are presented and some of the
observations that arise are discussed. We begin with the IAA measures, firstly for each set
of dialogue, before examining agreement for task and non-task-oriented dialogues, and each
corpus. We then report the results for annotator confidence and timing data respectively.

4.2.5.1 Inter-annotator Agreement

IAA was calculated for the Alpha and Beta coefficients from the recorded annotations for
each dialogue set. Figure 4.2 shows agreement values for each label type (DA, AP, and
AP-type), and the overall mean agreement for each coefficient.
Figure 4.2 and subsequent statistical analysis shows that:

• According to the Landis and Koch (1977), scale we find that agreement for the Beta
metric is ‘substantial’ for DA (.74) and AP-types (.67), and ‘moderate’ (.6) for AP
alone. Using the range [.67, .8], (Krippendorff, 2004; Carletta, 1996), we find that
only DA and AP-type labels are able to reach this threshold for the Beta coefficient.
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Figure 4.2: Alpha and Beta IAA values for each dialogue set.

• The Alpha metric produces the same pattern, but with lower values of agreement.
DA agreement is ‘moderate’ (.47), while AP are ‘slight’ (.18), and AP-types ‘fair’
(.33). Comparing Alpha and Beta values, for each label type, show these are all
significantly different (p < .001, d > 1). Possible reasons for this are explored further
in appendix C.

• ANOVA over the label types (DA, AP, and AP-type) for each metric showed large
effect sizes (ω2 = .186 and ω2 = .179 for Alpha and Beta respectively). Post-hoc
analysis, reveals that this arose almost wholly from the AP:DA difference (p < .001)
for both metrics.

Overall, we see a considerable difference between the values of Alpha and Beta. Though
it is less pronounced for DA labels, with a mean difference of 0.27, than it is for AP,
and AP-types, which differ by 0.42 and 0.34 respectively. These differences indicate that
annotators had very different proclivities when assigning labels, and this bias has increased
the values of Beta with respect to Alpha. In the case of AP this increase amounts to two
full thresholds on the Landis and Koch (1977) scale, from ‘slight’ to ‘moderate’, and we
therefore recommend that this is considered before drawing any conclusions of reliability
from the Beta agreement values alone. However, that this difference is less for DA, and
greater for AP, suggest that individual annotator distributions were more similar when
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assigning DA labels and less similar for AP labels. In other words, we see a higher degree
of idiosyncratic interpretation between the annotators when selecting AP labels, and this
is reflected in the difference between the two coefficients. This observation is discussed
further in 4.2.5.4 and appendix C.

4.2.5.2 Task-oriented and Non-task-oriented Dialogues

A primary focus of this study is to investigate the extent to which the schema can be
applied to different types of dialogue. Annotated dialogues were therefore split into their
respective task and non-task-oriented groups, and again agreement was calculated using
Alpha and Beta for each label type. Figure 4.3 shows the resulting agreement values for
each dialogue group, and the practice dialogue:

Figure 4.3: Alpha and Beta Agreement values for task and non-task
dialogues.

• On the practice dialogue, the Beta metric reports ‘perfect’ agreement for all three
groups of labels on the Landis and Koch (1977) scale (Beta > .95).

• For the Alpha metric, agreement on the practice dialogue is again ‘perfect’ for DA
(.84), and high for the AP-types (.59) but lower for just the AP labels (.37).
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Table 4.3: Label assignments by users 5 and 10 for a task (KVRET) and non-task
(CABNC) dialogue.

CABNC (KBERE00G) User-5 User-10

A1: Can you turn that radio off I want to listen to the phone in. FPP-base propQuestion FPP-pre request

B1: I got the whatsname on. SPP-base decline FPP-insert inform

A2: What What. FPP-post stalling SPP-insert feedbackNeg

B2: The whatsname Don’t ask me I du n no what it’s called. SPP-post confirm SPP-base answer

A3: What do you want that on for I’m trying to listen to the
radio I want to listen to the phone in.

FPP-post feedbackNeg Insert disagreement

KVRET (Test 102) User-5 User-10

C1: Can you find out the date and parties attending my dinner? FPP-base setQuestion FPP-pre propQuestion

D1: Your dinner is on Tuesday with your sister. SPP-base answer SPP-base inform

C2: Thanks. FPP-post thanking FPP-post thanking

D2: you’re welcome SPP-post acceptThanking SPP-post acceptThanking

• These practice results are consistently higher than the main results, possibly because
there are more annotators, and (as will be seen later) due to the nature of the
KVRET corpus.

• Agreement was consistently higher for task-oriented dialogues for all label types, and
both coefficients. Overall these differences are statistically significant (p < .001, d >
1) for both Alpha and Beta. Only when looking at just the AP labels, is the task vs.
non-task distinction not statistically significant (p = .07, d = .86 and p = .56, d = .9
for Alpha and Beta respectively).

Again, overall, the differences between the two coefficients is high in most cases, and
consequently we advise caution when interpreting the Beta values with respect to typical
agreement thresholds. However, it is worth noting that for DA labels the difference on
the task-oriented dialogues (0.19), and the practice dialogue (0.15), is much smaller than
previously observed. Therefore, we can conclude that, not only is agreement higher, but
individual annotator distributions were more similar.

To examine the difference between the task-oriented and non-task-oriented groups fur-
ther, table 4.3 shows the assignments produced by two annotators, users 10 and 5, for
a task (KVRET) and non-task (CABNC) dialogue. We selected users 10 and 5 for this
analysis because both exhibit a competent understanding of CAMS and its application.
Yet as we will see, their differing interpretations of the CABNC dialogue led to negative
agreement values. On the other hand, for the KVRET dialogue they reached near perfect
agreement. Thus, this pairing provides clear insight into the properties of task-oriented
and non-task-oriented dialogues that contribute to the observed differences in agreement
between these groups, even between annotators who demonstrate a similar understanding
of the annotation scheme. Additionally, both annotators made some small errors in assign-
ing AP or DA. We highlight these assignments here and explore some of these observations
further in section 4.2.5.4.

Firstly, we can see both annotators assign an invalid AP label to utterance A3; user-5
begins a FPP-post without a closing SPP, and user-10 places an insert label outside of a
FPP/SPP base pair. User-10 also incorrectly begins a FPP-pre (A1) and closes with a
SPP-base (B2), a pattern that is repeated in the KVRET dialogue. There are also some
minor misuses of DA. In particular, user-5 assigns ‘stalling’ to (A2), which represents a
speakers need for a little extra time to construct their contribution, for example, “Let
me see...” or “Umm...”. Given the nature of the following utterances, a question-type
DA, or user-10’s assignment of negative feedback, is more appropriate. However, the
assignment of negative feedback for A3 is certainly incorrect, as this DA represents the
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speakers mishearing, or misunderstanding, of the previous utterance; a conclusion that is
not borne out by its content.

Regarding AP, the main source of disagreement with the CABNC dialogue is what
constitutes the core action or communicative goal, and thus should be assigned as base-
type AP, and what utterances contribute to, or support, this action, and should therefore
be expansions. Both correctly identify the core action as a request to turn the radio off
in A1. However, user-5 considers this action complete with the refusal to do so in B1,
and the following two utterances are merely clarifying the meaning of “whatsname”. On
the other hand, user-10 considers that the response in B1 was a mishearing, or misunder-
standing, by A and that this requires the insert pair before the action is completed in B2.
Clearly these two interpretations led to significant disagreement between the two annota-
tors and is largely driven by the ambiguity of certain utterances within the transcription,
particularly A2. If A2 were instead “the what?”, or “who?”, then user-5’s interpretation
is preferred, or alternatively, “sorry what?”, might suggest user-10’s understanding was
correct. Unfortunately, “what what” lends itself to both these possibilities and hence the
alternative interpretations. This is also reflected in the negative agreement scores between
these two annotators, with an Alpha of -.1, and a Beta of -.05. For the KVRET dialogue
there is no such ambiguity in which utterances make up the core action, and this resulted
in ‘perfect’, or near perfect, agreement of .8 and .77 for Alpha and Beta respectively.

For DA we again see considerable disagreement for the CABNC dialogue, and this is
largely driven by the alternative interpretations previously discussed. Of note, however, is
the assignments of a ‘propositional question’ and a ‘request’ for utterance A1. Even though
it is posed as a question, this statement is an indirect way of requesting that the radio be
turned off, and therefore user-10’s assignment is more suitable (Bunt, 2017). Yet, it is easy
to see how a propositional question, which suggests a positive (accept) or negative (decline)
answer, is a reasonable alternative interpretation. Interestingly, despite the similar form of
utterances A1 and C1, neither annotator assigned the same DA label. These dialogues were
not presented in the order shown here, but this does indicate a change, or inconsistency, in
interpretation; perhaps influenced by the presence of an interrogation mark in C1 which
implies a question-type DA is appropriate. For the CABNC dialogue we again see negative
agreement, -.03 and -.06, and for the KVRET dialogue substantial agreement of .79 and
.76 for Alpha and Beta respectively.

From these results we can see that, while there is some incorrect usage of both AP
and DA, the main source of disagreement stems from difficulties interpreting the non-
task-oriented dialogue. The two alternative views discussed above suggest two different
sets of AP assignments, depending on where one considers the core action to have been
completed, and this is largely driven by the ambiguity of utterance A2 observed above.
Macagno and Bigi (2018), referred to this phenomenon as ‘imaginary ambiguity’, that is,
a particular utterance can have multiple distinct interpretations for the intended effect
on the recipient depending on the context. In this case, A2 is interpreted differently de-
pending on the reading of B1 as a refusal, or misunderstanding. This kind of meaning
multiplicity (Boxman-Shabtai, 2020) may arise, at least in part, from the nature of tran-
scribed material of natural conversations, where social cues, such as prosody, intonation,
and body language, are lost. Indeed, Collins, Leonard-Clarke, and O’Mahoney (2019),
were able to show that disfluencies in speech can have very different meanings when pre-
sented in spoken and written form, and we surmise that this is also true of illocutionary
ambiguous utterances. As noted by Green, Franquiz, and Dixon (1997), “a transcript is a
text that ‘re’-presents an event; not the event itself ”, thus information is inevitably lost.
In any case, these differing interpretations are a clear example of bias on the part of indi-
vidual annotators, and have therefore contributed to the inflation of the Beta coefficient,
and its divergence from Alpha. On the other hand, for the task-oriented dialogue there is
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a clear delineation between the core action and the remaining ‘thanking’ utterances. This
concurs with the work of Grosz (2018), who established that task-oriented dialogues are
structured, with multiple utterances grouping into a dialogue segment, and their structure
mirrors the structure of the task. This characteristic simplifies the identification of AP
and we therefore see much higher agreement and lower bias.

4.2.5.3 Corpora Dialogues

An additional factor which may contribute to the observed difference in agreement be-
tween the task and non-task dialogue groups is the number of utterances in each dialogue.
Dialogues in the SCoSE corpus contain an average of 23.6 utterances, around half of the
total number of utterances in each dialogue set, and may therefore be contributing a dis-
proportionate amount of agreement (or disagreement) to the overall values. Hence Figure
4.4 breaks the comparison into different corpora. A further ANOVA and post-hoc analysis
of agreement between pairs of corpora, was performed for each label type and coefficient:

Figure 4.4: Alpha and Beta Agreement values for each corpus.

• The post-hoc analysis reveals that there is no significant difference in agreements
(p = .9) between the two non-task-oriented corpora, CABNC and SCoSE, for both
Alpha and Beta coefficients, despite a mean utterance length of 5.6 and 23.6 respec-
tively. This is also the case when comparing the bAbI corpus (mean utterance length
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5.8) and the non-task-oriented corpora. Therefore, it is unlikely that the number
of utterances is contributing to the observed differences in agreement between the
groups.

• Predominantly, the statistically significant results are for DA and AP-type labels
between KVRET and the other corpora. This indicates that the difference in agree-
ment values are a product of higher agreement for the KVRET corpus, rather than
a difference between the groups. Certainly, agreement is higher on the KVRET
corpus, for all label types and both agreement coefficients.

• These results also provide some insight into the previous observation, that there is
no significant difference in agreement for AP labels between the groups. Only the
KVRET and SCoSE comparison for the Alpha metric produced a significant result
(p = .028) and in all other cases we still see no statistical difference for AP labels.

These results show that, once more, there is a large difference between Alpha and Beta,
and this is greater for AP than DA, hence a larger degree of idiosyncratic interpretation
between the annotators. However, in accordance with the previous remarks, this bias is
lower for the KVRET corpus than it is for the other three. Thus, while agreement for DA
is higher for both task-oriented corpora, for AP we see no difference in agreement between
the bAbI corpus and the two non-task-oriented corpora.

4.2.5.4 AP Label Agreement

As previously observed, there appears to be no significant difference in agreement for AP
labels between the task and non-task dialogue groups, and further, that much of this
is caused by the negligible difference between the bAbI, CABNC and SCoSE corpora.
Manual inspection of the annotations revealed that a considerable amount of confusion
seemed to arise around the valid use of FPP and SPP for AP. Often annotators would
assign a SPP to initiate a sequence (rather than a FPP), or fail to create a valid sequence
entirely, for example, by assigning a FPP without an accompanying SPP. This observation
was explored further using an adjusted AP distance function, which ignores the AP prefix
(FPP/SPP), and instead only considers the difference between the AP base or expansion
types (pre, post, and insert). The ‘suffix-only’ distance function treats all labels as equally
distinct, with a distance of 1 for non-identical labels, and 0 otherwise. For example, two
insert type labels (FPP-insert, SPP-insert or insert) would have a distance of 0 between
them, but a distance of 1 with all other AP label types. Therefore, the suffix-only distance
function should indicate the extent to which annotators misunderstanding of the valid use
of FPP and SPP labels contributed to the observed AP agreement values. Figure 4.5 shows
the agreement values that were recalculated for using the suffix-only distance function.

• Using the suffix-only distance function both task-oriented corpora show improved
agreement for AP labels, with a minimal improvement for the KVRET corpus but
a considerable improvement for bAbI. For Alpha the bAbI agreement doubled from
.12 to .24, and Beta shows an increase from .57 to .62.

• Both non-task-oriented corpora show a decrease in AP agreement, though, again the
effect is greater for the Alpha coefficient, with a decrease of .05 and .07 for SCoSE
and CABNC respectively, compared to .01 and .04 for Beta.

• Post-hoc analysis reveals there is now no longer a significant difference in AP-type
labels when comparing the KVRET and bAbI corpora (p = .181 and p = .193, for
Alpha and Beta respectively).
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Figure 4.5: Corpora agreement values calculated with the suffix-only AP
distance function.

This indicates that, when annotators misunderstanding of the valid use of FPP and
SPP is not considered, they tend to more often agree on the base and expansion types of AP
labels for task-oriented dialogues. Whereas, for non-task-oriented dialogues the opposite
is true, with a decrease in agreement that suggests annotators rarely agree on the AP base
or expansion types. Perhaps unsurprisingly, this suggests that the structure of non-task-
oriented dialogues is less well defined, and open to more subjective interpretation, than
that of task-oriented dialogues. It may also offer explanation for the lack of significant
difference in AP agreement, and high bias, that was previously observed. Using a two-
sided t-test to compare the suffix-only agreement scores for AP labels between the task
and non-task groups now results in a statistically significant difference for Alpha and
Beta (p = .0028, d > 1 and p = .0089, d > 1, respectively). Therefore, the incorrect
usage of FPP and SPP was reducing agreement for task-oriented dialogues, while for non-
task dialogues increasing agreement, and ‘evening out’ AP agreement values between the
groups. These results also suggest that using non-expert annotators may not be suitable
for this task, as many seem to lack a clear understanding of the proper use of AP, or
alternatively, more training beforehand may help to improve understanding in this regard.
It is also possible that some of the confusion was caused by the similarity between FPP
and SPP, with only one-character difference between the two labels.
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4.2.5.5 Expert Annotators

As we have shown, our novice annotators individual interpretations, and misunderstanding
of the correct usage of AP, have led to overall lower agreement for AP when compared to
DA. Additionally, difficulties identifying the core action of the non-task-oriented dialogues
have contributed to lower agreement scores for those dialogues. For these reasons, here
we briefly compare the IAA between two ‘expert annotators’, the author and a linguistics
lecturer. Agreement was calculated for a single set of dialogues, with results shown in
figure 4.6.

Figure 4.6: IAA scores between two expert annotators for the dialogues
in set 1.

• Regarding the observed difference between task and non-task-oriented dialogues we
can see the same general pattern. Agreement is higher for the task-oriented dia-
logues, with both KVRET dialogues (test 28 and practice) reaching ‘perfect’ agree-
ment for all label types, and bAbI (task 1 test 290 ) reaching ‘moderate’ for AP and
AP-types, to ‘substantial’ for DA. For non-task dialogues, SCoSE (jason-mammoth)
reaches only ‘slight’ to ‘fair’ agreement, while CABNC shows ‘moderate’ agreement
for all label types.

• Most importantly, we see very small differences between the scores for Alpha and
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Beta, typically 0.1 to 0.5 at most. This indicates that the label distributions, and
interpretations, of both annotators was very similar, hence bias is lower and the two
coefficient scores start to converge.

• In comparison to previous results we also see smaller differences between DA and
AP, particularly for Alpha. This shows that, unsurprisingly, the expert annotators
more appropriately applied the AP labels, and avoided the misunderstanding and
incorrect usage of our novice annotators.

These results confirm that the schema is indeed more easily applied to task-oriented
dialogues. That expert annotators more correctly applied the AP labels, and produced
more similar distributions, is unsurprising. However, it does confirm the difficulties en-
countered by our novice annotators, and the impact on agreement discussed above. En-
couragingly, the agreement for all labels types and both coefficients was extremely high for
both KVRET dialogues, which indicates it is a viable corpus for our purpose of annotating
with CAMS.

4.2.5.6 Annotation Confidence Scores

Analysis of participants confidence scores supports some of the observations from the
previous sections. Overall, annotators reported a higher confidence in their assigned labels
for task-oriented dialogues than for non-task-oriented dialogues (table 4.4), which coincides
with the higher agreement for task-oriented dialogues observed in our previous results.
Notably, although the mean confidence between labelling tasks differed, the standard
deviation of confidences range between 0.64 and 1.31, in other words, less than two Likert
scale points. The difference in confidence between task and non-task was significant overall
(p < .001) for the AP-type labels and both AP, and DA.3

Table 4.4: Mean and standard deviation of confidence scores by label type, corpus, and
dialogue type.

KVRET bAbI Task SCoSE CABNC Non-task

Type µ σ µ σ µ σ µ σ µ σ µ σ

DA 5.06 1.03 4.53 0.99 4.8 1.03 4 1.31 4.13 0.64 4.07 1.01

AP 5.27 1.09 4.13 0.99 4.7 1.18 3.93 1.16 4 0.85 3.97 0.99

AP-Type 4.87 0.99 4.53 0.96 4.7 0.95 3.67 0.98 3.8 0.68 3.73 0.83

Overall 5.07 1.03 4.4 0.96 4.73 1.05 3.87 1.14 3.98 0.72 3.92 0.95

If we again examine confidence scores with respect to each corpus, we also see a result
similar to that for agreement values. That is, confidence is highest for the KVRET corpus
and lowest for SCoSE, with the other task-oriented corpus being marginally higher than
CABNC in most cases (figure 4.7). For each label type, an ANOVA over confidence scores
per-corpora concur with those of agreement. Overall results are significant (p ≤ .027),
and effect size is large for AP and AP-types (ω2 > .14), and medium for DA (ω2 = .1).4

Post-hoc analysis shows the only place we see significant differences is between KVRET
and the other corpora, particularly with AP. Similarly, the difference between the two non-
task-oriented corpora and bAbI is statistically non-significant in all cases. This indicates
that, as with agreement, the division is not necessarily between task and non-task-oriented
dialogues, but primarily between KVRET and the other three corpora.

3Due to the small sample size of confidence scores (one score per-label) the resulting statistical power
for AP and DA is .72, and .77 respectively.

4The resulting statistical power for DA is .72.
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Figure 4.7: Reported annotator confidence scores for each dialogue and
label type.

These results show that there is a remarkable similarity between the annotators re-
ported confidence scores and the resulting agreement values. When considered from the
perspectives of task and non-task-oriented dialogues, individual corpora, and different la-
bel types, where higher confidence was reported, agreement was also higher. Annotators
were therefore quite good at assessing how well their assigned labels fit the data, report-
ing higher confidence for dialogues where appropriate labels, or dialogue structure, was
more intuitive, and lower confidence on the less structured dialogue types. This also sug-
gests that incorporating confidence scores could be a valuable resource assessing labelling
accuracy. Kazai (2011), showed that annotators who rated the task easier also had a
higher accuracy. While Oyama et al. (2013), used self-reported confidence scores, along
with their assigned labels, to estimate the ‘true’ labels using the expectation-maximization
(EM) algorithm.

4.2.5.7 Annotation Time

The time participants took to completely annotate each utterance was also recorded.
Because participants likely spent some time reading utterances and considering labels
at the beginning of each dialogue, here all reported times are the average time taken,
in seconds, to annotate an utterance for that dialogue. Unlike agreement values and
confidence scores, utterance times reveal that there is little difference between task and
non-task-oriented dialogues, or the different corpora, as shown in table 4.5. Therefore,
despite reporting lower confidence for non-task-oriented dialogues, and the SCoSE corpus
also containing around 4 times as many utterances, this did not seem to affect the average
amount of time spent annotating those dialogues.

If we instead look at the average utterance time in the order dialogues were annotated,
regardless of the specific dialogue, we see that annotation habits do indeed change over
time. Figure 4.8 and table 4.6 show that, for all participants, annotation time became
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Table 4.5: Mean and standard deviation of utterance annotation time
(seconds) per corpus and dialogue type.

KVRET bAbI Task SCoSE CABNC Non-task

µ 24.62 33.57 29.09 25.56 36.69 31.13

σ 8.94 19.05 15.31 11.09 24.16 19.36

faster as they progressed through the task, starting with an average of 77.89 seconds for
the practice dialogue and ending with 19.81 seconds by dialogue 4. And further, that the
variance between participants times also grew smaller over time, moving from a standard
deviation of 27.52 on the practice dialogue, to just 6.03 on dialogue 4. These results
seem to show a clear learning-effect, which echoes the results of Aulamo, Creutz, and
Sjöblom (2019), where participants start with slow annotation speed, then, after a period
of familiarisation with the task, speed is increased and maintained for the remaining time.
It may also be valuable to determine if there is a similar change in agreement over time,
as annotators became more familiar with the schema and tool. Unfortunately, because
all but the practice dialogue were shown in a random order for each participant, it is not
possible to show that data and it will be left for future work. However, given that the
practice dialogue also resulted in the highest agreement values, we suspect that this may
not have a significant impact on agreement.

Table 4.6: Min, max, mean, and standard deviation of annotators mean
utterance annotation time (seconds) in the order dialogues were com-
pleted.

Dialogue Practice 1 2 3 4

Min 37.75 21.02 10.55 9.9 10.71

Max 117.87 89.06 95.76 46.17 30.20

µ 77.89 43.85 37.42 23.62 19.81

σ 27.52 20.48 24.85 11.08 6.03

4.2.5.8 CAMS Evaluation Summary

Our findings indicate that inter-annotator agreement is significantly higher for the biased
Beta coefficient, than that of unbiased Alpha, and this is principally caused by the dif-
ferences in annotator label distributions increasing the Beta values. We therefore advise
caution when comparing the two coefficients using the standard scales of interpretation
(Geiß, 2021), particularly when biased measures diverge from unbiased ones. Neverthe-
less, if we assess agreement values of each dialogue set, using the somewhat arbitrary scale
of Landis and Koch (1977), we find that for Beta DA and AP-type agreement can be
considered ‘substantial’, while AP fall into the ‘moderate’ agreement category. However,
agreement for the Alpha coefficient is less convincing. DA show a ‘moderate’ level of
agreement, while AP and AP-types only achieve ‘slight’ and ‘fair’ respectively. If we use
the more stringent range [.67, .8], often used in Computational Linguistics to allow for
‘tentative conclusions to be drawn’ (Krippendorff, 2004; Carletta, 1996), we find that only
DA and AP-type labels are able to reach this threshold for the Beta coefficient. These
results seem to concur with Poesio and Vieira (1998), and Hearst (1997), that reaching
the .67 threshold is difficult for discourse annotation tasks. Indeed, Pareti and Lando
(2019) showed that for a similar ‘dialogue act linking’ task even expert annotators mis-
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Figure 4.8: Distribution of annotators mean utterance annotation time
(seconds) in the order dialogues were completed.

understood the guidelines, resulting in poor F1 scores. In this case, it may be due to our
use of non-expert annotators, who have been shown to misunderstand the proper use of
AP, and therefore more intense training should be provided, or expert annotators used. It
may also be due to differences in individual annotator interpretations of the dialogues and
appropriate AP labels. However, our participants agreement values can be considered an
indication of moderate reliability.

Regarding task-oriented and non-task-oriented dialogues, both annotator agreement
and self-reported annotator confidence scores are higher for task-oriented dialogues than
non-task. However, when considered from the perspective of the individual corpora this
distinction is not as clear. With the (task-oriented) KVRET corpus resulting in higher
agreement and confidence scores than the other 3. We therefore conclude that, while
CAMS is indeed applicable to both task and non-task-oriented dialogues, our results show
that it is more intuitively applied to task-oriented dialogues. The determining factor,
however, is not the division between task and non-task, but rather the content of the
dialogue itself.

Notably, we observed that utterances where the DA label is ambiguous, or multidi-
mensional, can lead to different interpretations of the dialogue and result in a high number
of disagreements for both DA and AP. Regarding the constituent label types within the
schema, we found that DA labels consistently resulted in higher agreement and confidence
scores than AP. This is perhaps not surprising, given that DA labels need only apply to one
utterance at a time and generally use more intuitive names. AP on the other hand, require
more specialised knowledge, and annotators must also consider relationships between ut-
terances in order to apply them correctly. We found that many annotators misunderstood,
and incorrectly applied the FPP and SPP labels, potentially caused by the similarity be-
tween the two. Perhaps changing the labels to, for example, ‘first-part’ and ‘second-part’,
would help mitigate the problem of assigning these in the wrong order.

71



4.3. CAMS-KVRET Annotation

We confirmed the above observations by measuring the agreement of two expert anno-
tators for a single set of dialogue. Expert agreement was consistently higher in all cases,
reaching ‘perfect’ agreement for the KVRET dialogues, and indicated lower bias and re-
duced the disparity between DA and AP, with only small differences between Alpha and
Beta. Therefore, if labelling accuracy is required for the creation of an annotated corpus,
this task may be better suited to experts, or novice annotators who have received more
training than ours. In order to produce accurate agreement scores the annotation tool
intentionally placed no restrictions on label assignments; In future iterations this could
be altered, to prevent, for example, the invalid creation of a new AP before a prior pair
is completed. However, measuring the average time taken to annotate each utterance
shows a clear pattern of learning, with annotation time decreasing for all annotators the
longer they spent on the task. This indicates that the schema is inherently learnable and
becomes more intuitive to apply with practice. Promisingly, both novice and expert anno-
tators consistently produced high agreement scores for the task-oriented KVRET corpus,
indicating that it is well suited to our purposes.

4.3 CAMS-KVRET Annotation

In this section we provide details of the annotation process that was used to develop CAMS-
KVRET, a task-oriented corpus annotated with our CAMS, and intended to facilitate the
development of an automatic method of identifying the CA structure of dialogue (O2). As
discussed in section 3.1.3, CAMS-KVRET is derived from the KVRET corpus (Eric and
Manning, 2017b), and was developed as a multi-turn, multi-domain dataset which contains
3,031 dialogues in three distinct domains appropriate for an in-car assistant: calendar
scheduling, weather information retrieval, and point-of-interest navigation. KVRET was
collected using a Wizard-of-Oz scheme in which users had two potential modes they could
play: Driver and Car Assistant. In the Driver mode, users were presented with a task
that listed certain information they were trying to extract from the Car Assistant as well
as the dialogue history exchanged between Driver and Car Assistant up to that point.
For example, “You want to find what the temperature is like in San Mateo over the next
two days.” In the Car Assistant mode, users were presented with the dialogue history
exchanged up to that point and a private knowledge base, known only to the Car Assistant,
with information that could be useful for satisfying the Driver query. Knowledge bases
could include a calendar of event information, a collection of weekly forecasts for nearby
cities, or nearby points-of-interest with relevant information. The Car Assistant was then
responsible for using this private information to provide a single utterance that progressed
the user-directed dialogues and also asked to fill in dialogue state information for mentioned
slots and values in the dialogue history up to that point. For our purposes KVRET is
therefore, i) task-oriented, with three distinct tasks, ii) large enough to meaningfully train
a ML model to identify the annotated AP-types, yet small enough to annotate within
a reasonable amount of time, and iii) contains slot and task information, along with an
accompanying knowledge base, for developing a dialogue system, and hence is applicable
to future applications of our work.

We annotated KVRET using specially developed annotation software, with a similar
interface to that shown in figure 4.1. Throughout the annotation process each dialogue is
shown in turn, and for each utterance a single DA and AP are selected to form an AP-
type. With the exception of fixing several typos, and removing two dialogues with only a
single utterance from the test set, we make no changes to the underlying data. We also
maintain the original authors training, evaluation, and test sets. The tool saves dialogues
in JSON format which preserves the original alignment of slots and values for each system
(Car Assistant) turn, and the alignment of ‘scenario’ data: task type, id, and items.
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4.3.1 CAMS-KVRET Overview

Here we provide a brief overview of the resulting CAMS-KVRET corpus, consisting of
3029 dialogues annotated with the CAMS schema.5 The following is an example of a
fully annotated dialogue. Tables 4.7, and 4.8, respectively show a general overview of the
corpus stats and the training, test, and evaluation sets. Including, number of utterances,
length of dialogues, vocabulary size, and number of each label type.

usr: What time is dinner and who is it with? FPP-base - setQuestion
sys: Dinner is at 7 pm with Jon. SPP-base - answer
usr: Okay, perfect! Post - autoPositive
usr: Thanks. FPP-base - thanking
sys: you’re welcome. SPP-base - acceptThanking

Table 4.7: Overview of the CAMS-KVRET Corpus.

Num

Total Utterances 17307

Max Utterance Len 95

Mean Utterance Len 8.65

Total Dialogues 3029

Max Dialogue Len 13

Mean Dialogue Len 5.71

Vocabulary Size 1912

DA Labels 23

AP Labels 9

AP-type Labels 104

Table 4.8: Overview of the CAMS-KVRET train, test and validation sets.

Set Num Dialogues Max Len Mean Len Num Utterances

Train 2423 13 5.72 13863

Test 304 13 5.73 1741

Validation 302 13 5.64 1703

Figure 4.9 shows the proportions of DA and AP labels within the corpus, and their
distribution between each set.6 In both cases, the proportion of labels is relatively bal-
anced between the training, test, and evaluation sets. For DA, the two most common
labels are thanking and acceptThanking, because most dialogues within the corpus end
with reciprocal thanking, as in the example above. Equally, several information-seeking
and information-providing DA, such as setQuestion and answer, occur frequently. Unsur-
prisingly, the FPP-base and SPP-base labels are the two most common AP. It should also
be noted that the FPP-pre and SPP-pre expansion were not assigned in any case. This
is because the KVRET dialogues are always initiated by the user (Driver), who, during
data collection, had been given a specific task to complete. Thus there are no instances
of preparatory, or preliminary utterances within the corpus.

5The corpus is available at: github.com/NathanDuran/CAMS-KVRET.
6Full label distribution data is available in appendix D.
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(a) DA distribution of the most frequent 15 labels.

(b) AP distribution.

Figure 4.9: Distribution of DA and AP labels within the CAMS-KVRET
corpus.
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Chapter 5

Dialogue Act Identification

In this chapter we present experimental results for the first two phases of our dialogue
classification system, as discussed in 3.2 (O3, O4, and Q2). We begin with sentence
encoding in Section 5.1, where we focus on the various text pre-processing considerations
and single-sentence classification models, without any additional contextual information.
Then, in Section 5.2, we explore different forms of contextual input (speakers, labels, and
utterances), contextual multi-sentence architectures and sequence classification models.

5.1 Sentence Encoding for Dialogue Act Classification

Here we present the results and analysis for each of our sentence encoding experiments.1

For each of the input sequence and word embedding experiments we kept all parameters
fixed at a default value, and only changed the parameter relevant to the given experiment.
For example, when testing different vocabulary sizes, only the parameter that determined
the number of words to keep in the vocabulary during text pre-processing was changed,
all other parameters (letter case, use of punctuation, maximum sequence length, and word
embeddings) remained fixed. By default, we lower cased all words, kept all punctuation
marks, and used 50 dimensional GloVe embeddings. Additionally, for all supervised mod-
els, word embeddings were fine-tuned alongside the model during training. These default
values were chosen so as not to restrict the amount of information available to the model
while testing other parameters. For example, having an arbitrarily small sequence length
while testing different vocabulary sizes, and vice versa. Further, these values represent
the upper-bound of values to be tested, and are at, or near, the maximum possible value
for their respective corpora.

5.1.1 Dialogue Act Corpora

The following provides an overview of each corpus, such as DA label categories, selection
of training and test data, and a description of some corpus-specific pre-processing steps
that were performed. Table 5.1 summarises key features of these two corpora, such as
number of DA labels, vocabulary size, and so on, once pre-processing is completed.

SwDA During pre-processing, in some cases, it makes sense to remove or collapse several
of the DA label categories. We remove all utterances marked as Non-verbal, for exam-
ple, [laughter] or [throat-clearing], as these do not contain any relevant lexical information
(Ribeiro, Ribeiro, and De Matos, 2019; Stolcke et al., 2000). The Abandoned and Uninter-
pretable labels are also merged since these both represent disruptions to the conversation

1All code, data, and accompanying analysis for the sentence encoding experiments is available at:
github.com/NathanDuran/Sentence-Encoding-for-DA-Classification.
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flow and consist of incomplete or fragmented utterances (Ribeiro, Ribeiro, and De Matos,
2019; Kalchbrenner and Blunsom, 2013). Some utterances are also marked as Interrupted,
indicating that the utterance was interrupted but continued later in the conversation. All
interrupted utterances are concatenated with their finishing segment and assigned its cor-
responding DA label, effectively creating full uninterrupted utterances (Ribeiro, Ribeiro,
and De Matos, 2019; Webb and Hepple, 2005). The resulting set therefore contains a total
of 41 DA labels, with the removal of Non-verbal labels reducing the number of utterances
by ˜2%. Finally, all disfluency and other annotation symbols are removed from the text.

The 1155 conversations are split into 1115 for the training set and 19 for the test set,
as suggested by Stolcke et al. (2000), and widely used throughout the literature (Cerisara,
Král, and Lenc, 2017; Papalampidi, Iosif, and Potamianos, 2017; Kalchbrenner and Blun-
som, 2013). The remaining 21 conversations are used as the validation set. It should be
noted that this training and test split results in a large imbalance between two of the most
common labels within the corpus, Statement-non-opinion (sd) and Statement-opinion (sv).
However, to enable comparison with much of the previous work that uses this corpus we
retain this imbalanced split.

For SwDA the default vocabulary size was set at 10,000 words with a maximum se-
quence length of 128 tokens. This vocabulary size is less than half that of the full vocab-
ulary, however, as discussed in 2.2.3, the typical range used for this corpus is 10,000 to
20,000 words, and Cerisara, Král, and Lenc (2017) achieved their best results with a much
smaller vocabulary size.

Maptask The HCRC Maptask corpus (Thompson et al., 1991), transcribed utterances
were annotated with 13 DA labels. However, this is reduced to 12 DA labels by removing
utterances tagged with Uncodable, as these are not part of the Maptask coding scheme.
As with the SwDA corpus all disfluency symbols are removed, including incomplete words,
for example ‘th–’. However, unlike the SwDA corpus, Maptask contains no punctuation,
aside from a few exceptions, for example, “sort of ‘s’ shape” to describe shapes on the
map, and it also contains no capital letters.

The authors do not define any training and test data split for the Maptask corpus;
we randomly split the 128 dialogues into 3 parts. The training set comprises 80% of
the dialogues (102), and the test and validation sets 10% each (13), which is similar to
proportions used in previous studies (Tran, Haffari, and Zukerman, 2017; Tran, Zukerman,
and Haffari, 2017). Finally, for Maptask we use a default vocabulary size of 1,700 words
and a maximum sequence length of 115.

Table 5.1: Overview of the SwDA and Maptask corpora used throughout this study.

Corpus
Num
DA

Vocabulary
Size

Utt Length
Max (Mean)

Total Utts Train Val Test

SwDA 41 10,000 128 (9.6) 199,740 192,390 3,272 4,078

Maptask 12 1,700 115 (6.2) 26,743 21,052 2,929 2,762

5.1.2 Sentence-encoders

The sentence encoder models can be separated into two categories: those trained in a fully
supervised fashion, and those that use transfer learning via a pre-trained language model
to generate utterance representations. In both cases the default classification component
is a two-layer FFNN where the number of nodes in the final layer is equal to the number
of labels in the training corpus. The final layer uses softmax activation to calculate the
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probability distribution over all possible labels and we use categorical cross entropy for the
loss function. In the following, model hyperparameters such as, number of filters, kernel
size, recurrent units, pool size and type (max or average), are selected based on results
of a Bayes search algorithm exploring a maximum of 100 parameter combinations, with
each run consisting of 5 epochs. However, in cases where we use existing published models
(that is, excluding CNN, LSTM and GRU), we keep all parameters consistent with those
reported in the original publications where possible.2

For our supervised models we use a selection of six based on convolutional and recurrent
architectures, with a further set of bi-directional, multi-layer, and attentional variants.3

The first layer of each model is an embedding layer, and the final layer performs dimen-
sionality reduction; either a pooling operation over the entire output sequence, or outputs
are simply flattened to a single dimensional sequence representation.

CNN The Convolutional Neural Network is intended as a simple baseline for convolu-
tional architectures. It consists of two convolution layers with a max pooling operation
after each. We use 64 filters with a kernel size of 5 for each layer and a pool size of 8.

TextCNN An implementation of the CNN for text classification proposed by Kim
(2014). It is comprised of 5 parallel convolution layers with a max pooling operation
after each. Convolutional layers use the same number of filters, 128, but with different
kernel sizes in the range [1, 5]. The use of different kernel sizes is intended to capture the
relationships between words at different positions within the input sentence. For dimen-
sionality reduction the output of each pooling operation is concatenated before flattening
into a single sequence vector.

DCNN The Dynamic Convolutional Neural Network implements the model proposed
by Kalchbrenner, Grefenstette, and Blunsom (2014). The DCNN uses a sequence of 3
convolutional layers, each with 64 filters, the first layer uses a kernel size of 7 and the
following layers a kernel size of 5. In contrast to the previous convolutional models the
DCNN uses a dynamic K-max pooling operation after each convolution, which aims to
capture a variable (per-layer) number of the most relevant features. Finally, dimensionality
reduction is simply the flattened output of the last K-max pooling layer.

LSTM and GRU The Long Short-term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997b), and Gated Recurrent Unit (GRU) (Cho et al., 2014b) are simple baselines
for recurrent architectures. Both models follow the standard implementation and consist
of one LSTM, or GRU, layer with 256 hidden units. We take the output at each timestep
and apply average (LSTM), or max (GRU) pooling for dimensionality reduction.

RCNN The Recurrent Convolutional Neural Network is effectively a ‘hybrid’ of recur-
rent and convolutional paradigms. Our implementation is based on the model proposed
by Lai et al. (2015), and has previously been applied to DA classification by Ribeiro,
Ribeiro, and De Matos (2019). The RCNN consists of two recurrent layers, each with
a dimensionality of 256. One processes the sequence forwards and the other in reverse.
The output of these two layers is then concatenated with the original input embedding
matrix, in the format forwards-embeddings-backwards. This concatenation ‘sandwich’ is
then passed as input to a convolutional layer with 64 filters and a kernel size of 1. Finally,
a max pooling operation is performed for dimensionality reduction.

2Appendix E contains a full summary of sentence encoder hyperparameters.
3In all cases we found these variants did not result in statistically significant improvements and thus

we report those results in appendix F.1.
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Language Models In addition to the supervised models, we test a selection of 10 pre-
trained LMs as sentence encoders. Due to the variety of model architectures, training
objectives and training data that was used to generate these LMs we omit them from the
input sequence experiments. Differences in training data, for example, use of punctuation,
the vocabulary, and so on, would make fair comparison between the models difficult. Fur-
ther, and as previously stated, the input to these models is typically a tokenised sentence,
where each token is mapped to an integer representation, and does not require the further
step of mapping tokens to word embeddings. Therefore, we also do not include the LMs in
our word embedding experiments. Instead, we use the standard input format and model
parameters, defined by the original authors. The following provides a brief overview of
the ten LMs, four of which are based on recurrent, or FFNN, and the remaining six on
transformer architectures (Vaswani et al., 2017).

NNLM The Neural Network Language Model (Bengio et al., 2003).

mLSTM Character based multiplicative long short-term memory (mLSTM) language
model proposed by Krause et al. (2016b), and applied to DA classification
by Bothe et al. (2018a,b).

ELMo Embeddings from Language Models (Peters et al., 2018).

USE The Universal Sentence Encoder (Cer et al., 2018).

BERT Bi-directional Encoder Representations from Transformers (Devlin et al.,
2019). We use the BERT-base version, we also tested the BERT-Large
model but found it did not result in any significant improvements. This
also allows us to maintain a similar number of layers and parameters as
other transformer models we tested, for example RoBERTa.

RoBERTa A Robustly Optimised BERT Pretraining Approach (Liu et al., 2019). We
use the RoBERTa-base version.

ConveRT Conversational Representations from Transformers (Henderson et al., 2020).

XLNET A generalised autoregressive pretraining method (Yang et al., 2019), that
integrates ideas from Transformer-XL (Dai et al., 2019).

GPT-2 Generative Pretrained Transformer 2 (Radford et al., 2019).

DialoGPT The Dialogue Generative Pre-trained Transformer (Zhang et al., 2020a).

5.1.3 Input Sequence Representations

In the following sections we report our findings for each of the sequence representation
experiments, that is, letter case and punctuation, vocabulary size and maximum sequence
lengths. Due to differences in pre-training data, vocabulary, and so on, these were only
carried out with the selection of supervised models, and not the LMs.

5.1.3.1 Letter Case and Punctuation

Here we present the results from both the letter case and punctuation experiments, that
is, during pre-processing of the text, whether to convert all mixed-case letters to lower-
case, and whether to keep, or remove, all punctuation marks. As mentioned in section
5.1.1 the Maptask corpus does not contain any words with capital letters or punctuation
marks (apart from rare non-grammatical cases), and it was therefore not included in the
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Table 5.2: Validation accuracy for the letter case and punctuation ex-
periments.

Punct No Punct Mixed-case Lower-case

Model µ σ µ σ µ σ µ σ

CNN 74.46 0.23 73.49 0.24 74.45 0.23 74.73 0.19

TextCNN 75.61 0.25 74.64 0.16 74.77 0.20 75.33 0.23

DCNN 75.02 0.12 73.96 0.18 74.13 0.20 74.54 0.19

RCNN 74.06 0.45 73.37 0.26 74.13 0.32 74.46 0.29

LSTM 75.25 0.18 74.34 0.21 74.84 0.15 75.24 0.20

GRU 73.70 0.24 72.91 0.33 74.28 0.40 74.26 0.17

letter case and punctuation experiments. Results for these two parameters, obtained on
the SwDA corpus, are shown in table 5.2.

Regarding the use of punctuation, it can be seen that keeping punctuation marks
results in an improvement in accuracy for all models, with a mean increase of 0.9%. BSR
tests comparing the punctuation and no-punctuation groups for each model confirms that
this difference is statistically significant in all cases (P (Punct > NoPunct) = .99).

Similarly, with the exception of the GRU model, lower-casing all letters also improves
accuracy, though to a lesser degree, with a mean increase of 0.3%. However, this is not
statistically significant when comparing the mixed-case and lower-case groups (P (rope) ≥
.92), with the exception of TextCNN where P (Lower > Mixed) = .66, and therefore this
parameter appears inconsequential for these models.

These results confirm some of the assumptions discussed in 2.2.3.1, and the results of
Ortega et al. (2019). Firstly, that lowercasing words reduces unnecessary repetition in the
vocabulary, which in turn may improve learned associations between word occurrence and
DA label. Secondly, that certain punctuation marks may serve as strong indicators for the
utterances DA, for example an interrogation mark indicating a question. Table 5.3 shows
averaged, per-label, F1 scores for the best performing model (TextCNN), on the SwDA
test set. We can see that, when punctuation is retained, F1 scores for all question-type
DA labels is improved, apart from Declarative Wh-Question (qwˆd), which appears only
once, and was not predicted. Though, collectively, the question-type labels only constitute
5.5% of all labels, and as such, this represents a minimal overall improvement. For the 3
most common DA labels, Statement-non-opinion (sd), Acknowledge/backchannel (b), and
Statement-opinion (sv), which collectively make up 68.64% of all DA labels, the F1 score
differs by +0.59%, +1.02%, and −2.81% respectively. This pattern is also repeated for
most of the remaining labels, where small improvements are mitigated by negative changes
elsewhere, resulting in the small overall accuracy increase that we have observed. This
indicates that, (i) punctuation marks are beneficial in more circumstances than simply a
question-type DA and interrogation mark relationship, and (ii) including punctuation can
also reduce accuracy for specific label types.

5.1.3.2 Vocabulary Size

For each of the vocabulary size experiments only the most frequently occurring words,
up to the current vocabulary size, were kept within the text. Less frequent words were
considered OOV and replaced with the <unk> token. We test 16 different values in the
range [500, 8000] with increments of 500, and [100, 1600] with increments of 100, for SwDA
and Maptask respectively.
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Table 5.3: TextCNN averaged F1 scores for the three most frequent
labels (sd, b, sv), and all question-type labels in the SwDA test set
(Tag-Question does not appear).

Dialogue Act Label Count (%) Punct No Punct

Statement-non-opinion sd 1317 (32.3%) 79.93 79.34

Acknowledge (Backchannel) b 764 (18.73%) 83.55 82.53

Statement-opinion sv 718 (17.61%) 62.43 65.24

Yes-No-Question qy 84 (2.06%) 73.49 71.43

Wh-Question qw 55 (1.35%) 71.92 67.24

Declarative Yes-No-Question qyˆd 36 (0.88%) 23.94 21.62

Backchannel in Question Form bh 21 (0.51%) 64.64 50.21

Open-Question qo 16 (0.39%) 73.21 70.05

Rhetorical-Question qh 21 (0.29%) 35.06 32.75

Declarative Wh-Question qwˆd 1 (0.02%) 0.0 0.0

Table 5.4: Vocabulary size which produced the best validation accuracy
for each model on the SwDA and Maptask data.

SwDA Maptask

Model Vocab Size µ σ Vocab Size µ σ

CNN 2500 74.50 0.24 500 57.85 0.18

TextCNN 5500 75.61 0.25 200 56.60 0.33

DCNN 7500 75.15 0.13 600 56.08 0.32

RCNN 7500 74.36 0.49 1100 58.28 0.20

LSTM 7000 75.25 0.18 800 55.88 0.38

GRU 8000 73.89 0.36 1200 58.87 0.24

As shown in table 5.4, with the exception of the GRU applied to the SwDA, the
best performance was consistently achieved using a smaller vocabulary than the largest
value tested. Figure 5.1 displays Maptask results for the full range of vocabulary sizes
and models. Vertical lines indicate the average frequency of word occurrence for a given
range, for example, the 200-300 most frequent words appear ˜71 times within the Maptask
training data. For both SwDA and Maptask, increasing vocabulary sizes steadily improves
accuracy up to ˜4k, or ˜400, words respectively, beyond which further increases yield little
to no improvement.

This observation is supported by BSR analysis comparing all vocabulary size combi-
nations, which shows that, once a threshold is reached, further increase of vocabulary size
does not result in a statistically significant difference in performance. For Maptask, the
threshold is 400 words or less for all models, and for SwDA 2.5k words or less; except for
the RCNN, where a clear threshold is higher, at 4k words. If we explore these thresholds
in terms of frequency of word occurrences, the most frequent 2.5k, and 400, words account
for 95.9% and 94.7% of all words in the respective SwDA and Maptask training data. The
remaining less-frequent words appear, at most, 22.5, or 28.3 times, within the training
data, typically much less.

These results suggest that words which appear below a certain frequency within the
data do not contribute to overall performance, and that word frequency is correlated with
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Figure 5.1: Maptask validation accuracy for all supervised models with
different vocabulary sizes. Vertical lines are the mean word occurrence,
per-vocabulary range (up to 100 words the mean frequency = 1268, and
for 100 to 200 words the mean frequency = 162).

the observed performance thresholds. Either because of their sparsity within the data,
or because they are not meaningfully related to any DA. On the SwDA data, the 2.5k
threshold coincides with the optimal 1-2k word vocabulary reported by Cerisara, Král,
and Lenc (2017). Though, apart from the CNN, we did not observe any degradation in
performance from increasing vocabulary size further. Certainly, it does not appear that
using large vocabularies, typically 10k or 20k words for SwDA (Li et al., 2019b; Raheja
and Tetreault, 2019; Chen et al., 2018; Kumar et al., 2017; Ji, Haffari, and Eisenstein,
2016; Lee and Dernoncourt, 2016), is necessary or beneficial for the DA classification task.
While larger vocabularies do not create significant additional storage or computational
requirements, it may be more efficient to remove very infrequently occurring words. Thus,
removing a large number of words from the vocabulary which do not contribute to model
performance.

5.1.3.3 Sequence Length

To explore the effect of varying the input sequence lengths, all utterances were truncated,
or padded, to a fixed number of word tokens before training. Sequences are padded with a
<pad> token up to the current maximum sequence length. For both SwDA and Maptask
we test values in the range [5, 50], in increments of 5. Table 5.5, shows the sequence
length which produced the best performance for each model. Notably, in all cases, the
best validation accuracy was obtained using a sequence length that is shorter than the
largest value tested; which in turn, is less than half of the longest utterances in both
corpora, 133 and 115 words, for SwDA and Maptask respectively.

Figure 5.2 shows SwDA results for the full range of sequence lengths and models.
Vertical lines indicate the cumulative sum of utterances, up to a given length, within the
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Table 5.5: Input sequence length which produced the best validation
accuracy for each model on the SwDA and Maptask data.

SwDA Maptask

Model Seq Length µ σ Seq Length µ σ

CNN 45 74.43 0.17 25 57.49 0.26

TextCNN 25 75.63 0.24 40 56.40 0.33

DCNN 30 75.10 0.23 25 56.14 0.24

RCNN 40 74.50 0.28 25 58.13 0.26

LSTM 25 75.35 0.16 10 57.98 0.26

GRU 25 73.94 0.27 30 58.68 0.25

training data. It can be observed that, increasing the number of tokens steadily improves
performance up to a point, beyond which we see no further improvement. On both SwDA
and Maptask performance levels off at sequence lengths of ˜20-25 tokens.

Figure 5.2: SwDA validation accuracy for all supervised models with
different sequence lengths. Vertical lines are the cumulative sum of ut-
terances up to a given length.

Again, these observations are supported by BSR analysis comparing all sequence length
combinations, which shows that, for SwDA there is no significant difference in performance
for sequence lengths greater than 25 tokens, and for Maptask the threshold is 15 tokens;
with the exception of the LSTM where performance steadily decreases, and the TextCNN
where there is no clear threshold. Examining these thresholds in terms of the frequency of
utterances within the training data, 96.5% of all utterances in SwDA are ≤ 25 words, while
for Maptask 92.6% are ≤ 15 words. This is also clearly reflected in the cumulative sum of
utterance lengths shown in figure 5.2. The values closely match the shape of the accuracy
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curves, steadily increasing before starting to level off at the 20-25 token threshold.
Our results, and the stated thresholds, for both datasets strongly support the work of

Cerisara, Král, and Lenc (2017), who found that 15-20 tokens was optimal on the SwDA
data. Wan et al. (2018), also reported their best result was achieved using sequence
lengths of 40, which coincides with the sequence lengths that produced the best (though
not statistically significant) results for some of our models. Additionally, our thresholds
for both datasets, and the results reported by Cerisara, Král, and Lenc (2017), can be
considered in terms of the average number of words in an English sentence. According to
Cutts (2013), and Dubay (2004), the average number of words is 15-20 per sentence. While
Deveci (2019), in a survey of research articles, found the average to be 24.2 words. Thus,
it should perhaps not be surprising to find that a significant proportion of utterances in
our datasets are of similar, or smaller, lengths.

Certainly, it seems that, similar to word occurrences, utterances above a certain length
appear so infrequently that they do not contribute to overall performance. For example,
in the SwDA training data, the number of utterances longer than 50 tokens is 342 (0.18%),
and for Maptask it is just 11 (0.05%). Therefore, padding sequences up to the maximum
utterance length does not produce any benefit, and in some cases, it may actually reduce
performance (Cho et al., 2014a). Additionally, padding sequences results in a significant
increase in storage and computational effort. Instead, appropriate values should be chosen
based on the distribution of utterance lengths within the data, and where possible, padding
mini-batches according to the longest utterance within the batch.

5.1.3.4 Input Sequences Comparison

The vocabulary size and sequence length experiments were conducted while keeping all
other parameters fixed at their default values. This leads to the possibility that using both
smaller vocabularies and shorter sequence lengths, in combination, may result in too much
information loss and harm performance. To explore this hypothesis, we conducted further
experiments with 3 combinations of, ‘small’, ‘medium’, and ‘large’, vocabulary sizes and
sequence lengths. For SwDA we used vocabularies of 2.5k, 5k, and 10k words, and for
Maptask 400, 800, and 1.7k words. Each of these was combined with a respective sequence
length of 25, 50, and 128 (SwDA), or 115 (Maptask). We can see from Table 5.6 that in
most cases models achieved higher accuracy with small vocabularies and sequence lengths.
BSR analysis reveals that, for the SwDA corpus, there is no significant difference between
the groups for any model (P (rope) ≥ .99). Indeed, for the two models which achieved
higher accuracy with the large group, RCNN and LSTM, the difference between the small
and large groups mean accuracies is just 0.26% and 0.21% respectively. For Maptask,
analysis only shows statistically significant results for the LSTM, which obtained higher
accuracy with the small and medium groups (P (Small/Medium > Large) = 1). Again,
for the two models which favoured the large group, TextCNN and RCNN, the difference
between the small and large groups mean accuracies is 0.09% and 0.25% respectively.
Thus, we can conclude that reducing both vocabulary size and sequence length does not
negatively impact performance.

5.1.4 Word Embeddings

Throughout our word embeddings experiments we test 5 different pre-trained word em-
beddings; Word2Vec, GloVe, FastText, Dependency, and Numberbatch. Each of these
is tested at 5 different dimensions in the range [100, 300], at increments of 50. Table
5.7 shows the combination of embedding type and dimension which produced the best
accuracy for each model.
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Table 5.6: Vocabulary size and sequence length group which produced
the best validation accuracy for each model on the SwDA and Maptask
data.

SwDA Maptask

Model Vocab Seq Len µ σ Vocab Seq Len µ σ

CNN 5000 50 74.86 0.24 400 25 57.72 0.23

TextCNN 2500 25 75.41 0.09 1700 115 56.33 0.28

DCNN 5000 50 74.68 0.24 800 50 56.11 0.26

RCNN 10000 128 74.51 0.17 1700 115 58.05 0.23

LSTM 10000 128 75.35 0.15 400 25 57.47 0.25

GRU 5000 50 74.37 0.17 800 50 58.59 0.31

Table 5.7: Embedding type and dimension which produced the best
validation accuracy for each model on the SwDA and Maptask data.

SwDA Maptask

Model Embedding Dim µ σ Embedding Dim µ σ

CNN Numberbatch 100 74.59 0.16 FastText 300 57.88 0.20

TextCNN Numberbatch 300 76.01 0.12 FastText 300 58.97 0.24

DCNN FastText 200 75.66 0.15 FastText 250 57.37 0.31

RCNN FastText 200 75.06 0.27 Dependency 100 59.45 0.24

LSTM GloVe 300 75.57 0.21 GloVe 300 57.93 0.28

GRU FastText 100 74.87 0.28 Dependency 200 59.46 0.23

It can be seen that there is no clearly optimal embedding type and dimension combi-
nation. Instead, it seems to be dependent on a particular task, or model, in most cases.
Though, FastText does more consistently – in 50% of cases – improve performance. It
is also worth noting that Word2Vec frequently resulted in poorer accuracy and therefore
does not appear in table 5.7 at all.

We analyse these results further by conducting multiple BSR tests comparing different
dimensions for each embedding type, and the different embedding types to one another.
For SwDA, in most cases we see no significant difference in embedding dimension, only
the LSTM with Word2Vec 100 vs 250 dimensions (P (100 > 200) = .82). On Map-
task the DCNN shows significant difference in dimensions for Numberbatch, Word2Vec,
and Dependency, and the LSTM for all five embedding types. In both cases, larger
dimensions correlate with improved performance. When comparing embedding types,
for SwDA only the DCNN with FastText shows any significant results (P (Fasttext >
Dependency/Numberbatch/Word2V ec) = 1). To illustrate this observation figure 5.3
shows the results obtained on SwDA with the DCNN model. We can see that FastText and
GloVe resulted in a clear improvement in performance over the remaining embedding types.
This is also true for the DCNN and LSTM applied to the Maptask data, where GloVe and
FastText both show statistically significant improvements over the other embedding types.
Interestingly, the optimal embedding type and dimension for these two models is consistent
across the two datasets, FastText 200-250 for the DCNN, and GloVe 300 for the LSTM.
For the remaining models the picture is less clear, with GloVe consistently outperformed
by other embbeddings. For the TextCNN P (FastText/Numberbatch > GloV e) ≥ .83;
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the RCNN P (Dependency/Numberbatch > GloV e) ≥ .89; the GRU P (Dependency >
GloV e) = .86; and for the CNN we see no significant results. As we observed in Section
2.2.3.2, in most cases the differences between embedding type and dimension is very small,
and in our experiments, it is often not statistically significant. However, for some models
determining an optimal embedding type is more impactful than simply testing different
dimensionalities of a single arbitrarily chosen embedding type. Additionally, Word2vec
consistently underperformed on all models, and both datasets, which suggests it is not
suitable for this task, a conclusion that was also reached by Cerisara, Král, and Lenc
(2017). Instead, we suggest using FastText in the first instance as this embedding most
often resulted in a significant performance increase in our experiments.

Figure 5.3: The DCNN model’s SwDA validation accuracies for all em-
bedding type and dimension combinations.

5.1.5 Supervised Models

Here we present the final test set results for all of our supervised models. In each case the
model was trained and tested using the parameters (Vocabulary size, Sequence length, etc)
determined by our previous experiments. Table 5.8 shows results for both the SwDA and
Maptask data. The TextCNN performs well on both datasets, outperforming the other
convolutional models. For the recurrent models the results are a little more variable. The
LSTM achieves higher test accuracy and F1 score than the GRU on the SwDA, while for
Maptask the reverse is true and by a larger margin.

Rigorous comparison with previous work is challenging due to differences in text pre-
processing and other parameters. Additionally, most recent studies do not report results
for single-sentence classification, that is, DA classification without context/discourse infor-
mation. Nevertheless, it seems these results are on the high end of what might be expected
for single-sentence DA classification. Papalampidi, Iosif, and Potamianos (2017), included
salient key words as extra features in their experiment and report test set accuracy of
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73.8% (though it is not clear if this result is the single best run, or an average of several),
and Bothe et al. (2018b) reported 73.96% using the mLSTM language model. Yet, our
TextCNN and LSTM attain similar accuracies with only pre-trained word embeddings.
Our best models also outperform all of the other single-sentence results we were able
to find within the literature Cerisara, Král, and Lenc (2017) and Shen and Lee (2016),
and Lee and Dernoncourt (2016), who report 70.4%, 69.3%, and 67% respectively. They
are also competative with, or higher than, several studies which also include context or
discourse information (Cerisara, Král, and Lenc, 2017; Ortega and Vu, 2017; Lee and
Dernoncourt, 2016; Shen and Lee, 2016; Kalchbrenner and Blunsom, 2013), though they
are far from the best contemporary approaches in that regard. However, these results
do indicate that we may be at, or near, the limit of what these kinds of standard model
architectures can attain for single-sentence classification. The difference between the best
and worst performing model on the SwDA test set is just 1.22%, and for Maptask it is
1.49%. Though, small differences in accuracy are perhaps more noteworthy on the DA
classification task than other classification problems. Of the studies directly comparable to
ours (models that do not consider surrounding sentences, and that use the same training
and test datasets), the difference between the lowest, 67% (Lee and Dernoncourt, 2016),
and highest, 73.96% (Bothe et al., 2018b), is just 6.96%. Further, the results of Bothe
et al. (2018b), represent only a 2.96% increase over those reported by Stolcke et al. (2000),
nearly two decades earlier. Thus, while some reported increases are small, parameters
that produce consistent improvements, such as keeping punctuation, are meaningful for
this problem. This supports the need for more sophisticated methods of sentence encoding,
such as that of contextual LMs.

Table 5.8: Test set accuracy for each of the supervised models on the
SwDA and Maptask data.

SwDA Maptask

Model µ σ Model µ σ

CNN 71.16 0.64 CNN 59.22 1.01

TextCNN 73.36 0.34 TextCNN 60.29 0.26

DCNN 72.87 0.53 DCNN 59.96 0.58

RCNN 72.44 0.41 RCNN 60.43 0.62

LSTM 73.06 0.37 LSTM 59.86 0.62

GRU 72.27 0.74 GRU 61.12 0.64

5.1.6 Language Models

All 10 LMs were trained with the same parameters and default values for vocabulary size,
sequence length, letter case, and punctuation. Results for the pre-trained LMs applied to
the SwDa and Maptask data are shown in Table 5.9.

Starting with the SwDA corpus, the models based on transformer architectures all re-
sulted in an improvement in accuracy over our best performing supervised model, TextCNN.
Ranging from +0.95% with ConveRT, to +2.86% for RoBERTA, and in all cases this is
statistically significant (P (LM > TextCNN) ≥ .98). The remaining models show either
negligible improvements or, for ELMo and NNLM, lower but statistically equivalent test
set accuracy (P (rope) ≥ .91). Both BERT and RoBERTa reach test set accuracies that
outperform many of the contextual models from previous studies, for example, Papalam-
pidi, Iosif, and Potamianos (2017), and Tran, Haffari, and Zukerman (2017). They also
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begin to approach some of the current best contextual models, such as those reported by
Bothe et al. (2018a), 77.42%, Li et al. (2019b), 78.3% and Ribeiro, Ribeiro, and De Matos
(2019), 79.11%.4

On the Maptask corpus the LMs fared much worse. Only three managed to improve
upon our best supervised model, GRU, and in most cases were only marginally better than
the 2nd and 3rd best. Again though, BERT and RoBERTa improve upon the supervised
model by +1.74%, and +1.46%, respectively (P (LM > GRU) ≥ .99). Here comparison
with previous work is more difficult as the Maptask corpus is less studied. Still, both
models are comparable with the 63.3% accuracy, that is also achieved with a contextual
model (Tran, Zukerman, and Haffari, 2017). The relatively poor results for the Maptask
data is somewhat surprising. For some of the transformer-based models this may be due
to the smaller dataset, and the comparatively larger gains in performance on the SwDA
corpus would seem to support that assumption. However, it does contradict the ‘few-shot-
learning’, task-specific fine-tuning, paradigm that has led to much of the success of these
models (Wang et al., 2020). Nevertheless, both BERT and RoBERTa achieve a significant
and consistent improvement on both corpora. Thus we can conclude that – despite an
increase in computational effort, training time, and storage requirements – the contextual
sentence representations are superior to those of supervised models and pre-trained word
embeddings (Fiok et al., 2020).

Table 5.9: Validation set accuracy, and test set accuracy for each of the
pre-trained LMs on the SwDA and Maptask data.

SwDA Maptask

Validation Test Validation Test

Model µ σ µ σ µ σ µ σ

BERT 76.87 0.24 76.07 0.42 61.12 0.44 62.91 0.32

RoBERTa 78.17 0.33 76.22 0.56 61.18 0.40 62.63 0.24

GPT2 77.47 0.44 75.16 0.62 60.18 0.28 61.04 0.98

DialoGPT 77.82 0.44 75.30 0.37 57.04 1.83 56.70 1.85

XLNet 78.15 0.46 75.88 0.45 61.21 0.51 61.61 0.78

ConveRT 76.54 0.22 74.31 0.34 58.16 0.21 60.94 0.63

ELMo 76.00 0.20 73.19 0.53 58.34 0.21 60.44 0.35

USE 76.20 0.15 73.51 0.38 59.35 0.22 60.67 0.56

mLSTM 75.78 0.25 73.48 0.61 58.50 0.27 60.79 0.63

NNLM 73.44 0.07 70.12 0.26 52.44 0.18 56.65 0.24

5.1.7 Sentence Encoding Summary

Throughout this section we have explored numerous factors which may affect the task
of sentence encoding for the purpose of DA classification. We first considered various
aspects of text pre-processing and representation, which are often overlooked or underre-
ported within the literature, such as whether to keep, or remove punctuation, selecting
vocabulary size, input sequence length and word embeddings. Each of these was assessed
on the SwDA and Maptask corpora, using a selection of 6 supervised models, that are

4Several studies have reported higher accuracies than these (Ribeiro, Ribeiro, and De Matos, 2019; Chen
et al., 2018), however they also include future utterances, or ‘gold-standard’ labels as context information
and we have therefore omitted them.
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intended to be representative of the common architectures applied to DA classification
task. Finally, we also applied a selection of 10 pre-trained LMs, including transformer
based contextual models, such as BERT and XLNET, and draw comparisons between the
supervised approaches. To the best of our knowledge this is also the first time most of
these comparatively new LMs have been applied to the DA classification problem.

Our results show that the text pre-processing parameters we investigated should not
be arbitrarily chosen, because they can produce a notable effect on model performance.
Firstly, keeping punctuation always improves accuracy when compared to the alternative
options, while converting all words to lower-case is less impactful. Interestingly, keeping
punctuation appears beneficial for several of the most common DA labels within the SwDA
corpus, even those that are not a type of question, where intuitively one might expect an
interrogation mark to strongly correlate with a question type DA label.

Considering the selection of vocabulary size, we found that using smaller vocabularies
was beneficial in most cases. Certainly, our results show that the number of words, for the
best performing models, was 1/4 to 3/4 of the largest vocabulary size tested, which equates
to around 1/10th of the corpora’s full vocabulary. Additionally, increasing vocabulary sizes
results in diminishing, or detrimental, returns in performance. These values are much
lower than those typically used in most DA classification studies, for example, 10k or 20k
words for SwDA (Li et al., 2019a; Chen et al., 2018; Kumar et al., 2017; Ji, Haffari, and
Eisenstein, 2016; Lee and Dernoncourt, 2016). Instead, using smaller vocabularies could
prune out highly infrequent words which are unlikely to be relevant to the DA classification
task, and reduce noise within the data.

Similarly, for input sequence lengths, we showed that beyond a certain threshold us-
ing longer sequences has no significant impact on classification accuracy. For SwDA the
threshold is 25 words, and for Maptask 15. These thresholds, and the optimal sequence
lengths for all models, on both datasets, were shorter than the maximum sequence length
we tested (50 tokens), which in turn is <50% of the longest utterances in either corpora.
Thus, we conclude that padding sequences to lengths nearer that of the longest utterances
in the data is a waste of computational effort and storage. We also found that calculat-
ing the cumulative frequency of utterance lengths within the data produced a reasonable
approximation of the resulting accuracy curves within our experiments. When the cu-
mulative frequency began to level off, so too did the model’s accuracy. This technique
could be used to select a viable sequence length which minimises both information loss
(through truncation), and the number of unnecessary padding tokens. It should also be
noted that when using smaller vocabularies and sequence lengths in combination we ob-
served no significant difference when compared to larger valued combinations. Certainly,
in most cases, including the best performing models, higher accuracies were achieved when
using a combination of smaller values.

Results for our word embedding experiments were perhaps less conclusive. Of the
pre-trained embeddings we tested, none was shown to be clearly optimal across both
datasets and models. It seems that the selection of embedding is highly dependent on
both model and data, though the overall impact of this choice is often negligible. This
is supported by our statistical analysis which showed that, when comparing embedding
type and dimension combinations, we mostly observe a statistically significant difference in
performance when comparing different embedding types. Thus, while choice of embedding
may result in a small (and likely statistically non-significant) effect on performance, the
selection of embedding type tends to be more impactful than the dimension.

Regarding the selection of models, we found that performance was often inconsistent
when applying the same, or similar, architecture to different datasets. Most notably, the
use of bi-directional or multi-layered recurrent architecture, or the addition of attention
layers – which are so frequently applied to DA classification – often did not yield any
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improvement over their simpler baseline version. These inconsistencies suggest that these
architectural additions should be accompanied by appropriate ablation experiments, to
determine their true impact on performance. And further, applying a single model, or
small variations thereof, to a single dataset is not enough to draw firm conclusions on its
generalisable performance. This is similarly true for the selection of LMs we tested. Where,
even amongst the transformer-based models, on the smaller, sparser, Maptask data some
models failed to improve upon our best performing supervised model. However, on both
datasets, BERT and RoBERTa represent a significant improvement in sentence encoding
for DA classification and are therefore the current best choice for applying to the sentence
encoding task.

5.2 Context Encoding for Dialogue Act Classification

In this section we present the results and analysis for each of our context encoding ex-
periments.5 We continue to utilise the SwDA and Maptask corpora, with appropriate
selection of sequence representation and word embedding parameters, as determined by
our sentence encoding experiments. Specifically, we retain punctuation and lower-case all
words; for supervised models we use a sequence length of 50, and for LMs 100; since larger
vocabularies were not shown to reduce performance the vocabulary size is maintained at
10k words and 1.7k words for SwDA and Maptask respectively. Because annotation of the
CAMS-KVRET corpus was conducted in parallel to our sentence encoding experiments
we are now able to include that corpus within our context encoding experiments. For
CAMS-KVRET we use the same parameters discussed above, with a vocabulary size of
1.9k words.

5.2.1 Context-encoders

Here we discuss the core dialogue context encoder and the speaker or label encoders as
separate components, since the latter two are optional and work on different forms of
input. As with the sentence encoders, to tune hyperparameters we use a Bayes search
algorithm with a maximum of 100 parameter combinations, over 5 epochs.6 We also
investigated different encoding architectures, such as recurrent layers (GRU or LSTM),
bi-directionality, and attention mechanisms. However, again, in all cases we found these
variants did not result in statistically significant improvements and thus we report those
results in appendix F.2.

Dialogue Context For our dialogue context encoder we experiment with two archi-
tectures, one based on recurrent layers, the other convolutional. The former consists of
a single LSTM layer with either 256 or 512 hidden units, dependant on the size of the
sentence encoders’ output dimension. We consider the hidden state at the last timestep
as the dialogue segment encoding. Our convolutional encoder consists of three layers with
a max pooling operation after each. Convolutional layers use the same number of filters,
either 32 or 128 depending on the sentence encoders’ output dimension, but with different
kernel sizes of 6, 4, and 2. Finally, for dimensionality reduction we apply a max pooling
operation to produce the encoded segment vector d .

Context Speakers and Labels For both the speaker and label encoders we experiment
with three different architectures: Recurrent, FFNN, and ‘Flat’. Since speaker and label

5All code, data, and accompanying analysis for the context encoding experiments is available at:
github.com/NathanDuran/Context-Encoding-for-DA-Classification.

6Appendix E contains a full summary of context encoder hyperparameters.
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inputs are functionally equivalent (one-hot vectors), and either can be included indepen-
dently of the other, there are no architectural differences between our speaker and label
encoding components. Both the recurrent and FFNN methods process each input one-hot
vector in turn (m speakers or m − 1 labels), and in the latter case we apply the same
FFNN to each timestep. For the flat approach we simply reshape the input matrix to a
single vector of length m × |S | for speakers and m-1 × |L| for labels.

We further provide the option for the dialogue segments’ speaker and label encodings
to be concatenated with sentence encodings prior to being processed by the dialogue
context encoder, or concatenated with the dialogue segment encoding itself. In other
words, either the speakers and labels are processed sequentially by the dialogue context
encoder, at the same time as the sentences, or they are joined with the encoded dialogue
segment (d) as a summary of its speakers and labels. In the sequential case, for recurrent
and FFNN encoders we concatenate the output at each timestep with their respective
sentence encodings. For the summary, we simply flatten the speaker or label encodings
for each timestep into a single vector, before concatenating with d .

Sequence Classifiers As discussed in 2.2.3.5, while FFNN are the most prevalent clas-
sification approach, several recent studies have shown the utility of sequential classifiers.
That is, a classification architecture that is capable of producing label predictions for each
sentence in the input segment m, such as a CRF (Li et al., 2019b; Ortega et al., 2019;
Raheja and Tetreault, 2019; Chen et al., 2018; Kumar et al., 2017), or Seq2seq model
(Colombo et al., 2020). Thus, to produce our final contextual classifier model, we also
experiment with the addition of a CRF layer and Seq2seq architectures similar to that of
Colombo et al. (2020). Here we additionally report the sequence accuracy – the predic-
tions for each label in the input dialogue segment – along with the current classification
target.

5.2.2 Context Utterances

Throughout our context utterance experiments we use two supervised models (TextCNN
and LSTM), and two LMs (BERT and RoBERTa), as sentence encoders. We selected
the former because they consistently performed well throughout our sentence encoding
experiments, and represent two distinct paradigms, convolutional and recurrent. The
latter we selected because they were the best performing LMs of those tested.

For reference, and to determine a set of non-contextual single-sentence baselines for
CAMS-KVRET, we re-applied our selection of four sentence encoders to that corpus.
Baseline results for validation and test set accuracy are shown in table 5.10. Promisingly,
all models achieve a strong baseline of ˜87-89% without any contextual information. This
indicates that our corpus is well annotated, and suited for our purpose, such that there is
a strong correlation between the semantic content of utterances and their associated DA.

Table 5.10: Baseline validation and test set accuracy for each of the
sentence encoder models on the CAMS-KVRET corpus.

Validation Test

Model µ σ µ σ

BERT 89.0 0.43 88.66 0.47

RoBERTa 88.97 0.54 88.46 0.52

LSTM 87.74 0.38 87.09 0.43

TextCNN 86.85 0.57 86.85 0.49

90



5.2. Context Encoding for Dialogue Act Classification

In the following we examine varying numbers of utterances that make up the input dia-
logue segment m. We begin by looking only at previous, or historical, utterances (5.2.2.1).
That is, the m− 1 utterance that preceded the current target for classification within the
dialogue. We then explore combinations of previous and future utterances, to estimate
an upper limit to the benefit that such contextual information can provide (5.2.2.2). Ev-
idently including future utterances is not appropriate for certain tasks, such as dialogue
management systems, where future information is not available. However, there may be
other applications for which the full dialogue is available, such as post-hoc analysis of the
dialogue flow or structure (Bifis et al., 2021; Lee et al., 2019). Moreover, several DA clas-
sification studies have included such future information (Ribeiro, Ribeiro, and De Matos,
2019; Chen et al., 2018), and therefore we consider it worthy of further investigation. It
should be noted that, due to GPU memory constraints, for the transformer based models,
BERT and RoBERTa, we were unable to process sequences of >6 utterances. Therefore,
we limit the number of contextual utterances to 5, giving a maximum dialogue segment
size of 6. Similarly, due to immense processing times, particularly for the SwDA corpus
where each run may take upwards of 10 hours, in places we limit the number of models or
corpora included within our experiments.

5.2.2.1 Previous Context

Investigating the influence of previous context, we tested values in the range [1, 5] for the
number of utterances to include. Results for Maptask and CAMS-KVRET are shown in
table 5.11, and results for SwDA are shown in table 5.12. Due to the significant processing
times mentioned earlier, for the SwDA corpus we only test four contextual models, two
using BERT as a sentence encoder and two using an LSTM.

Table 5.11: Mean validation set accuracy for each context encoder model, using previous
context utterances in the range [1, 5], on the Maptask and CAMS-KVRET corpora.

Maptask KVRET

Model 1 2 3 4 5 1 2 3 4 5

BERT-CNN 66.17 67.2 67.21 67.11 66.84 92.56 92.55 92.92 93.18 93.35

BERT-LSTM 66.59 66.89 67.06 67.13 67.36 93.0 92.95 93.49 93.26 93.64

RoBERTa-CNN 66.86 67.74 67.44 67.59 66.75 92.74 92.57 93.22 93.19 92.91

RoBERTa-LSTM 66.77 67.27 67.18 67.54 67.93 93.21 93.41 93.66 93.4 93.83

LSTM-CNN 65.38 66.17 66.58 66.38 66.52 91.22 91.37 92.05 92.13 92.32

LSTM-LSTM 65.73 66.98 67.12 67.0 67.03 91.46 91.41 92.11 92.45 92.3

TextCNN-CNN 63.46 63.53 63.25 63.67 63.63 90.76 90.74 91.0 90.87 91.05

TextCNN-LSTM 64.16 65.51 65.67 65.21 65.78 91.1 91.63 92.3 92.48 92.43

Tables 5.11 and 5.12 show that, in all cases, including just a single context utter-
ance results in significant improvements over the single-sentence baselines (P (1-context >
No-context) = 1). For Maptask this represents an average increase of ˜5.9%, for CAMS-
KVRET ˜4.65%, and for SwDA ˜2.7%. If we instead consider the number of context
utterances that resulted in the best performance, this is increased by ˜1% for Maptask
and CAMS-KVRET. Additionally, we can see that in most cases the optimal number
of utterances is ≥ 2, and more often 4 to 5, particularly for CAMS-KVRET. However,
these optimal numbers are typically not a substantial improvement over similar values.
To explore this observation we conduct multiple BSR tests comparing all combinations of
context utterances:

• For Maptask, we see a threshold at ˜2 utterances beyond which there is no sta-
tistically significant improvement; with the exception of both BERT-LSTM and
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TextCNN-CNN where we see no significant results at all, and RoBERTa-LSTM
where we only see significant results when comparing 1 to 5 utterances (P (5 > 1) =
.97).

• On CAMS-KVRET the threshold is higher, at ˜3 utterances for both LSTM models
and TextCNN-LSTM. However, for all transformer based models, and the TextCNN-
CNN, we see no statistically significant results.

• Finally, for SwDA in most cases results are either statistically equivalent or incon-
clusive, with two marginal exceptions, for BERT-LSTM P (5 > 1) = .79, and for
LSTM-LSTM P (2 > 5) = .76.

Therefore, while including a single context utterance always improves upon single-
sentence methods, and larger context windows tend to result in higher accuracy, in gen-
eral, including more that 2 context utterances does not result in statistically significant
improvements. These results also concur with those of previous studies which have shown
that between 2 and 4 context utterances yield the best performance (He et al., 2021; Ah-
madvand, Choi, and Agichtein, 2019; Ortega et al., 2019; Bothe et al., 2018b; Ortega and
Vu, 2017; Papalampidi, Iosif, and Potamianos, 2017; Lee and Dernoncourt, 2016).

Table 5.12: Mean SwDA validation set accuracy for each context encoder
model, using previous context utterances in the range [1, 5].

SwDA

Model 1 2 3 4 5

BERT-CNN 80.2 80.43 80.27 80.47 80.57

BERT-LSTM 80.09 80.19 80.09 79.89 80.61

LSTM-CNN 77.62 77.44 77.49 77.26 77.28

LSTM-LSTM 78.07 78.3 77.9 78.15 77.57

We also conducted BSR tests comparing each model to one another, using results from
the number of context utterances that resulted in the best performance:

• Comparing the four transformer based models to the two LSTM, and two TextCNN
models; on SwDA both BERT models show a statistically significant improvement
over the LSTMs (P (BERT > LSTM) ≥ .99); for CAMS-KVRET all four show
significant improvement over the LSTMs and TextCNNs (P (BERT/RoBERTa >
LSTM/TextCNN) ≥ .88); on Maptask both BERT models are equivalent to the
LSTM-LSTM (P (rope) ≥ .83), and with the exception of RoBERTa-CNN com-
pared to LSTM-LSTM, all four tranformer based models show significant improve-
ment over the remaining LSTM and TextCNN models (P (BERT/RoBERTa >
LSTM/TextCNN) ≥ .81).

• If we now compare the CNN and LSTM variants of both transformer models, for
SwDA and Maptask they are equivalent (P (rope) ≥ .81), though on CAMS-KVRET
this is inconclusive (P (rope) ≥ .71). Similarly, when comparing all BERT and
RoBERTa models, we see no statistically significant results in any case.

Thus we can conclude that, unsurprisingly our transformer based models outperformed
the LSTM and TextCNN in most cases. Additionally, we see no noteworthy differences
between either BERT or RoBERTa and their contextual LSTM or CNN models (RoBERTa
models tended to outperform BERT, but only by a small margin), though in all cases the
LSTM did perform slightly better.
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5.2.2.2 Full Context

Following our investigation of previous context utterances we explore the impact of includ-
ing future utterances as well. We tested all combinations of previous and future utterances
that sum to 5, and due to the long processing times previously mentioned, only gather
results for the Maptask corpus. Table 5.13 shows which combinations achieved the best
validation set accuracy for each model.

Table 5.13: Best combination of previous and future context utterances,
and validation set accuracy, for each context encoder model on the Map-
task corpus.

Model Previous Future µ σ

BERT-CNN 2 2 68.39 0.47

BERT-LSTM 2 1 67.59 0.53

RoBERTa-CNN 1 1 68.47 0.77

RoBERTa-LSTM 5 0 67.93 0.57

LSTM-CNN 3 1 67.82 0.4

LSTM-LSTM 3 1 67.49 0.68

TextCNN-CNN 1 1 64.49 0.73

TextCNN-LSTM 5 0 65.78 0.45

Firstly, we can see that for two models, RoBERTa-LSTM and TextCNN-LSTM, in-
cluding future utterances made no impact, and their best combination remains 5 previous
utterances. For the remaining models including future utterances does slightly improve
performance in all cases. However, this is more pronounced for the CNN contextual mod-
els, with an average accuracy increase of ˜0.99%, while for the LSTM models it is just

˜0.15%. This is evidenced in figure 5.4, which shows both RoBERTa context models
results over all combinations. It can be seen that RoBERTa-CNN tends to favour a com-
bination, with the best results clustered around 1-3 previous utterances and 1-2 future.
On the other hand RoBERTa-LSTM favours longer sequences, and including more than
1 future utterance actually diminishes performance. A similar pattern is observed when
comparing the remaining LSTM and CNN context models. This is likely due to the nature
of the two context encoding approaches. A CNN, performing convolutions over the entire
dialogue segment, is better able to capture the relationship between the current target,
and any previous or future utterances. However, the LSTM, updating its hidden state as
each utterance in the sequence is processed, is less able to identify the association between
future utterances, the previous context, and target. To explore these observations further,
we conduct multiple BSR tests examining the influence of future utterances, comparing
results for the best combination to using only previous context, and each model to one
another:

• Beginning with future utterances; for both transformer based CNN context models
including up to 3 future utterances always improves upon the single-sentence base-
line, beyond which we see no statistically significant improvement (P (1−3-context >
No-context) ≥ .8); this threshold is 2 for both transformer based LSTM models
(P (1− 2-context > No-context) ≥ .91); and for both LSTM context models we see
a significant difference in all cases (P (1 − 5-context > No-context) ≥ .91); for the
TextCNN models we see no significant result in any case. However, as with previous
context, once these thresholds are reached, we see no significant improvements with
increasing numbers.
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• Comparing results for the best context combination with those obtained using only
previous context, in most cases we see no statistically significant results. Naturally,
RoBERTa-LSTM and TextCNN-LSTM are equivalent, and for the remaining LSTM
context models results are non-significant. Only for BERT-CNN (P (Full-best >
Prev-best) = .99), and LSTM-CNN (P (Full-best > Prev-best) = .98), do we see
statistically significant results.

• If we again compare models using their best context combination; for CNN and
LSTM context models we only see a statistically significant difference for BERT
(P (BERT -CNN > BERT -LSTM) = .85); RoBERTa-CNN shows a significant
difference over BERT-LSTM (P (RoBERTa-CNN > BERT -LSTM) = .96), and
in all other cases transformer models are equivalent; equally both transformer based
CNN context models improve upon the LSTM-LSTM P (BERT/RoBERTa-CNN >
LSTM -LSTM) ≥ .9.

Figure 5.4: Maptask validation set accuracy with each previous and
future context combination for the RoBERTa-CNN, and LSTM context
models.

In summary, including one or more future utterances does improve upon the single-
sentence baseline, but to a lesser degree than previous context. When using CNN context
encoders a combination of previous and future utterances tends to result in ˜1% im-
provement upon previous context alone, while for LSTM encoders we see no statistical
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difference, and this is likely due to the manner in which these models process the input
dialogue segment. However, that including one or more future utterances can be bene-
ficial is intuitive if we consider that DA can have both a forward and backward looking
function. Indeed, several studies have shown that including several future dialogue utter-
ances (Ribeiro, Ribeiro, and De Matos, 2019), or even the entire conversation as input
(Chen et al., 2018; Kumar et al., 2017), can improve upon previous context alone. Finally,
throughout our previous and full context experiments we have observed that the trans-
former based models have regularly outperformed those with LSTM or TextCNN sentence
encoders. Also, in most cases the RoBERTa based models tended to result in a slight
improvement over BERT based models, though in some cases this was not statistically
significant. We therefore abandon the BERT, LSTM, and TextCNN context models and
continue only with RoBERTa as our base sentence encoder. Specifically RoBERTa-LSTM,
which favours previous context inputs, because we wish to focus primarily on information
that would be available to a dialogue management system and results for previous and
full context were equivalent.

5.2.3 Speakers and Labels

In this section we investigate several candidate speaker and label encoder models and
evaluate their benefit across all three corpora. Throughout these experiments we use the
RoBERTa-LSTM as a base context model, with 5 previous utterances as input. Thus, we
also include 6 speakers, 5 labels, or both, as additional inputs. We begin by determining
suitable speaker and label context encoder architecture in 5.2.3.1 and 5.2.3.2 respectively.
Within these two sections we only gather results for the Maptask corpus, and as discussed
in 5.2.1, we experiment with three different approaches: Recurrent, FFNN, and ‘Flat’.
We also explore whether encoded speakers or labels are joined with dialogue segment
sequentially, or as a summary. Finally, in 5.2.3.3, for each corpus we evaluate the impact
of speaker and label combinations, including predicted and ‘gold-standard’ labels.

5.2.3.1 Speakers

For our GRU and FFNN speaker encoders we test an increasing number of units in the
range [16, 512], which represents the size of the hidden state, or number of nodes, for
GRU and FFNN respectively. We begin with the summary join method and then apply
the two best performing models, in terms of number of units, to the sequence join method.
Results for both are shown in table 5.14.

Beginning with results for the summary join method, we can see that including speaker
information consistently improves performance over the utterance-only context model.
Using the simple flatten approach acheives an accuracy of 69.9%, which represents a
+1.97% increase in validation accuracy, though in most cases this is outperformed by the
GRU and FFNN. Comparing the best performing model, a FFNN with 512 units, we
see an increase of +4.14%, and an improvement over the best performing GRU model of
+0.81%. A BSR test confirms that this is also statistically significant (P (FFNN -512 >
GRU -256) = .81). Though, while the FFNN outperforms the GRU in all cases it appears
that increasing the number of units is less impactful. For the GRU, there appears to be a
threshold at ˜128 units, which results in a statistically significant improvement over smaller
unit sizes (P (GRU -128/256/512 > GRU -16/32/64) ≥ .84). Yet, beyond this threshold
we see no significant difference between 128 and 512 units. On the other hand, for the
FFNN in most cases results are inconclusive, or in a few cases statistically equivalent, for
example, between FFNN-512 and FFNN-256 (P (rope) = .84).

Considering the results for the sequence join method, with the exception of FFNN-256,
we see an improvement over the summary join method. However, BSR tests comparing the
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Table 5.14: Results for the GRU and FFNN speaker encoder models,
using either summary or sequence join method, on the Maptask valida-
tion set. The number of units is the size of the hidden state, or number
of nodes, for GRU and FFNN respectively.

GRU FFNN

Units µ σ µ σ

Summary

16 69.12 0.61 71.32 0.56

32 70.23 0.88 71.42 0.42

64 70.16 0.62 71.94 0.64

128 71.15 0.71 71.73 0.42

256 71.26 0.57 71.98 0.48

512 70.99 0.5 72.07 0.56

Sequence

256 71.38 0.48 71.8 0.77

512 71.71 0.56 72.26 0.37

number of units reveals that again there is no statistically significant difference. Similarly,
when comparing the best summary and sequence models results are inconclusive, only
the FFNN-512-summary is shown to be statistically equivalent to the sequence approach
(P (rope) = .8).

Thus we conclude that, for the Maptask corpus including speaker information always
improves performance. Of the three approaches, the FFNN consistently resulted in higher
accuracy over the GRU, and both are preferable to simply concatenating the one-hot
speaker representations. Further, using larger number of units and the sequence join
method lead to marginal improvements, though in most cases this is not statistically
significant. Nevertheless, we adopt the FFNN with 512 units, using the sequence join
method, as our speaker context encoder for all remaining experiments.

5.2.3.2 Labels

For our label encoder experiments we conduct a scaled-down version of the speaker encod-
ing experiments. We maintain the GRU and FFNN for label encoding, but with only 256
or 512 units because these sizes were previously shown to improve performance, and input
labels will consist of larger one-hot vectors than speakers. Results for these two models,
using both summary and sequence join methods, are shown in table 5.15. It should be
noted that, throughout these experiments we use the ‘gold-standard’ labels from the cor-
pus itself. As with the inclusion of future utterances, using the gold-standard labels may
not be appropriate for certain tasks, such as dialogue management systems, where the
true labels are not available. Nevertheless, for other applications, and in line with other
studies (Ribeiro, Ribeiro, and De Matos, 2019), we wish to determine the upper bounds
of what is feasible when such contextual information is available, and leave comparison
with predicted labels for the following section (5.2.3.3).

As with the inclusion of speakers, incorporating contextual label information results in
consistent improvements over the utterance-only context model, though to a lesser degree.
The worst performing model, GRU-256-sequence, only achieves a +0.34% increase, while
the best model, FFNN-512-summary, results in an increase of +3.51%. Again, the FFNN
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Table 5.15: Results for the GRU and FFNN label encoder models, using
either summary or sequence join method, on the Maptask validation set.
The number of units is the size of the hidden state, or number of nodes,
for GRU and FFNN respectively.

GRU FFNN

Units µ σ µ σ

Summary

256 70.01 0.61 70.89 0.33

512 70.31 0.34 71.44 0.45

Sequence

256 68.27 0.45 69.97 0.57

512 68.72 0.4 70.36 0.42

outperforms the GRU in all cases, and BSR test confirm that, with the exception of FFNN-
256 compared to GRU-512 using the summary join method, this is statistically significant
(P (FFNN > GRU) ≥ .89). Similarly, a larger unit size consistently results in improved
performance, but for both models, and join methods, we see no statistically significant
results.

Results for label encoders are similar to those for speaker encoders, where the FFNN
and a larger unit size, reliably outperforms the GRU or a smaller unit size. However, in
contrast, our results show that the label encoders benefit from the summary join method,
and BSR test show this is statistically significant in all cases (P (Summary > Sequence) ≥
.93). Thus, for our label encoder we adopt the same architecture as the speaker encoder
(FFNN with 512 units), except we use the summary join method instead of sequence.

5.2.3.3 Speaker and Label Combinations

Here we present our results for including speakers and labels on the SwDA and CAMS-
KVRET corpora. We also investigate using combinations of both speakers and labels, as
well as predicted labels. To generate label predictions we process each utterance within
the dialogue segment in turn, concatenating with all previous utterances, to produce a
prediction at each timestep. For example, first a prediction is generated for the m − 5th

utterance, then the utterance encoding and its predicted label are concatenated with the
m − 4th encoding, to produce a prediction for that utterance, and so on up to the mth

utterance. Results for all speaker, label, and predicted labels are shown in table 5.16.
Beginning with speaker and gold-standard label combinations, we can see that for all

corpora including any such context information always improves upon the utterance-only
context model, particularly for speakers+labels. Notably, for Maptask the combination
improves upon speakers or labels alone, and represents a +7.1% increase over utterances-
only. To the best of our knowledge this represents a state-of-the-art result for this corpus.
For SwDA, it appears that including labels is more impactful than speakers, resulting in
a +2.03% improvement over utterances-only, while for speakers this is just +0.22%. How-
ever, for CAMS-KVRET, in each case we see only minimal improvements, with speak-
ers+labels achieving +0.3% over utterances-only.

Considering predicted labels, for both Maptask and CAMS-KVRET these resulted
in a slight decrease in performance when compared to utterances-only, and for Maptask
the improvement of speakers+predicted labels appears to be the contribution of speakers
alone. However, for SwDA, predicting labels does result in a small increase of +0.4%. We
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Table 5.16: Results for speakers, labels, and predicted labels context
information on the validation set for each corpora.

SwDA Maptask KVRET

Context Info µ σ µ σ µ σ

Speakers 80.96 0.44 72.26 0.37 93.93 0.31

Labels 82.77 0.4 71.44 0.45 94.12 0.24

Speakers+Labels 82.7 0.54 75.03 0.41 94.13 0.26

Pred-labels 81.14 0.32 67.72 0.56 93.78 0.19

Speakers+Pred-labels 80.96 0.33 72.17 0.6 93.86 0.26

Utterances-only 80.74 0.47 67.93 0.57 93.83 0.11

examine these results further by conducting BSR tests to compare each combination to
one another across all corpora:

• For SwDA, we find that including labels results in statistically significant improve-
ment over both speakers and utterances-only (P (Labels > Speakers/Utts-only) =
1). Yet the speakers+labels combination is equivalent to just labels (P (rope) = .81),
thus labels are the only extra contextual information that result in significant im-
provements. Both predicted labels, and speakers+predicted labels, are statistically
equivalent to speakers alone (P (rope) = .83), and in all other cases we see no signif-
icant differences.

• On Maptask, all speaker and gold-standard label combinations are clearly a signif-
icant improvement over the utterances-only baseline, and speakers represent a sta-
tistically significant improvement over labels (P (Speakers > Labels) = .84). That
speakers+predicted labels is statistically equivalent to only speakers (P (rope) = .88),
confirms our previous observation, and in all other cases we see no significant differ-
ences.

• Finally, for CAMS-KVRET, in all cases we see statistical equivalence (P (rope) ≥
.81), confirming that neither of these result in significant benefits for this corpus.

While we have observed that including speaker or label information is generally bene-
ficial, that we see some differences between these corpora is more intuitive if we consider
each of their domains. Within the non-task-oriented, general talk, of SwDA each speaker
is equally likely to produce any DA. This implies there is less correlation between se-
quences of speakers and specific DA labels. Sequences of labels however, do suggest the
next likely DA, and therefore we see improvements in performance when including those.
Our results coincide with those of previous work, which indicates label information is more
impactful than speaker for this corpus (Ribeiro, Ribeiro, and De Matos, 2019; Bothe et al.,
2018b). On the other hand, Maptask is task-oriented, with specifically defined roles for
both speakers and a strong correlation between a given speaker and certain DAs. Thus,
we see a significant improvements, particularly when including both kinds of contextual
information. Results for CAMS-KVRET are perhaps more surprising, because the corpus
is also task-oriented with clearly defined roles for both speakers. However, while some
DA are more likely to be associated with the driver role (such as requests), both speakers
are equally capable of, for example, asking or responding to a clarifying question, and
initiating or concluding a goodbye. Therefore, we see less correlation between speaker
and DA label. It may also be the case, that with high classification accuracy from context
utterances alone, adding further contextual information simply does not benefit the model.

98
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5.2.4 Classifiers

In our final set of DA classification experiments, we compare three sequential classifier
models with the FFNN used throughout our previous experiments. We test a CRF layer,
and two Seq2seq models, one using additive attention (Bahdanau, Cho, and Bengio, 2015)
and the other ‘hard’ attention. The latter two are an attempt to re-create the experiments
of Colombo et al. (2020), who use Seq2seq models with various different attention mecha-
nisms to achieve competitive results on the SwDA corpus.7 Throughout these experiments
we use the RoBERTa-LSTM context model with 5 previous utterances and no speaker or
label information. Results for accuracy and sequence accuracy – the predictions for each
utterance in the input dialogue segment – are shown in table 5.17.

Table 5.17: Classifier accuracy and sequence accuracy for the validation set of each corpora.

SwDA Maptask KVRET

Classifier µ σ seq-µ seq-σ µ σ seq-µ seq-σ µ σ seq-µ seq-σ

Seq2seq-Add 79.08 0.29 77.82 0.37 62.6 0.25 54.8 2.87 91.62 0.3 86.89 1.0

Seq2seq-Hard 79.29 0.4 78.12 0.34 62.74 0.34 57.44 2.26 91.48 0.4 87.4 0.89

CRF 80.61 0.7 80.19 0.82 67.26 0.32 65.95 0.3 93.56 0.22 92.44 0.18

FFNN 80.74 0.74 - - 67.93 0.57 - - 93.83 0.11 - -

Our results comprehensively show that in all cases the sequential classifiers do not
improve over the FFNN. In fact, both Seq2seq models resulted in significantly diminished
performance over the CRF and FFNN layers. Though, Colombo et al. (2020) provided
no code for their implementation, so it may be that our Seq2seq models were missing a
key detail that resulted in such poor performance. However, results for the CRF closely
matched that of a FFNN; on SwDA and CAMS-KVRET they are found to be statistically
equivalent (P (rope) ≥ .8), but on Maptask we see no significant results. Thus we conclude
that, despite its widespread use within the DA classification literature, a CRF does not
produce higher classification accuracy than FFNN approaches, and we therefore maintain
the latter as our classifier component.

5.2.5 Context Encoding Summary

Throughout this section we have explored numerous context encoding architectures for
the purpose of DA classification on the SwDA, Maptask, and CAMS-KVRET corpora.
First, we considered the inclusion of previous, and future utterances, and evaluated both
convolutional and recurrent context encoder models. Our results show that, including
just a single context utterance (previous or future) always improves performance over the
single-sentence baseline. Increasing the size of the input dialogue segment also tends to
improve performance, but only up to a point, and typically beyond 2-3 utterances we
see no statistically significant difference in performance. Additionally, the convolutional
context encoder was shown to benefit from dialogue segments which include both future
and previous utterances, while the recurrent models performed better with either previous
or future context. This is likely due to the manner in which these models process the input
dialogue segment, either performing convolutions over the entire segment, or processing
each utterance in turn.

Next, we investigated the inclusion of contextual information, in the form of speakers
and labels. For both speakers and labels the FFNN with the largest number of units
tested (512) was shown to outperform the flatten and GRU methods. However, our results
show that joining the speaker encodings using the sequential method resulted in better

7A key difference is that for our models we did not include beam search. However, our results indicate
that the improvement the authors claim beam search made are inconsequential to our model.
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performance, while for labels using the summary vector was preferable. Interestingly, we
found that while including speaker or gold-standard label information always improved
performance over an utterance-only context model, results varied significantly between our
three corpora. On Maptask we see statistically significant improvements when including
both speakers and labels, even more so in combination. We speculate that this is likely
due to the nature of the corpus being task-oriented, with clearly defined roles for both
speakers. Yet, for SwDA only the inclusion of labels (predicted or gold-standard) resulted
in significant improvements, and on CAMS-KVRET we saw no statistically significant
results.

Finally, we compared the use of sequential classifiers to a standard FFNN. In all cases
we found the FFNN superior to the Seq2seq and CRF models, though performance of the
CRF was generally equivalent to a FFNN, and therefore we maintain the latter for our
classification layers.

Table 5.18: Final RoBERTa-LSTM context models validation and test
set accuracy for each corpus. Full context results are obtained using
4 previous and 1 future utterances, speakers, and labels. For partial
context we use 5 previous utterances and speakers.

Validation Test

Corpus µ σ µ σ

Full Context

SwDA 83.61 0.23 81.47 0.25

Maptask 75.64 0.57 77.40 0.58

KVRET 93.93 0.30 94.33 0.38

Partial Context

SwDA 80.96 0.44 78.85 0.39

Maptask 72.26 0.37 73.04 054

KVRET 93.93 0.31 94.53 0.42

On the basis of our context encoding experiments we select the RoBERTa-LSTM with
a FFNN classifier as our base context model. Where speaker or label context is included
we use a FFNN with 512 units, speakers are join with the sequence method, and labels
with a summary. Using this model, final results for the validation and test set of each
corpus are shown in table 5.18. Here, we present results for ‘full context’, which uses all
available context information, and ‘partial context’, which only uses context information
that would be available to a dialogue system. Specifically, full context uses 4 previous and
1 future utterance, the speakers, and gold-standard labels, whereas partial context uses
the 5 previous utterances and speakers.

For both SwDA and Maptask the full context inputs result in a statistically significant
increase over partial (P (Full > Partial) = 1), with a ˜+2.6%, and ˜+3.9% improvement
respectively. These SwDA results are equivalent to, or competitive with, results reported
within the literature (He et al., 2021; Raheja and Tetreault, 2019), while for Maptask,
to the best of our knowledge, partial context alone represents an ˜5% improvement over
the best previously reported results (Wan et al., 2018). On the other hand, for KVRET
there is no notable difference between the two context inputs. We explore this observation
further, along with the automatic identification of AP, in the next chapter.
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Chapter 6

Adjacency Pair Identification

In this chapter we present experimental results for the final phase of our dialogue classifica-
tion system, AP classification and the development of a multi-label classifier, as discussed
in 3.2 (O3, 04, Q2, and Q3). We begin with CAMS single-label classification in Section
6.1, where we obtain results for each label type within CAMS, using the classification
model developed in the previous chapter. Then, in Section 6.2, we present results for
the different CAMS multi-label classifier architectures that are capable of simultaneously
identifying both the DA and AP of a given utterance, and hence its AP-type, as discussed
in 3.2.3.1

6.1 CAMS Single-labels

For our CAMS single-label classification experiments we utilise the RoBERTa-LSTM con-
text model to replicate the context utterance, speakers, and labels experiments for AP, to
determine if our findings for DA also apply to AP. For reference, and to determine a set of
non-contextual single-sentence baselines for CAMS-KVRET, we re-applied the RoBERTa
sentence encoder to each label type within the corpus. Baseline results for validation and
test set accuracy are shown in table 6.1, along with two further baseline classifiers ‘Prior’
and ‘Most Frequent’. The former represents a classifier that generates label predictions
according to the actual distribution of labels within the training data, while the latter is
the accuracy obtained by simply choosing the most common label for all predictions. The
single-sentence baseline results show AP labels are able to reach a similar accuracy as DA.
Though, we must consider that for AP there is significant class imbalance, with the two
most frequent labels, FPP-base and SPP-base, constituting 74.22% of all labels. However,
recall that there are 104 AP-type labels within the corpus, and yet accuracy also remains
high for AP-types, despite the significant increase in the number of labels. This suggests
that, even without context, the classifier is able to learn associations between the semantic
content of an utterance and appropriate AP, or AP-type labels.

6.1.1 The Benefit of Context Utterances for CAMS

In this section we re-create our context utterance experiments from section 5.2.2. We
tested all combinations of previous and future utterances that sum to 5 for both DA and
AP – which were not previously included in the full context utterance experiments – to
determine if the optimal number, or combination, of context utterances is similar for both
label types. Results for both label types across all context combinations are shown in
figure 6.1.

1All code, data, and accompanying analysis for the CAMS classification experiments is available
at:github.com/NathanDuran/CAMS-Dialogue-Classification.
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6.1. CAMS Single-labels

Table 6.1: CAMS-KVRET Single-sentence baselines for validation and test set. Prior
represents a classifier that generates label predictions according to the actual label distri-
bution within the training data, and Most Frequent is the accuracy obtained by simply
choosing the most common label.

RoBERTa Prior Most Frequent

Validation Test Validation Test Validation Test

Label Type µ σ µ σ

DA 88.97 0.54 88.46 0.52 10.98 12.23 13.98 14.88

AP 86.01 0.55 86.08 0.58 29.6 29.7 37.11 37.05

AP-type 79.0 0.82 79.22 0.5 6.64 8.90 13.15 13.96

(a) DA (b) AP

Figure 6.1: Mean validation set accuracy for DA and AP labels, using
previous and future context utterance combinations that sum to 5.

From these results we can make two observations: i) across each of the context utter-
ance combinations we see the same pattern for both DA and AP, and ii) context appears
to be slightly less impactful for AP than it does for DA. We discuss our first observa-
tion, and examine these results further, by conducting BSR tests to compare each context
combination for both label types:

• For both label types the optimal combination of context utterances is the same, 4 pre-
vious and 1 future, and this represents an increase of +5.61% and +3.56% for DA and
AP respectively. This generally coincides with our full context results for the Map-
task corpus discussed in Section 5.2.2.2, where we observed that including 1 future,
and larger numbers of previous utterances, typically improved performance. Also,
that adding additional future utterances yielded diminishing returns. Though, on
Maptask the above is true for the RoBERTa-CNN context model, while here it is also
the case with RoBERTa-LSTM. Nevertheless, for both label types using the optimal
combination of previous and future utterances represents a statistically significant
improvement over using either alone (P (Full-best > Prev/Future-best) ≥ .99).
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• Considering only previous utterances, again we see that including just 1 results in a
significant improvement over the single-sentence baseline of +4.24% and +1.94% for
DA and AP respectively, and in all cases this is statistically significant (P (Context >
No-context) ≥ .99). Additionally, for both label types, increasing the size of the
context window tends to improve performance, with 5 previous utterances resulting
in the highest accuracy. Though, in most cases we see minimal difference between
5 previous utterances or fewer. In only one case do we see statistically significant
results, that is for DA when comparing 5 previous utterances to 1 (P (5-context >
1-context) = .82), and all other cases are either statistically equivalent (P (rope) ≥
.82), or inconclusive.

• Similarly, for future utterances including just 1 results in an improvement over the
single-sentence baseline, though overall the benefit is negligible at ≤ 0.67% and ≤
0.82%, for DA and AP respectively. Indeed, only for AP with 2 context utterances do
we see a significant difference over the baseline (P (2-context > No-context) = .88).
Again, we see minimal difference when comparing different size context windows, and
for both label types we see statistical equivalence (P (rope) ≥ .85), or inconclusive
results.

Our second observation – that including context utterances results in a smaller accu-
racy increase for AP than for DA – is surprising, because AP might naturally take place
over longer sequences of utterances, so intuitively one might expect larger context windows
to benefit AP more. However, a further complication is that, in certain situations it may
be difficult to select between one of several labels. For example, if a SPP-base has just con-
cluded a pair, the following utterance could be the beginning of a new base-pair, post-pair,
or minimal post expansion. To select between these options it must be decided whether
the following utterance(s) are recognisably associated with the preceding sequence, and
there may only be a subtle variation within the semantic content. Similarly, a singular
Insert or Post label could be mistaken for the completion of a base or insert-pair. This
problem is closely related to the ‘semantic ambiguity’ faced by our human annotators, and
discussed in 4.2.5.2. This notion is illustrated in figure 6.2, which shows confusion matri-
ces for a contextual and non-contextual model, and table 6.2 that displays the per-label
change in F1 score between the two approaches.2

Table 6.2: Per-label AP F1 score comparison between contextual and
non-contextual model predictions on the validation set.

Label Count No-Context Context Change

FPP-base 632 0.91 0.96 +.05

SPP-base 632 0.91 0.91 ±.0
FPP-insert 132 0.82 0.89 +.07

SPP-insert 132 0.78 0.86 +.08

Post 73 0.34 0.63 +.29

Insert 51 0.4 0.48 +.08

FPP-post 24 0.06 0.14 +.08

SPP-post 24 0.0 0.0 ±.0
Pre 3 0.0 0.0 ±.0

Firstly, we can see that the non-contextual model more often predicts the two most
common labels, and this is where the majority of incorrect predictions arise. With the

2A similar figure for DA labels can be found in appendix G.1.
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contextual model we see a significant reduction in this behaviour and it more often correctly
predicts insert pairs, and Insert or Post expansions. For the latter we see an increase in
F1 score of +.29 between the two models. However, there is still a considerable amount of
confusion around the SPP-base, and Insert or Post labels. Indeed, the contextual model
so frequently predicts Post, when the true label is SPP-base, that the overall correct
predictions of SPP-base decreased, and the F1 score remains static. This alone equates to
a 1.76% loss in accuracy, which accounts for most of the ˜2% disparity between DA and
AP observed previously. Interestingly, because a Post expansion must take place after
the completion of a base-pair, this also indicates the model is not correctly finishing base
pairs. Again, this mistake is not dissimilar to those of our human annotators discussed in
4.2.5.2. Nevertheless, that the model is predicting Insert and Post for SPP-base, and not
for FPP-base, along with the high accuracy and F1 scores for base and insert pairs, suggest
the model is able to capture some aspects of the sequential relationships between AP. It
should also be noted that neither contextual nor non-contextual models predict complete
post pairs. In fact, no SPP-post labels are predicted in either case. Though this is likely
due to an imbalance between the training set compared to the validation and test sets,
which contain 0.65% to 1.6% fewer post pairs respectively. Similarly, the Pre expansion
label only appears 3 times within the validation set, and is not predicted at all.

(a) No-context (b) Context

Figure 6.2: Confusion matrices for AP predictions on the validation set
using non-contextual (a), and contextual (b), classification models.

Briefly considering the impact of context on DA, table 6.3 displays the per-label change
in F1 score between the two approaches. Notably the answer and inform labels show the
most significant increases in F1 score. The non-contextual model was frequently confusing
these two labels, which is unsurprising given the communicative function and semantic
content of their associated utterances is likely very similar. Indeed, the non-contextual
model miss-classified inform as answer 38 times, and vice versa 39 times. The contextual
model is able to differentiate between these two, and the incorrect predictions are reduced
to 8 (+1.76%), and 14 (+1.47%) respectively, which represents an accuracy increase of
+3.23%, and makes up a significant proportion of the overall improvement (+5.61%).
Curiously, the contextual model actually performs worse on four label types, autoPositive,
choiceQuestion, goodbye, and suggest. However, these labels combined only appear 45
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times, or make up 2.64% of the validation set, so the overall impact is negligible.

Table 6.3: Per-label DA F1 score comparison between contextual and
non-contextual model predictions on the validation set.

Label Count No-Context Context Change

thanking 238 0.98 0.98 ±.0
acceptThanking 233 0.97 0.98 +.01

setQuestion 221 0.98 0.98 ±.0
request 214 0.94 0.95 +.01

answer 204 0.74 0.88 +.14

inform 164 0.66 0.85 +.19

propositionalQuestion 136 0.96 0.96 ±.0
accept 131 0.91 0.91 ±.0
confirm 62 0.85 0.90 +.05

disconfirm 52 0.91 0.91 ±.0
autoPositive 22 0.79 0.73 −.06

choiceQuestion 14 0.97 0.72 −.25

goodbye 6 0.92 0.83 −.09

suggest 3 0.8 0.0 −.8
checkQuestion 2 0.0 0.0 ±.0
apology 1 0.0 0.0 ±.0

6.1.2 The Influence of Speakers and Labels

In this section we re-create our speaker and label context experiments from section 5.2.3.
The previous approach is adapted, such that we may begin to explore the association
between the two label types, and whether the contextual information provided by one
may provide useful information when predicting the other. Thus, we test the inclusion of
speakers, DA and AP labels, or a combination of both label types, and evaluate the impact
on AP and DA classification. Results for both label types across all context combinations
are shown in table 6.4. This data was gathered using 5 previous utterances as input, and
for the Speakers+Labels combination, the label type included is the one being predicted.

Table 6.4: Results for speakers, DA and AP label context information
on the validation set. Note that for Speakers+Labels, the label type
included is the one being predicted.

AP DA

Context Info µ σ µ σ

DA Labels 88.81 0.43 94.12 0.24

AP Labels 93.1 0.35 94.33 0.28

AP+DA Labels 93.55 0.17 94.57 0.28

Speakers 88.57 0.43 93.93 0.31

Speakers+Labels 93.34 0.42 94.13 0.26

Utterances-only 88.36 0.35 93.83 0.11
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Beginning with DA, we can see from table 6.4 that, in agreement with our previous
experiment (5.2.3.3), the inclusion of speaker and label information has minimal impact
on DA classification. However, the best results are achieved when including both AP and
DA labels and this represents a +0.74% increase compared to the inclusion of speakers
or utterances-only. BSR tests also confirm that this is statistically significant (P (AP +
DALabels > Speakers/Utts-only) = .8), and in all other cases results are statistically
equivalent (P (rope) ≥ .89) or inconclusive.

For AP we see quite a different picture. In each case where AP labels are in-
cluded there is a significant improvement over other context types. Again, the best re-
sults are achieved when including AP+DA Labels, which represents a +5.19% increase
compared to utterances-only and is statistically significant in all cases (P (AP/AP +
DALabels/Speakers + Labels > Speakers/Utts-only) = 1). However, speakers and DA
labels seem to have a similarly minimal impact on AP classification. Comparing the inclu-
sion of speakers and DA labels to utterances-only, for the former we find them to be statis-
tically equivalent (P (rope) = .85), the latter marginal but inconclusive (P (rope) = .79).

Figure 6.3: Confusion matrix for AP predictions on the validation set
using AP and DA label context information.

The benefit of including contextual label information for predicting AP is illustrated in
fig 6.3, and table 6.5, which shows the per-label change in F1 score between an utterance-
only context model and one that also includes DA and AP label information. Comparing
the confusion matrices in figure 6.3 and 6.2b, we see a reduction in the number of in-
correctly classified SPP-base, and insert-pair labels. Additionally, there is a significant
increase in the number of correct classifications for Post and Insert, while SPP-post is
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now being predicted with 100% accuracy. These results suggest that the model is not only
better able to disambiguate between appropriate Post and Insert utterances, but has also
learnt a more correct representation of AP sequences; because SPP base, insert, and post
pairs are more often correctly completed. Instead, we now predominantly see confusion
around FPP-base, and either Post or FPP-post labels, or SPP-base and Insert labels. In
both cases these mistakes are intuitive, because the model was given no future context
information. Thus, upon completion of a prior pair, the next utterance could reasonably
be the beginning of a new base or post pair, or a post minimal expansion. Similarly,
without a further utterance for context, it is more correct to complete the current base
pair than to assign a single insert expansion.

The considerable increase in performance when prior labels are provided implies that
AP, unlike DA, are more representative of the overall dialogue structure and sequential
order of utterances. Previous AP labels are therefore more predictive of appropriate future
AP, while in contrast sequences of DA are less indicative of suitable future labels. This
observation supports the core principle of our proposed approach, that DA labels can be
considered descriptions of the intra-utterance features of a dialogue, while AP represent the
inter-utterance features. However, it appears that including DA when predicting AP, or
vice versa, is not overly beneficial in either case. This is somewhat surprising given that one
might expect some DA to be highly correlated with certain AP, and conversely, some AP
may be more often associated with certain DA. For example, FPP are more often associated
with requests and questions, and SPP are more frequently answers, informs, and accepts.
Yet, it appears the model is unable to make use of such information, possibly because there
are so many potential combinations due to the lack of strict association within CAMS.
This observation is explored further with our CAMS multi-label experiments in section
6.2.

Table 6.5: Per-label AP F1 score comparison between utterance-only
and AP+DA labels contextual model predictions on the validation set.

Label Count No-Labels Labels Change

FPP-base 632 0.96 0.96 ±.0
SPP-base 632 0.91 0.97 +.06

FPP-insert 132 0.89 0.94 +.05

SPP-insert 132 0.86 0.97 +.11

Post 73 0.63 0.81 +.18

Insert 51 0.48 0.63 +.15

FPP-post 24 0.14 0.07 −.07

SPP-post 24 0.0 1.0 +1.0

Pre 3 0.0 0.0 ±.0

6.1.3 Evaluating CAMS Single-label Classification

In this section we present our final results for single-label CAMS dialogue classification. For
each label type we gather accuracy and top-k accuracy on the CAMS-KVRET validation
and test sets, and for the latter we additionally report the macro averaged F1, and weighted
F1 scores. Again, we obtain results for ‘full context’, which uses all available context
information, and ‘partial context’, which only uses context information that would be
available to a dialogue system. Specifically, full context uses 4 previous and 1 future
utterance, as well as speaker, DA, and AP labels as input, and for partial context, we use
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5 previous utterances and speakers only. Results for each of these measures are shown in
table 6.6.

Table 6.6: Full and partial context models validation and test set accuracy and top-3 ac-
curacy, as well as macro and weighted F1 scores, for each label type. Note that, AP results
for partial context differ slightly from those previously reported because experiments were
repeated in order to gather top-k accuracy measures.

Validation Test

Label Type µ σ top3-µ top3-σ µ σ top3-µ top3-σ macro-F1 weighted-F1

Full Context

DA 94.54 0.27 99.27 0.19 94.52 0.31 98.91 0.15 0.75 0.94

AP 99.38 0.11 99.97 0.03 99.18 0.18 99.95 0.06 0.94 0.99

AP-types 91.61 0.58 97.22 0.15 90.43 0.38 96.09 0.21 0.54 0.89

Partial Context

DA 93.99 0.38 99.34 0.07 94.34 0.33 99.07 0.12 0.7 0.94

AP 88.29 0.42 97.29 0.23 88.4 0.44 97.06 0.74 0.64 0.86

AP-types 84.86 0.47 94.48 0.46 84.61 0.4 93.16 0.29 0.31 0.81

Beginning with DA results, we can see that in agreement with our previous findings,
including future utterances, speakers and labels has a minimal impact, with an improve-
ment of just +0.55%, and +0.18% on the validation and test accuracy respectively, though
the macro-F1 does improve by +.05%. BSR tests also confirm that this is not significant
(P (Full > Partial) = .59). However, regardless of context information, top-3 accuracy is
≥ 98.9%, which indicates that the correct label is consistently in the top-3 predictions.

Both AP and AP-types show significant improvements when full context information is
included. Remarkably, AP achieve≥ 99.1% accuracy with full context, which represents an
average increase of +10.9%. Macro and weighted F1 also increased by +.24% and +.13%
respectively. On the other hand AP-types reach ≥ 90.4% accuracy with full context, an
average increase of +6.3%, and macro and weighted F1 scores improve by +.23% and
+.08% respectively. For both label types this is also statistically significant (P (Full >
Partial) = 1). Again, regardless of context information, top-3 accuracy is significantly
higher than base accuracy for AP and AP-types (with the exception of APs and full
context, where they are both > 99%), though, for partial context in particular it is ˜9%
higher. High top-3 accuracy in all instances suggests that the model is often selecting from
a small subset of possible labels. Thus, even where final predictions are incorrect, the
correct label lies within the next two most probable labels. We consider the implications
of this observation at the end of this section.

Label Cardinality and Distribution Our results agree with previous observations,
that both AP and AP-types benefit more from the sequential, or relational, information
provided by the context of surrounding utterances and their labels. In contrast, for DA this
kind of contextual information seems largely inconsequential, which suggests the semantic
content of the utterances themselves is more important. However, we must also consider
these results from another perspective, and that is the difference between the number and
distributions of the different label types. Recall the baseline results reported in table 6.1,
which shows comparatively high accuracy for AP when using a classifier that assigns labels
according to the prior distribution, or simply selecting the most frequent label. This is
caused by the high prevalence of base pairs, which combined make up ˜74% of all labels
in the corpus. One possibility is that the high prevalence of just a few label types, and
that there are simply fewer AP labels to choose from, skews the observed improvements
for AP and makes comparison between AP and DA difficult. Particularly regarding top-k

108



6.1. CAMS Single-labels

accuracy where fewer label types would naturally lead to higher values. Therefore, it may
be beneficial to consider the difference, or improvement, between our contextual models
and the baseline classifiers. The difference in validation set accuracy, between full and
partial context models and the baseline classifiers, is shown in figure 6.4.3

Figure 6.4: Difference in validation set accuracy and top-3 accuracy,
between full and partial context models and the baseline classifiers
(RoBERTa, prior, and most frequent label).

As expected, for DA we see fairly consistent improvements over the baselines for both
context models, while both AP and AP-types show greater improvement over the single-
sentence baseline when using full context information. For AP the smaller improvement
over the prior and most frequent baselines is due to the high prevalence of base-pair
labels mentioned previously. Notably, with partial context AP improve by only +2.28%
over the single-sentence baseline. On the other hand, for AP-types using either context
model results in a larger improvement over the single-sentence baseline than that of DA.
Additionally, improvements over prior and most frequent baselines are comparable to
those of DA, despite the baseline accuracies being significantly lower in most cases. These
findings seem to discount the notion that the high frequency of a few AP labels was
contributing to large gains in accuracy, and top-3 accuracy, when compared to DA labels.
We may also consider the number of labels in each of these groups; there are 104 AP-type
labels within the corpus, which is more than 11 times the number of AP (9), and more
than four times the number of DA (23). With increasing numbers of labels one might
typically expect lower predictive accuracy, and if we compare DA or AP to AP-types
this is indeed the case. However, that we observe larger improvements over each of the
baseline classifiers for AP-types, particularly for top-3 accuracy, suggests that the observed
improvements for AP is also not due to the number of labels.

Components of AP-types We have observed that AP-types, like AP, benefit more
from the context of surrounding utterances than DA. However, even with partial context
AP-types show greater improvement over the single-sentence baseline than either DA or
AP. These findings seem to suggest that when predicting AP-types, the contextual models
are simultaneously learning the intra-utterance, or semantic content, aspects of DAs, and
also the inter-utterance, or structural, features provided by AP. To explore this possibility

3Exact figures can be found in appendix G.1.
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we can consider the number of incorrect predictions for each label type, and further,
determine how many occasions incorrect DA or AP predictions overlap with those of AP-
types. Examining the number of incorrect validation set predictions from three different
classifiers, each using partial context to predict a different label type, we find that:

• The DA classifier made 108 incorrect predictions, AP 195, and AP-types 246. Thus,
predicting AP-types, despite significantly more labels, results in fewer inaccuracies
than predicting the DA and AP components separately.

• If we concatenate the individual DA and AP predictions to form AP-types, we find
34 instances where both labels were incorrect, and of these, AP-types were also
incorrect on 33 occasions. In other words, there are only 33 instances (˜1.9% of the
validation set) where predictions for all three label types were incorrect. Of these
there are also 23 instances where predictions were the same.

• We may also consider the number of instances where the individual components of
AP-types (DA or AP) were incorrect, and compare these to the instances where the
separately predicted label type was also incorrect. We find that the AP-types DA
component was incorrect on 105 instances, and the AP component on 191. Of the
108 incorrect DA predictions, the AP-types DA component was also incorrect on 76
occasions (˜70%), and of these, 70 predictions were the same. For the 195 incorrect
AP predictions, the AP component was also incorrect on 153 (˜78%) of instances,
and of these, 122 predictions were the same.

These figures show that there is a significant amount of overlap, not only for the
instances of incorrect predictions, but the predicted labels themselves. Thus, whether
comparing concatenated DA and AP labels to AP-types, or the individual components,
all three label types tend to make similar mistakes. In conjunction with the improvements
over baseline classifiers previously discussed, this demonstrates that when predicting AP-
types the model does indeed learn the semantic and structural aspects of both the DA and
AP components. We can explore this further by scrutinising some examples. Table 6.7
shows the actual and predicted labels for the validation set dialogue Val 302. This dialogue
was chosen because it contains 2 of the 33 utterances where all label types predictions were
incorrect, yet agreed.

Table 6.7: Actual and predicted labels for the validation set dialogue Val 302.

Utterances Actual Predicted

USR 1: I need the time and parties for taking medicine please. FPP-base request FPP-base request

SYS 1: For which one? Insert choiceQuestion Insert choiceQuestion

SYS 2: I have three, one with Jeff at 11 am. SPP-base inform SPP-base inform

SYS 3: One with Alex at 10am, and one with your Mother at 2pm. Post inform SPP-base answer

USR 2: That will do just fine, goodbye. FPP-base goodbye Post autoPositive

SYS 4: you are welcome SPP-base acceptThanking SPP-base acceptThanking

Beginning with turn SYS 3, we can see that the prediction of SPP-base is invalid
because the prior FPP-base has already been concluded. This turn should in fact be
assigned a Post label, because it is a continuation of turn SYS 2. For similar reasons answer
is also incorrect, this turn is a continuation, and additionally the inform DA is responsive
to the original request for information. The former mistake is certainly reminiscent of the
incorrect usage of FPP and SPP we observed amongst our human annotators in section
4.2.5.2. The latter, is likely due to the difficulty of disambiguating these two semantically
similar labels, as discussed in 6.1.1. Interestingly, the second most probable label for the
AP model is Post, for the DA model inform, and for the AP-type model SPP-base inform.
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In other words, the DA and AP models second most likely predictions are correct, and
the DA component of the AP-type models is correct.

Without knowledge of the following turn, the incorrect Post label for turn USR 2 would
actually be correct, if the previous turn was a SPP as predicted. Unfortunately, this also
creates a second invalid SPP for turn SYS 4. However, for the DA component of turn
USR 2 we find an interesting result. The ‘correct’ label is goodbye, while the predicted
label is autoPositive. In fact, this utterance is both, a signal of positive understanding
or feedback, and a goodbye. This is a clear example of a multidimensional utterance
that comprises several communicative functions (Petukhova, 2011; Bunt, 2006); which
several DA annotation schema attempt to model, including DiAML, and SWBD-DAMSL.
It is therefore interesting to note that the second most probable label for the DA model
was goodbye. Further, the probabilities for both these labels are very close, at 32.6% for
autoPositive, and 29.5% for goodbye. Put another way, the model was able to recognise
the multidimensional nature of this utterance and ‘had difficulty choosing’ between the
two possibilities.

Utility of Top-k Throughout this section we have highlighted several instances where
examining the top-k predictions provided insight into the behaviour of our models. In our
view, these reveal several reasons why considering top-k predictions may be useful if such a
model is used as a component of a dialogue system – to determine user intents or dialogue
state. If the classifier ‘confidence’ for the predicted label is below a certain threshold,
it may provide additional information for the dialogue manager to select an appropriate
action. As we have previously shown, on occasion our model assigns invalid SPP labels
where there is no previous FPP to conclude. This could be solved algorithmically, to
prevent incorrect pair usage. However, if the two or three most probable labels are SPP,
this strongly indicates that the utterances in question is responsive to a previous utterance,
rather than the initiation of a new sequence. Similarly, without knowledge of any future
utterances, the presence of post-type labels indicates the utterance is associated with the
preceding sequence. At the same time, for DA we have shown that the top-k predictions
may be used to identify multidimensional utterances. Using turn USR 2 from table 6.7 as
an example, autoPositive signifies the user is satisfied with, and understands, the previous
response, while goodbye expresses their desire to end the conversation, and the system can
respond appropriately. Further, there may be several valid response types for particular
utterances (Feng et al., 2021; Zhang, Ou, and Yu, 2020), and therefore knowing the 3
most likely label types the model has selected, along with their probabilities, may yield
valuable information for other components of a dialogue manager.

6.2 CAMS Multi-labels

For our multi-label experiments we explore three different architectures, DA First, AP
First, and Parallel, shown in figure 6.5. Each of these use the dialogue segment vector d
produced by the context encoder model, and then apply different arrangements of classifier
layers. In the case of DA First, classifier layers first generate predictions for the current
DA label. The predicted probabilities over all labels, are then concatenated with d and
input into the AP classifier layers. Finally, the DA and AP predictions are concatenated
with d and passed to the AP-type classifier layers, producing a model that is capable
of outputting DA, AP, and AP-type predictions for a given input dialogue segment. AP
First performs the same operation, except predictions are first generated for AP and then
passed to the DA classifier. In the parallel arrangement, we simply produce DA and
AP predictions independently of each other, before concatenation with d for generating
AP-type label predictions.
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Figure 6.5: Three proposed CAMS Multi-label classification architec-
tures, DA First, AP First, and Parallel. Each arrangement of classifier
layers produces a DA, AP, and AP-type prediction for the current target
utterance. Intermediate predictions, or top-k predictions, are concate-
nated with the dialogue segment encoding d , before being passed to
subsequent classifier layers.

Our intention is to explore various combinations of dialogue segment encodings and
current label predictions, to determine whether the addition of probabilities for a given
label type are beneficial when predicting other label types. In other words, does informa-
tion about the probable DA labels improve the classification of AP labels, or vice versa,
and similarly, do the probabilities for the component labels improve AP-type prediction.
Further, because each of these approaches simultaneously produce predictions for the in-
dividual DA and AP labels, as well as AP-types, we are able to classify dialogue segments
with CAMS labels using only a single model.

For each configuration we may optionally concatenate only the top-k predictions, in-
stead of the predicted probabilities over all labels, allowing the following classifier layers
to focus only on the k most likely set of labels. For example, we may pass only the top
3 DA predictions to the AP classifier, thus removing potentially redundant probabilities
from the input to the later classification layers. Given that we have consistently found
high top-k accuracies, the purpose of the latter approach was to allow the model to focus
only on the most probable labels. However, in practice there were only minor differences
in performance between the two, and BSR test confirm that they were either statistically
equivalent, or inconclusive (P (rope) ≥ .71). Nevertheless, we found that using the top-3
probabilities resulted in marginally higher performance in most cases, and we report those
results here. Table 6.8 shows validation and test set results for each label type and the
three different multi-label architectures, using partial context information.4

4Results obtained using all probabilities and only top-3 can be found in appendix G.1.
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Table 6.8: Validation and test set accuracy and top-3 accuracy, as well as macro and
weighted F1 scores, for each label type. DA First, AP First, and Parallel are the three
different multi-label architectures tested, and results shown are obtained using the top-3
probabilities.

Validation Test

Label Type µ σ top3-µ top3-σ µ σ top3-µ top3-σ macro-F1 weighted-F1

DA First

DA 93.58 0.31 99.1 0.08 94.46 0.31 99.03 0.1 0.7 0.94

AP 88.88 0.34 97.65 0.29 88.58 0.18 97.83 0.41 0.75 0.87

AP-types 85.43 0.31 93.52 0.56 85.05 0.32 92.47 0.53 0.28 0.81

AP First

DA 93.48 0.35 99.11 0.07 94.47 0.48 99.06 0.13 0.7 0.94

AP 88.58 0.3 97.51 0.23 88.37 0.44 97.9 0.47 0.73 0.86

AP-types 85.05 0.39 93.63 0.52 84.7 0.48 92.53 0.51 0.28 0.81

Parallel

DA 93.68 0.24 99.09 0.11 94.37 0.31 99.04 0.12 0.7 0.94

AP 88.62 0.18 97.57 0.17 88.34 0.33 97.94 0.53 0.72 0.87

AP-types 85.03 0.16 93.81 0.51 84.76 0.36 92.63 0.39 0.28 0.81

From these results we can see there is only minor performance differences between
the three configurations. Both AP and AP-types performed slightly better using DA
First, and for DA it was the Parallel configuration. However, BSR test comparing each
configuration confirm that for DA and AP labels results are statistically equivalent in
all cases (P (rope) ≥ .85), and for AP-types equivalent or inconclusive (P (rope) ≥ .74).
With no clear improvement from any of these configurations it is also worth determining
if there is any advantages, or disadvantages, to using the multi-label approach as apposed
to single-label.

Comparing Single-label and Multi-label Approaches If we compare our single-
label partial context results (Table 6.6) to those of our multi-label architectures, we find
they are largely the same in most cases. BSR tests confirm that for DA the best multi-label
arrangement (Parallel) and single-label validation accuracies are statistically equivalent
(P (rope) = .85), while for both AP and AP-types, using the DA first arrangement, we see
no significant results. For AP we do see a higher macro-F1 score of +.08 to +.11, though
considering the static weighted-F1 score this indicates the average per-label F1 for some
less frequent labels has increased, while for some more common labels it has decreased.
However, we can explore the difference between these two approaches using two further
measures, the number of incorrectly labelled instances and the overall confidence of the
models predictions. Beginning with incorrect instances we compare results for the single-
label and DA first multi-label approaches:5

• The multi-label DA classifier made 108 incorrect predictions, the same as single-
label. For AP 187, and for AP-types 251 were incorrect, which is 8 less and 5 more
than single-label respectively.

• Again, concatenating the individual DA and AP predictions to form AP-types, we
find 41 instances were were incorrect, the same for AP-types, and of these, 26 in-
stances where the single-label model was also incorrect. Thus, we see slightly more
overlap of incorrect instances when using a multi-label approach.

5We chose DA first because it resulted in the best performance for AP and AP-types, while for DA it
resulted in only a single instance difference.
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• Comparing the number of instances where the individual components of AP-types
(DA or AP) were incorrect, to instances where that separately predicted label type
was also incorrect: we find that the AP-types DA component was incorrect on
114 instances, and the AP component on 187, compared to the single-label model,
at 105 and 191 respectively. Of the 114 incorrect DA predictions, the the AP-
types DA component was also incorrect on 99 occasions (˜91%), and of these, 68
predictions were the same as single-label. For the 187 incorrect AP predictions, the
AP component was also incorrect on 170 (˜91%) of instances, and of these, 138
predictions were the same as single-label.

Overall, as well as a slight improvement for AP labels, we see much more consistency
of incorrect predictions between the individual labels and their respective AP-type com-
ponents. This suggest the model is indeed using the DA probabilities when predicting
AP labels, but they are not making a large enough impact to be reflected in our metrics.
This is further illustrated when we examine the average probability, or ‘confidence’, of the
chosen label. Table 6.9 shows the overall mean probability for each label type, as well as
the average probability for incorrect and correct labels, when using the single-label and
multi-label models.

Table 6.9: Mean prediction probabilities for each label type using the
single-label and multi-label approaches.

Label Type Single-label DA First AP First Parallel

All

DA 94.72 94.35 94.93 93.18

AP 92.08 93.3 92.82 91.57

AP-types 88.27 88.57 88.72 86.12

Correct

DA 96.16 95.95 96.42 94.83

AP 94.99 95.75 95.98 94.63

AP-types 92.41 92.57 92.99 90.84

Incorrect

DA 73.46 70.68 74.23 68.51

AP 69.58 73.4 70.58 66.98

AP-types 63.72 65.4 64.5 58.84

Firstly, we can see that in each case confidence is lower when using the Parallel con-
figuration and this is likely because the model must consider more information than the
specialised single-label models, whilst being unable to make use of the DA or AP prob-
abilities for those label types. Generally there are fairly minor differences between all
labels and the correct predictions. It is noticeable, however, that for AP and AP-types
confidence increases over the single-label model when using the DA First configuration,
and this is particularly apparent for incorrect predictions. For DA the opposite is true,
and confidence increases when using the AP First configuration, though to a lesser degree.
Therefore, it appears the multi-label model is making use of the probability information,
and in fact the DA First or AP First configurations seem to influence the model in the
manor we had surmised. Unfortunately, the effect is so slight it has no noteworthy impact
on the resulting classification accuracy. From one perspective this conclusion is surpris-
ing, because certain types of DA are naturally associated with specific AP, for example
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questions and offers with FPP, and answers, accepts, or declines with SPP, and so on.
Indeed, this may be why we see a slight performance increase for AP and AP-types when
using the DA First configuration. Yet, considering our results from section 6.1.2, these
findings are perhaps less surprising. If including gold-standard DA labels did not improve
AP results, and vice versa, then including their probabilities is also unlikely to improve
performance. It may be that these label associations are simply not strong enough, or that
the model is focusing on more valuable information within the encoded dialogue segment,
and we therefore see little impact on results. Nevertheless, these results do show that our
multi-label architecture is capable of predicting all three label types without any loss in
performance when compared to single-label models.

6.3 CAMS Classification Summary

Throughout the first part of this chapter we applied our single-label contextual classifier
model to the task of AP classification and also investigated the impact that different
context information has on the classification of both DA and AP labels. We found that the
optimal number of context utterances was the same for both label types, and that these
contextual models are better able to disambiguate between certain labels, for example,
inform and answer, or Insert and Post expansions. However, overall the effect is less
impactful for AP, and this is likely because certain labels, such as Insert or Post, can be
mistaken for the completion of a base or insert-pair, because they frequently appear in the
same positions within a dialogue.

As with our previous experiments (5.2), the inclusion of speaker and label context
information was shown to have negligible impact for DA classification. On the other
hand, for AP, including context labels resulted in statistically significant improvements,
and the model was better able to differentiate between SPP-base, and insert-pairs, as well
as Insert and Post expansions. The considerable performance increase for AP suggests
that they are more predictive of future AP and thus representative of the overall dialogue
structure. In contrast, sequences of DA labels are less indicative of suitable future labels
and the semantic content of the utterances themselves is more important for classification.

To conclude our single-label classification experiments, for each CAMS label type,
we also compared the impact of using all available context information (including gold-
standard labels and future utterances) to using only historical utterances and speakers. For
both AP and AP-types this was shown to result in statistically significant improvements,
whereas for DA we saw no significant difference. This further supports the observation that
AP and AP-types benefit more from the sequential, or relational, information provided by
the context of surrounding utterances and their labels.

Investigating the influence of label cardinality and distribution, for AP-types we found
large improvements over each of the baseline classifiers, which suggests that the observed
improvements for AP are also not due to the number of labels. Indeed, even with partial
context inputs, AP-types show greater improvement over the single-sentence baseline than
either DA or AP, despite significantly more labels within the set. Comparing the individual
utterance predictions across the three label types we were additionally able to show that
there is a significant amount of overlap, not only for the instances which resulted in
incorrect predictions, but the predicted labels themselves. Thus, classifiers for each CAMS
label type tend to make similar mistakes. Most importantly, when predicting AP-types,
the model frequently selects the same DA and AP component as a classifier for those
individual labels would. When considered with the improvements over baseline classifiers
previously discussed, this provides some evidence that an AP-type model is able learn the
semantic and structural aspects of both the respective DA and AP components.

In order to determine if predictions for a given label type are beneficial for predicting
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other label types we experimented with various multi-label architectures. However, these
multi-label configurations produced statistically equivalent results to those of our single-
label classifiers. Once again, we compared individual utterance predictions, and were able
to show that our DA First or AP First configurations were influencing the model in the
manor we had surmised. Unfortunately, the effect is so slight it has no noteworthy impact
on the resulting classification accuracy. Nevertheless, the multi-label architectures are able
to simultaneously predict all CAMS label types without any loss in performance.
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Chapter 7

Dialogue Structure Evaluation and
Analysis

In this chapter we present a collection of experiments intended to evaluate, and analyse,
our classification model and proposed method of dialogue representation against several
dialogue modelling related tasks, as discussed in 3.3 (O5, Q3, and Q4). In Section 7.1, we
begin by applying the single-label models, to the task of next-label prediction as a means
to evaluate our models ability to predict the next likely DA, AP, and AP-types given the
current dialogue state. Then, in Section 7.2, we use a cutting edge generative LM, GPT-3
(Brown et al., 2020), to produce appropriate responses given a segment of dialogue and
the next label (DA, AP, or AP-type) as a prompt. Finally, we evaluate the representation
of dialogue structure facilitated by CAMS via dialogue graph representations produced
with χ2 analysis of the gold-standard annotations within CAMS-KVRET.

7.1 Next-Label Prediction

For our next-label prediction experiments we reuse the contextual single-label models dis-
cussed in the previous chapter.1 Here we simply alter the training objective such that
current target for prediction is the next label (DA, AP, or AP-type) given the current seg-
ment of dialogue, as discussed in 3.3.1. In practical, dialogue management system terms,
if we consider selecting the next label(s) as a representation of possible system actions,
then naturally we would only need to make predictions for the system turns. Our train-
ing objective is therefore considerably more demanding, increasing the number of overall
predictions, whilst removing the valuable contextual information of user turns. However,
we wish to compare and contrast the performance of each component label type within
CAMS when given minimal additional information, and thus our approach is suitable.

Again, we obtain results for ‘full context’, which uses all available context information,
and ‘partial context’, which only uses context information that would be available to a
dialogue system. However, since it is not appropriate to include future utterances, here
full context refers to the 5 previous utterances, as well as speaker, DA, and AP labels as
input, and for partial context, we use 5 previous utterances and speakers only. Results
for each of these measures are shown in table 7.1, and figure 7.1 illustrates the difference
between our next-label results and those from our standard classification objective (the
three baseline models and contextual RoBERTa-LSTM).2

1We applied our multi-label model to the task in the same manner, and found that in agreement with
our previous findings there was no statistical difference in results, regardless of model architecture or label
type. Therefore, here we only discuss single-label results and report multi-label in appendix G.2.

2Exact figures can be found in appendix G.2.
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Table 7.1: Full and partial context models next-label validation and test set accuracy and
top-3 accuracy, as well as macro and weighted F1 scores, for each label type.

Validation Test

Label Type µ σ top3-µ top3-σ µ σ top3-µ top3-σ macro-F1 weighted-F1

Full Context

DA 66.03 0.49 91.12 0.39 68.12 0.55 91.73 0.31 0.39 0.65

AP 88.11 0.35 99.34 0.11 86.62 0.67 99.78 0.13 0.62 0.82

AP-types 63.3 0.29 86.97 0.26 64.95 0.5 86.45 0.38 0.18 0.58

Partial Context

DA 64.52 1.0 90.23 0.13 66.56 0.68 90.54 0.28 0.37 0.63

AP 81.97 0.24 95.68 0.3 81.11 0.37 95.21 0.28 0.46 0.75

AP-types 60.47 0.85 84.37 0.26 61.92 0.87 84.02 0.43 0.14 0.55

Unsurprisingly these results show a fairly substantial drop in accuracy compared to the
standard classification objective. The difference between full and partial context accuracy
is much larger, and is now statistically significant for all label types (P (Full > Partial) ≥
.93), rather than AP and AP-types only. This suggests that previous label information is
much more valuable for next-label classification. It is likely that the model becomes less
reliant on the semantic content of the current utterance, as it is instead forced to learn the
sequential relationships between them. Additionally, the larger difference between full and
partial context for AP agrees with our previous findings, that AP benefit more from the
context of surrounding utterances than DA. Thus, AP fair better when the inter-utterance
features become more important during the next-label prediction task.

Figure 7.1: Difference in validation set accuracy and top-3 accuracy,
between full and partial context next-label models, the baseline clas-
sifiers (RoBERTa, prior, and most frequent label), and the contextual
RoBERTa-LSTM.

Indeed, as shown in Figure 7.1, when compared to our standard classification results
AP exhibit a much smaller reduction in accuracy than DA and AP-types, regardless of
context information. With partial context AP remain almost equivalent to the contextual
and non-contextual RoBERTa models, with a drop of only ˜6% and ˜4% respectively.
In contrast, DA and AP-types show a ≥ 18% reduction in accuracy. That accuracy is
reduced further for these two label types, with their greater number of labels, suggests
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that unlike our analysis of cardinality in section 6.1.3, here the number of labels may be
having an effect. However, the reduction for both DA and AP-types is similar, and for
partial context it is in fact ˜6% higher for DA. Thus, considering there are more than four
times the number of AP-types, we must conclude these differences are not solely due to
the number of labels. This also suggest that the AP component of AP-types is providing
valuable sequential information and improving the accuracy (or reducing the detriment)
on the next-label prediction task. Whereas for DA, which benefit far more from the
semantic content of a given utterance, rather than the inter-utterance relationships, we
see a greater reduction, despite fewer labels. This is further illustrated in figure 7.2 which
shows confusion matrices for both DA and AP next-label predictions on the validation set,
using full and partial context models. For AP with partial context the behaviour is similar
to that of the non-contextual model and is frequently predicting the two most common
base-type labels. However, it is still frequently able to distinguish between FPP and SPP
for both base and insert pairs. Using full context results in a much clearer picture, and
we are left primarily with confusion between FPP-base, and FPP-post or Post labels, and
SPP-base and FPP-insert. In both cases, with no information about the next utterance,
these alternatives are perfectly reasonable options and further supports our conclusion
that the model is able to learn the sequential relationships between AP. It is also why top-
3 accuracy remains considerably higher for AP. On the other hand, for DA, regardless of
context, and the model is struggling to learn any form of pattern, or relationship, between
the previous utterances and the next likely label.

Finally, top-3 accuracy remains high in all instances, particularly for AP which main-
tains 99.3% and 95.7% accuracy for full and partial context respectively. This shows that,
for all label types, the model is correctly identifying candidates for the next label, but
without any further information is simply making the wrong prediction more frequently.
As discussed in 6.1.3, this is clearly a useful property for dialogue management systems;
especially where only the next system turn would have to be selected in this manner, and
where further task-related information would be available, such as slot-value pairs.

7.2 Response Generation

For our response generation experiments, our intention is to evaluate the extent to which
our proposed dialogue representation method affects the generation of appropriate natural
language system responses. Together with the work in the previous section (7.1), these two
tasks can be considered key components of a dialogue management system. The former is
analogous to learning dialogue policy – the selection of next system actions based on the
current dialogue state. While response generation is the NLG component, which given a
system action – represented by a DA or AP-type label generated by the dialogue policy
– maps the action to a natural language utterance (Dai et al., 2020; Zhang et al., 2020b;
Chen et al., 2017). Note that in a complete dialogue system both the dialogue policy
and NLG components would likely also include further task relevant information, such as
slot-value pairs, whereas here we are only concerned with the ‘action’, or selected response
type, and the content of the generated text.

To generate responses we fine-tune GPT-3 to generate only the system utterances
within the CAMS-KVRET test set, with one prompt (dialogue state and response type)
per turn. An example prompt is shown in Listing 1. Each “prompt” begins with the
dialogue type, in this case scheduling, followed by the complete dialogue history up to the
current system turn, for which the response type is specified (FPP-insert setQuestion).
The “completion” is the ground truth target utterance that should be generated. The
generated responses are then evaluated with a range of well-known language modelling
and generation metrics (Yeh, Eskenazi, and Mehri, 2021; Finch and Choi, 2020; Sharma
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(a) AP Partial Context (b) AP Full Context

(c) DA Partial Context (d) DA Full Context

Figure 7.2: Confusion matrices for DA and AP next-label predictions
on the validation set using partial context (a and c), and full context (b
and d) classification models. Note that here we are only showing the 10
most frequent DA labels.

et al., 2017; Liu et al., 2016), as discussed in 3.3.2.

Word Overlap The BLEU (Papineni et al., 2002), and METEOR (Banerjee and Lavie,
2005) metrics, were developed to automatically evaluate the results of machine translation
given some reference sentences, and ROUGE (Lin, 2004) was proposed for evaluation of
summaries. Each of these metrics produces a value between 0 and 1, where 1 represents
perfect alignment with the reference sentence.3

Overall we see only slight differences between each of the label types, and across all
metrics. Indeed, for BLEU there is < .001 difference in any case. For METEOR and

3Full results are shown in appendix H.
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1 {

2 "prompt":"schedule dialogue.

3 FPP-base request USR: remind me to take my pills

4 FPP-insert setQuestion SYS: ->",

5 "completion":" What time do you need to take your pills?"

6 }

Listing 1: Example prompt for GPT-3 response generation.

ROUGE-L, including any label does improve the score over no labels in the prompt, with
a more substantial increase for DA and AP-types. This seems to suggest that the semantic
content, or communicative function, represented by DA provides useful information that
the model is able to exploit when generating responses. In contrast, the structural, or
sequential, information provided by AP is less useful. It also appears the model is able to
take advantage of the DA component of AP-types, because we observe minimal differences
between those and DA. Thus, according to these metrics, DA are more beneficial than AP,
and yet, AP-types are similarly useful on account of their DA component.

Sentence Similarity In contrast to word-overlap metrics, we can also measure how
semantically similar our generated utterances are to the reference utterance. We calculate
cosine distance for each sentence pair using the contextual embeddings generated by the
RoBERTa-large model, as well as several metrics that use pre-trained GloVe embeddings,
average, extrema, and greedy. Results for each of these cosine similarity scores, averaged
over all generated responses, are shown in table 7.2, where different label types, or no
labels, were included in the prompt.

Table 7.2: RoBERTa contextual embeddings and GloVe Average, Ex-
trema, and Greedy cosine similarity scores, averaged over all generated
responses, with different label types included in the prompt.

Label Type RoBERTa Average Extrema Greedy

No Label 0.996 0.85 0.594 0.74

DA 0.997 0.866 0.621 0.762

AP 0.996 0.861 0.612 0.755

AP-types 0.996 0.866 0.621 0.76

Firstly, we can see that for the contextual RoBERTa sentence embeddings similarity
scores are extremely high, and there is minimal difference between any label type. This
indicates that, while there may be some difference between individual words, or their
arrangement, the semantic content of the generated responses is effectively identical to that
of the reference utterance. For the GloVe word embedding similarity scores, particularly
for the most commonly used Average metric, we again see high similarity for all label types.
We also find the pattern is similar to that of our word-overlap metrics. Though there are
only slight differences between each of the label types, across all metrics, including any
label results in an improvement over no labels in the prompt; with a more substantial
increase for DA and AP-types. Again, this indicates the semantic representations of DA
provide more useful information for the generative model than AP, and yet the model is
able to make use of the DA component of AP-types to produce the same effect.

It may therefore be useful to examine some instances where one or more of these
label types prompted the generation of utterances that are semantically dissimilar to the
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Table 7.3: Examples of generated utterances for two dialogues, Test 95 and 203. Speaker
and reference utterances are shown in white, and generated responses, for each label type
included in the prompt, are shown in grey.

DA AP AP-type

Test 95

USR take me to the parking garage closest to my destination

SYS The nearest parking garage is Palo Alto Garage R, it’s 1 miles away.

The closest parking garage is
Dish Parking at 550 Alester
Ave.

The closest parking garage is
Palo Alto Garage R, which is
2 miles away.

The closest parking garage is
Palo Alto Garage R which is
2 miles away.

SYS Navigate you there?

Would you like directions? Would you like directions
there?

Would you like directions
there?

USR Sure, thank you, just pick the quickest route and send me the address on screen

SYS I sent the info and the quickest info on your screen, you’re welcome!

You’re welcome, I sent the
info on your screen, drive
carefully!

Palo Alto Garage R is located
at 481 Amaranta Ave.

The address is 481 Amaranta
Ave, I sent it on your screen

Test 203

USR give me the location for the nearest starbucks

SYS There is no Starbucks listed locally but I have another coffee shop listed would you like
the address to it?

There is a Starbucks nearby,
would you like the address?

There are no Starbucks
nearby but we could go to
Palo Alto Cafe, it’s 2 miles
away

There is no Starbucks nearby,
would you like the closest
one?

USR Yes please.

SYS Then let’s go at Cafe Venetia, 269 Alger Dr

Coupa is located at 394 Van
Ness Ave.

Cafe Venetia is located at 269
Alger Dr.

The name is Coupa and it is
located at 394 Van Ness Ave.

USR Okay thank you.

SYS The destination is 4 miles away in no traffic.

You’re welcome and I’ve set
the GPS.

You’re welcome! Setting navigation now.

USR Please set the GPS to avoid all heavy traffic and let’s go there, thank you!

SYS You are welcome!

You’re welcome! GPS set to Cafe Venetia You’re welcome, I sent the
info on your screen.

reference sentence (Miltenburg et al., 2021). Two example dialogues in Table 7.3 show
utterances generated with each label type included in the prompt, as well as the speaker
and reference utterances. These examples were chosen because they contain utterances
among the 10 lowest Average cosine similarity scores for one or more of the label types.

Beginning with Test 95 dialogue, for AP and AP-types the first generated utterance is
semantically more similar to the reference utterance (≥ .97), than DA (.81). However, It
should be noted that locations, times, dates, and other such entities were not removed from
the prompts during fine-tuning. Without additional mechanisms, such as a knowledge-
base, the model simply generates a ‘random’ address, hence the difference in similarity
scores. It is still interesting to see that AP and AP-types produced the correct address,
though it is 1 mile further away! The second utterance is a good example of why we
observed relatively low word-overlap scores, responses are generally of the same DA type,
and semantically quite similar (≥ .88), yet with little to no n-gram alignment. Therefore,
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in agreement with Deriu et al. (2020) and Liu et al. (2016), we would advise against
using word-overlap measures for evaluation of NLG for dialogue systems. In the final
utterance we begin to see some evidence that AP-type labels are prompting the generation
of utterances that contain elements similar to those of the individual DA and AP responses.
The DA utterance is semantically more similar (.98), while AP simply states the address,
which receives a low similarity score (.42). The AP-type utterance (.89) is effectively a
combination of these two, with the address information and statement that it was sent to
the screen.

In the first utterance of Test 203, both AP (.9) and AP-type (.94) responses receive
lower similarity scores than DA (.96), despite correctly stating that there is no Starbucks
nearby. The second and third utterances are further examples of responses that would
produce low word-overlap scores, and despite the incorrect addresses, all six are perfectly
valid. Finally, we again see that the AP-type response contains the “You are welcome”
of the reference and DA response, as well as a statement “I sent the info on your screen”,
which is semantically similar to the AP response.

These examples are too few to draw firm conclusions, however, it does appear that
AP-type labels may induce the generation of utterances that contain more detail, or infor-
mation, than those of DA or AP alone. Further, in some instances they may result in an
approximate amalgamation of the individual label types. We leave further study of this
observation for future work, and in the following section explore the impact of these label
types on the generative model itself.

Perplexity We can consider perplexity as a measure of a LMs uncertainty when predict-
ing a sequence, and thus lower perplexity represents lower uncertainty. Table 7.4 shows
the average utterance and overall corpus perplexity scores for GPT-3 when generating
responses with the different label types, or no labels, included in the prompt.

Table 7.4: Mean utterance and full corpus Perplexity scores for GPT-3
response generation with different label types included in the prompt.

Label Type P Average P Corpus

No Label 1.33 73.17

DA 1.33 60.57

AP 1.28 40.04

AP-types 1.29 45.95

We can see that including any label type reduces perplexity in comparison to no labels.
Clearly utterance labels provide valuable information which increases the models certainty
whilst generating the sequence of words. However, the perplexity score for the entire corpus
is significantly lower for AP and AP-types compared to DA labels, which suggests that AP
are even more beneficial to the generative model. This is perhaps surprising, given that DA
represent the communicative function of an utterance, one might expect such information
to be more useful when generating a single utterance of dialogue. On the other hand, the
cardinality of each label type may play a part, with fewer AP resulting in less complexity
and lower perplexity. Yet, AP-types still result in an improvement even when their larger
number is considered and we see a perplexity score that lies slightly above that of AP, and
still well below DA. We speculate that, while all label types provide useful information to
the generative model, AP provide enough information to stimulate the correct response
whilst decreasing uncertainty. With AP-types, as we have observed with our previous
classification studies, the model is able to learn the meaning of both components (DA and
AP). Thus, despite the increased number of labels, it is able to use the AP component
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to reduce uncertainty further than DA, and hence we see a perplexity score that lies
in between DA and AP. Unfortunately, because the perplexity score is calculated using
the −log probabilities for each token, it is difficult to interrogate the model further to
determine if this may be the case. Nevertheless, these results are a positive indication
that AP and AP-types are more beneficial than DA for reducing the uncertainty of a LM
when generating dialogue system responses.

7.3 Analysis of Dialogue Structure

In this section we deviate from the ML considerations of classification and NLG, in order to
analyse the structural representation of dialogue provided by CAMS. To do so, we produce
graph representations of CAMS-KVRET dialogues using the gold-standard annotations
with the modified χ2 technique presented by Midgley, Harrison, and Macnish (2006),
and discussed in Section 3.3.3. Figure 7.3 shows the directed dialogue structure graphs,
produced using all dialogues within CAMS-KVRET, with the χ2 data for DA and AP
respectively.4

(a) DA graph with 20 nodes and 63 edges. (b) AP graph with 11 nodes and 25 edges.

Figure 7.3: Directed dialogue structure graphs. Nodes are DA or AP
labels and edges are transitions from one label to another. Edges are
coloured according to the χ2 value, and widths represent the frequency
of occurrences.

Examining figure 7.3 we can see that, naturally, the DA graph is much more complex
than the AP graph, containing almost twice the number of nodes and more than twice
the number of edges, though a large number of these occur relatively infrequently and are
therefore very faint. However, in both cases looking at edges with the most significant χ2

values we can begin to see a representation of the overall sequential structure, or flow, of
dialogue produced by these two label types. With DA, for example, conversations are pre-
dominantly initiated by a setQuestion, propositionalQuestion, or a request. A setQuestion
is typically followed by an answer, a propositionalQuestion by a confirm or disconfirm, a

4The AP-type graph, comprising multiple edges for each node, is naturally larger and more complex
than our individual label graphs. Thus for conciseness we present the AP-type graph in appendix H.
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request followed by an inform or accept, and so on. For AP, we of course see that most
conversations are initiated by a FPP-base. On the left hand side the insert pair, or mini-
mal inserts, take place between FPP-base and SPP-base, while on the right hand side post
pairs and minimal posts occur after a SPP-base. If we consider a path up to the current
node as a representation of dialogue state, we can easily identify all currently adjacent
nodes as the next most probable labels. Thus, by reducing the range of all possible labels
to a subset of just a few, such a graph could be used to inform a dialogue management
system when selecting the next appropriate system action, or interpreting a users current
utterance.

We can further explore these dialogue graph representations by considering the similar-
ity between adjacent nodes, or the graphs themselves, and also measuring how efficiently
they exchange information.

SimRank Similarity When examining the DA and AP graphs we notice that the
nodes of the DA graph are often adjacent to nodes with a very different communicative
function. On the other hand, nodes in the AP graph are more ‘modular’, and are often
adjacent to AP of a similar type. For example, the insert group of nodes are only adjacent
to each other and the base pair, and similarly for the post group of nodes. This effect
can be measured by means of SimRank similarity (Jeh and Widom, 2002), a measure of
structural-context similarity which states that “two objects are similar if they are related
to similar objects”. SimRank produces a score in the range [0, 1] for any pair of nodes
in a graph, where 0 represents the nodes are completely dissimilar and 1 identical. We
calculate the SimRank similarity scores between all node (label) pairs within the DA and
AP graph, with results shown in figure 7.4.

(a) DA SimRank (b) AP SimRank

Figure 7.4: SimRank similarity values for all node pairs within the DA
(a) and AP (b) graphs. Note that here we are only showing the 10 most
frequent DA nodes.

Of course, that a given DA is frequently followed by, or adjacent to, a DA with a
very distinct communicative function is not surprising. An information-seeking question
is often followed by an information-providing answer, for example. Indeed, this property is
partially demonstrated by the similarity scores shown in 7.4a. Examining scores ≥ .75, we
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see that accept is closely related to suggest and inform, and therefore these DA frequently
reference each other, or are commonly referenced by another DA. Somewhat less intuitively,
we also see a high score for setQuestion and acceptThanking, which implies these two DA
are frequently linked by a common subset of DA labels that is not immediately obvious
from our graph representation. However, most similarity scores are in the middle of the
possible range (.4 to .6), and we cannot say these DA are frequently referenced by, or
similar to, any particular DA. Thus, we can infer from the SimRank scores, and the
overall higher degree of most DA labels within the graph, that for any given DA there is
a wide range of next most probable DA, and therefore the current DA is somewhat less
informative about possible future utterance types.

For AP, in general we see higher SimRank scores between the label pairs. Perhaps more
interestingly, examining scores ≥ .75 we see a similar pattern to the confusion matrices
presented in figures 6.3 and 7.2, for the contextual speaker and next-label prediction
experiments respectively. Specifically, FPP-base shows a high similarity to Post and FPP-
post, and Insert a high similarity to SPP-base. This demonstrates that our classifier models
were correctly identifying patterns that exist within the actual data. For example, that
Insert frequently occurs in a similar position within the dialogue as SPP-base, and so
on. Further, for AP, and unlike DA, node pairs with a high SimRank similarity may also
represent viable alternative dialogue paths, or next-label options.

These observations further support our previous findings for contextual speaker and la-
bel information (6.1.2), and next-label prediction experiments (7.1), where AP performed
better than DA because the model was able to make use of historical context informa-
tion and learn the sequential relationships between AP labels. In contrast, for DA we
see less well defined relationships, or sequential patterns, and thus the models were less
able to utilise contextual information, particularly for the much more difficult next-label
prediction task.

Similarity Edit Distance In addition to node context similarity, we can also measure
the similarity between any two graphs using the Exact Graph Edit Distance algorithm
proposed by Abu-Aisheh et al. (2015). The edit distance algorithm determines the mini-
mum sequence of edit operations on nodes or edges (insertion, deletion, or substitution),
in order to transform one graph into another. Of course, conducting such an analysis on
graphs generated from different label types, with different label-nodes and edge relations,
is of little value. Therefore, using the same χ2 analysis approach, for each label type we
generate graphs for the different dialogue tasks within CAMS-KVRET, Navigate, Sched-
ule, and Weather. The resulting graphs for DA and AP labels are shown in figure 7.5, and
provide us with view of the differences, or similarities, in dialogue structure representation
for each label type over the three distinct tasks.5

When comparing the three tasks, we can see that the DA graphs are generally more
distinct than those of AP, though some patterns are present in both sets. For AP, with
the exception of Pre, all nodes are present within each of the three graphs, and these are
connected with a similar pattern and weighting of edges. On the other hand, for each of
the DA graphs a different set of nodes is present and there is a marked difference in the
pattern of weighted edges connecting them. This observation is confirmed by calculating
the Similarity Edit Distance between each combination of task graphs. The results in
table 7.5 clearly show that the AP graphs are much more similar, requiring 5 to 7 edits to
transform one task graph into another, while DA require 23 to 34. In 2/3 comparisons the
AP-type graphs are also more similar than those of DA.

In terms of dialogue management, in our view, highly similar or distinct graphs can
fulfil two different purposes. Dialogue structure representations that produce very simi-

5The AP-type task graphs are available in appendix H.
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(a) DA Weather (b) DA Schedule (c) DA Navigate

(d) AP Weather (e) AP Schedule (f) AP Navigate

Figure 7.5: DA and AP directed dialogue structure graphs for each
dialogue task type within CAMS-KVRET. Nodes are DA or AP labels
and edges are transitions from one label to another. Edges are coloured
according to the χ2 value, and edge widths represent the frequency of
occurrences.

Table 7.5: Similarity Edit Distance for the minimum sequence of node
and edge edit operations needed to make the dialogue task graphs iso-
morphic for each label type.

Navigate Navigate Weather
Label Type

Schedule Weather Schedule

DA 29 34 23

AP 6 5 7

AP-types 19 33 26

lar graphs across different tasks provide a more uniform and generalisable representation
which would require less hand crafting or fine tuning in order to adapt to new domains.
In contrast, highly distinct graph representations could aid in determining the long-term
user intents – the dialogue type or topic – by calculating the similarity between the cur-
rent dialogue and those of different types within the training data. This kind of topic
identification could also be used to further reduce the number of viable next-label types,
by reducing the probability, or even removing, labels that are infrequently used within
that dialogue type. As much of our previous work has shown, it appears that AP-type
graph representations are to some extent a fusion of these two properties. That 2/3 com-
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parisons of the AP-type graphs are more similar to each other than the DA graphs, despite
the presence of significantly more edges, suggests a more generalised structure provided
by fewer nodes and more uniform AP relations. At the same time, edges representing
DA transitions maintain the task specific benefits discussed above, without dramatically
increasing the complexity or diversity between different dialogue types.

Finally, these results further support the premise that underpins our proposed ap-
proach, that DA labels are descriptions of the intra-utterance features of a dialogue, while
AP represent the inter-utterance features. The diversity amongst the DA graphs of differ-
ent dialogue types indicates that they are more sensitive to small variations within the flow
of dialogue at the local level. On the other hand, the similarity amongst the AP graphs
indicates they are less sensitive to small local variations, and therefore better suited for a
global representation of dialogue.

Efficiency Expanding on the notion of global and local properties for these different
label types, we can also measure the efficiency of the graph representations using metrics
proposed by Latora and Marchiori (2001). The efficiency of a graph is a measure of how
efficiently information is exchanged, and we calculate both global and local efficiency, as
discussed in 3.3. Results for each label type, over all task and full dialogue graphs, are
shown in table 7.6.

Table 7.6: Global and Local efficiency of each label type, for all task
and full dialogue graphs.

Navigate Schedule Weather All

Global

DA .397 .280 .548 .5

AP .641 .66 .579 .711

AP-types .428 .594 .561 .693

Local

DA .333 .468 .567 .554

AP .407 .459 .0 .663

AP-types .527 .576 .0 .544

Firstly, we can see that AP and AP-types are globally more efficient than DA across all
graph types. This is intuitive if efficiency is inversely proportional to the shortest distance
between two arbitrary nodes, then graphs with fewer nodes will tend to be more efficient.
However, again the AP-type graphs have not been adversely affected by the presence of
significantly more edges, with global efficiency values that lie in between those of DA
and AP. For local efficiency the picture is rather mixed, with no label type resulting in
consistently higher efficiency scores across all graph types. Though, it is worth noting
that for AP and AP-types the local efficiency for the Weather task is 0, likely due to a
significant number of nodes with fewer than two neighbours. What we can say however,
is that for the remaining two task graphs AP-types are more locally efficient than DA or
AP individually.

Again we find evidence that AP, and by extension AP-types, provide a more robust
global, or inter-utterance, representation of dialogue. Regarding global efficiency, the
AP-type values further supports our previous observations that AP-types successfully
combine the properties of their constituent label types. If we consider local efficiency to
be a measure of fault tolerance – the efficiency of communication between the neighbours
of i when i is removed (Latora and Marchiori, 2001) – then these results suggest that
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DA are locally more robust between small subsets of labels, purely on the basis of non-
zero values for each graph type. However, we do not consider this property relevant for
our purposes, as disconnected or sparsely connected nodes would not adversely affect the
graphical dialogue representation applied to dialogue management.
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Chapter 8

Conclusion

This chapter presents a summary of our work by reflecting on the objectives, research
questions, and evaluating the hypotheses established in chapter 1. Subsequently, an out-
line of the limitations, possible applications of our findings, and future directions of this
research is provided.

8.1 Evaluation of Objectives and Research Hypotheses

The findings and results discussed in the previous chapters demonstrate that we have
successfully fulfilled the research objectives. Accordingly, with reference to these objectives
we may now evaluate the research hypotheses established in chapter 1.

8.1.1 Hypothesis 1

CA theories on the structure of dialogue can be incorporated with DA as
a method of effectively representing task-oriented dialogue for computational
modelling purposes.

Through our review of previous work on CA and DA theory we were able to establish a
suitable approach to unify these two fields into a unique method of dialogue representation.
In chapter 4 we outlined our approach and discussed the components, and annotation
guidelines, of the schema we developed, the CAMS. The schema was then evaluated by
means of an annotation study, that was conducted with novice annotators, assessed via
two IAA coefficients, and several other quantitative and qualitative measures. Results
of this study enabled us to examine the reproducibility of the schema and determine
that it is inherently learnable, even for novice annotators. Though, we also found some
aspects were misunderstood by our participants, which highlighted some refinements that
should be made. With the development of CAMS, and subsequent evaluation study,
we have therefore met O1. This study additionally allowed us to address Q1; Both
annotator agreement and self-reported annotator confidence scores were higher for task-
oriented dialogues than non-task. Although, when considering the individual corpora we
found the KVRET corpus resulted in higher agreement and confidence scores than the
other 3. Therefore, while CAMS may be applied to both task and non-task dialogues, we
consider that it is more intuitively applied to task-oriented dialogues.

In order to meet O2 we annotated a suitable task-oriented corpus with CAMS, using
specially developed software which enables the assignment of a single DA and AP, to
form an AP-type for each utterance of dialogue. We selected the KVRET corpus because
it possesses several features that were advantageous for our purposes, including, three
distinct tasks within the in-car personal assistant domain, and slot and task information
for developing task-oriented dialogue systems. The resulting corpus, CAMS-KVRET, is a
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first-of-its-kind DA and AP annotated corpus which supported our work in meeting the
remaining objectives.

With the completion of the above objectives we are therefore able to confirm H1. We
have successfully incorporated the CA concept of AP with DiAML into a single annotation
schema. Our work has shown that this schema is well suited to task-oriented dialogue,
and our annotated corpus is compatible with computational dialogue modelling.

8.1.2 Hypothesis 2

Existing text classification methods can be adapted to automatically label task-
oriented dialogues with DA and AP structure.

After reviewing previous work on ML methods for DA classification in chapter 5, we
explored the impact of text pre-processing and representation parameters, such as sequence
length, vocabulary size, and embeddings, for several supervised sentence encoding models.
Comparing the supervised approach to that of pre-trained language models, we found
that several of the latter resulted in superior sentence encodings. Building on this work
we explored contextual DA classification models, and considered different forms of context
input, such as previous and future utterances, speakers, and labels. These experiments
enabled us to refine and optimise our ML architecture, and method of input representation,
for the task of DA classification.

In chapter 6 we applied our contextual RoBERTa-LSTM model to the task of AP and
AP-type classification, to the best of our knowledge the first study of its kind. As we had
surmised, we found that the influence of context utterances is consistent for both DA and
AP. However, we were also able to show that for AP, unlike DA, the inclusion of context
labels resulted in significant accuracy improvements. Thus, we found some confirmation
that AP are able to represent the structural, inter-utterance, features of dialogue. In
contrast, the surrounding labels are less indicative of the current DA, and instead the
semantic, intra-utterance, features are more important.

Finally, using our contextual model as a basis, we explored several novel multi-label
architectures that are capable of simultaneously classifying segments of dialogue with DA,
AP, and AP-types. We were able to show our architectural motivations were correct –
that including predictions for a given label type are beneficial when predicting other label
types. Unfortunately, the effect was minimal, and classification accuracy for these models
was equivalent to our single-sentence models. Nevertheless, both our single-sentence and
multi-label models were able to achieve good classification results across all label types
within CAMS. This work successfully meets our requirements for O3, and in doing so we
have also addressed Q2.

Regarding O4, throughout section 5.2 and chapter 6 we evaluate our classification
models against CAMS-KVRET. We achieved high test set classification accuracy of ˜94%
on the DA component of the corpus. This is significantly higher than the other corpora
we tested, SwDA and Maptask, where our results are comparable with, or exceed, those of
previous work. For AP we are unable to make direct comparisons with any previous studies
or corpora. However, we were again able to report high test set classification accuracy
for both AP (˜88%) and AP-types (˜84%). The latter result is particularly impressive
considering there are significantly more AP-type labels than DA or AP. This indicates that
the corpus is well annotated, with the semantic content of utterances highly correlated
with appropriate DA labels, and their sequential relationships captured by AP. We also
compared predictions of single-sentence models for each label type and found that there
was significant overlap of the incorrectly predicted instances and the labels themselves.
This demonstrates that, when predicting AP-types, the model learns the semantic and
structural aspects of both the DA and AP components. In evaluating the CAMS-KVRET
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corpus using our contextual classifiers, we are able to show that the component labels
within our schema can be successfully identified using ML methods, thus addressing Q3.

In meeting O3 we were able to extend and refine existing DA classification techniques
to produce single and multi-label architectures. Evaluating our models against CAMS-
KVRET, to fulfil O4, confirms that they are suitable for our task of automatically labelling
task-oriented dialogues with AP and DA. Therefore, we are able to confirm H2.

8.1.3 Hypothesis 3

Dialogues labelled with DA and AP provide a more syntactically and semanti-
cally rich method of dialogue representation than existing methods.

In chapter 7 we evaluate our classification model and proposed method of dialogue
representation from the perspective of dialogue modelling. The first two tasks, next-label
prediction and response generation, represent key components of a dialogue system –
learning dialogue policy for response selection and NLG. Both AP and AP-types performed
better than DA on the next-label prediction task. We were able to show that this was not
solely due to fewer AP labels, but in agreement with our previous results, because AP are
more predictive of future labels than DA. Additionally, a smaller reduction in accuracy
for AP-types, despite the increased number of labels, provides further evidence that our
model learns aspects of both component labels.

For response generation, utterances were generally similar to the ground truth utter-
ances, although we found no significant differences between different CAMS label types
and their ability to induce quality responses. However, including any label type resulted
in improvements across all metrics. Notably, we found that AP and AP-types significantly
reduced perplexity compared to DA, or including no labels in the prompt. We speculate
that AP provide enough positional information to stimulate the correct response from the
model, whilst also reducing complexity and hence lowering perplexity. This is a positive
indication that AP and AP-types are more beneficial than DA for reducing the uncertainty
of a language model when generating dialogue system responses.

Finally, we used χ2 analysis to produce dialogue structure graphs and evaluated the
representations produced by the different label types within CAMS. We evaluated these
graphs using two measures of similarity: SimRank and Graph Edit Distance, and also
measured their efficiency, in terms of how information is exchanged. In agreement with
results from our classifier studies, the SimRank scores for DA showed few substantive
relationships, and thus, for any given DA there is a large number of possible next DA,
making them less informative of future utterance types. In contrast, for AP we observed
a similar pattern to our classifiers predictions, and therefore our models were correctly
identifying patterns that exist within the actual data. Considering the Graph Edit Dis-
tance, we found that DA graphs for different tasks were highly distinct, AP were very
similar, and AP-types lie in between the two. We suggest that, graphs which are similar
across different tasks would provide a more uniform and generalisable representation of
dialogue, which would require less hand crafting or fine tuning in order to adapt to new
domains. Whereas highly distinct representations could aid in determining the long-term
user intents, the dialogue type, or topic. Of course, our CAMS representations are able
to capture both of these features. In terms of efficiency, both AP and AP-types were
found to be globally more efficient than DA across all task types, and further evidences
their suitability as inter-utterance representations of dialogue. With the measure of local
efficiency between small subsets of labels we found DA were more consistent, and robust.

The above summarises our evaluation of the proposed approach and completion of O5
In so doing, we have discussed a series of characteristics that are potentially, or directly,
beneficial for dialogue modelling tasks. Thus, we are also able to confirm H3.
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8.2 Challenges and Limitations

Throughout this work we encountered difficult challenges that we discussed in the previous
chapters. Some of these challenges are summarised in the following points, though it should
be noted that others remain as work to be further studied and examined in the future.

Corpora and Model Generalisability Supervised text classification approaches such
as ours require large quantities of labelled data. However, it is extremely costly, in terms
of time and resources, to produce dialogue corpora and validate the accompanying anno-
tations. The complex and diverse nature of dialogue adds further considerations which
define the scope of the corpus, such as the number of participants or topics, and the
interactional context (‘spontaneous’ or goal-oriented, human-human or human-machine,
and so on). By selecting KVRET as the basis for our annotated corpus we were able to
mitigate some of these potential limitations because it was created by human participants
emulating a human-machine scenario, and it contains multiple topics. Nevertheless, the
scope of CAMS-KVRET is limited, as all corpora are, and we therefore cannot say how
generalisable our proposed method of dialogue representation is to other domains. For
example, through our annotation study reported in 4.2 we were able to show that CAMS
is more intuitively applied to task-oriented dialogues, yet agreement scores for KVRET
were consistently higher than the other task-oriented corpus. By extension, we also cannot
be certain how generlisable our ML classifiers are either. We attempted to mitigate the
potential for overfitting the model to a single dataset by including the SwDA and Maptask
corpus throughout much of our development process. Yet, as our work in chapter 5 has
shown, not all input pre-processing and architectural decisions effect all corpora equally.
For example, including context speakers resulted in significant accuracy improvements for
the Maptask corpus, but not SwDA.

The issue of how comprehensively a dataset encapsulates a particular phenomenon,
certainly regarding dialogue (Enayet and Sukthankar, 2022), and the generalisabilty of
models trained on said data, is common to all supervised machine learning endeavours.
However, we must acknowledge that the scope of our findings is limited by the issues
discussed above.

Association of DA and AP As discussed in 2.1.1, the concept of typed AP already ex-
ists within the CA literature. The basis for our proposed representation attempts to codify
this concept by unifying two well established, yet disparate, methods of dialogue repre-
sentation into a single computationally compatible approach, which subsequently benefits
from the strengths of its DA and AP components. We speculated that one characteristic
of our approach would be clear associations between certain DA and AP, for example,
questions and offers with FPP, and answers, accepts, or declines with SPP. Indeed, ex-
amining the AP-type graph (in appendix H) we can see some evidence for this, because
certain DA (edges) are more frequently connected to particular AP (nodes). However,
from a ML perspective this characteristic was not as evident. In section 6.1.2 we tried
including AP labels as additional contextual input when predicting DA labels, and vice
versa. Yet, in both cases this was shown to make no statistically significant difference
to classification accuracy. Further, all of our multi-label architectures, discussed in 6.2,
were largely predicated on the assumption that this association would provide informa-
tion beneficial for classification. While we were able to show that the DA First and AP
First configurations were likely utilising the input predictions, the effect was too slight
to improve performance. The results of these two experiments seem to indicate that the
association between opposing label types is simply not beneficial for ML classifiers. It
could be that the dialogue segment encodings alone are of high enough quality – with
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clear separation between the classes – that prior label predictions are simply not needed;
high classification accuracy for all label types supports this conclusion. Alternatively, our
method of incorporating the information within the model may need refining. In any case,
in terms of ML classification at least, our speculation that associations between label types
would be advantageous was incorrect. Fortunately, this finding does not undermine our
approach, as both components of AP-types are intended to represent different features of
dialogue, and can be applied, identified, and interpreted independently.

8.3 Applications and Further Work

Regarding future research, there is potential for several significant extensions and refine-
ments of the current study. We also outline some of our recommendations for the utilisa-
tion of our approach to task-oriented dialogue management, as well as possible applications
outside of this domain, the analysis of dialogue itself.

Development of CAMS and Corpus Resources The findings of our schema evalu-
ation study, in 4.2, highlighted some common mistakes made by our novice annotators. In
part this may be due to the limited time and training they received. However, there are
some refinements that could be made to the schema and annotation tool to aid decision
making and mitigate common errors. Primarily we found annotators were often misusing
FPP and SPP, for instance, beginning a sequence with a SPP. Although this label naming
convention adheres to CA practices, changing these to ‘First-part’ and ‘Second-part’ (or
simply ‘First’ and ‘Second’), would signify the functional difference between the two. The
interface of the annotation tool itself could also be updated to prevent the creation of
incorrect sequences, in most cases. For example, prohibiting the assignment of a SPP if
there is no previous FPP to complete, or ensuring pre and post labels occur prior to, or
after, base pairs. The schema annotation guidelines should additionally be updated to
include examples, and instruction for identifying, the core action or communicative goals
of a dialogue, or deciding appropriate labels for utterances with ambiguous, or multiple
valid meanings. Regarding the last point, in 2.4 we discussed prior work on the multidi-
mensionality of DA (Petukhova, 2011; Bunt, 2006). Within this work we chose to limit
the scope to only one ‘dimension’, or meaning, per DA. However, in 6.1.3 we were able to
show that, for utterances with multiple meanings, the associated DAs frequently appeared
within the top-k predictions of our model. Thus, future iterations of our schema and ML
models could be adapted to incorporate multidimensional DA representations. Indeed,
this functionality is already supported within DiAML via the ‘dimension’ categories, such
as Task, Time Management, Turn Management, and so on. These facilitate the categori-
sation of a DA, or the functional segments of a DA, into various dimensions, according to
their communicative function (British Standards Institution, 2012). For example, in the
utterance “OK, let me check that for you”, the segment “OK” relates to the Auto-feedback
dimension, while “let me check that for you.” concerns the Task dimension. An additional
aspect of DiAML that could be incorporated into the schema, is the concept of functional
and feedback dependence relations, which relate a given DA to previous utterances in the
dialogue, and are therefore closely related to the concept of AP. For example, to indicate
which question is being answered, or which utterance the speaker is providing feedback
for (Bunt et al., 2012).

Because KVRET was included within our evaluation of CAMS, we also carried out a
cursory evaluation of our annotated corpus. Throughout that work KVRET consistently
reached higher IAA than the other corpora, for both novice and expert annotators. How-
ever, only a small selection of dialogues were annotated; although these are representative
of the wider corpus. Therefore, a further IAA study should be conducted, preferably with
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expert annotators, to verify the reliability of the labelled data and produce an IAA score
for the entire corpus.

Finally, as mentioned above (8.2), a single corpus annotated with CAMS labels does
not allow us to draw firm conclusions about how generalisable our representations are.
Annotating further corpora, of differing domains and contexts, would allow us to further
explore the efficacy of our approach and ML classification models.

Task-oriented Dialogue Modelling Of course, one of the primary motivations for this
research is facilitating dialogue management for CAI. However, developing such a system,
with sufficient rigour, was beyond the scope of this work. Going forward, we would like
to apply our findings to developing a task-oriented dialogue system that incorporates
our CA inspired method of dialogue representation. Considering the different methods of
implementing CAI discussed in chapter 1, a rule-based approach would not be appropriate.
After all, their dialogue model is entirely defined by the developer. However, both hybrid
and ML approaches are capable of integrating a computationally compatible dialogue
model, and are therefore suitable candidates.

Beginning with hybrid, we can envision a developer constructing branching dialogue
‘paths’ that are reminiscent of our AP-type dialogue structure graph. In this scenario, AP
nodes represent the current utterance position (and may also contain further information
such as named entities), and DA edges represent types of transition. The current dialogue
state could also be viewed as the current path through the graph (or sub-graphs) up to the
current node. A developer could assign different behaviour paths, depending on the type
of DA that is produced. For example, if the response to a FPP-base setQuestion is another
question, instead of an answer, it may be a request for clarification or further information.
Thus, a systems behaviour and response should change accordingly. What is more, this
behaviour could be informed by our empirically derived probabilities of transitions between
nodes, for instance, the transition from a FPP-base is much more likely to be a question
than an answer.

Considering a ML approach, as we have already shown through our next-label pre-
diction (akin to response selection) and response generation experiments, our proposed
method of dialogue representation is beneficial for these two key components of any dia-
logue system, dialogue policy learning and NLG. In the first case, AP and AP-types were
shown to be better predictors of the next label (or action), when the utterance itself is
not known. Further work could improve performance of this component, by incorporating
knowledge from our χ2 analysis and associated graphs, to inform appropriate, or likely,
next system actions. Regarding NLG, we showed that AP and AP-types reduced the
perplexity of the generative model when compared to DA, without any detriment to the
quality of the generated utterances. And further, that utterances generated with AP-type
prompts often combine the characteristics of responses induced by the constituent label
types; which often results in more informative or grammatically pleasing responses. A
DST component could also make use of our representations, either by making use of the
graphical form, as in our discussion of a hybrid application, or simply incorporating the
sequence of AP-types into the representation of the current dialogue state. This may
have the additional benefit of integrating an element of explainability into, otherwise of-
ten opaque, ML dialogue systems. It is easy to see how one, or all, of these components
could be incorporated with other features of dialogue management, such as named entity
recognition and a knowledge-base, to produce a task-oriented dialogue system that makes
use of the natural conversational structures of human interaction.

Beyond the domain of CAI there are several other applications to which the pro-
posed research may be relevant. Firstly, Speech-generating Devices (SGD), also known
as augmentative and alternative communication devices, are computer-based systems that
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provide an electronic voice for individuals unable to speak (Cook, Polgar, and Encarnação,
2020). For example, the ACE-LP (Augmenting Communication using Environmental Data
to drive Language Prediction) project, which aims to combine environmental data (gath-
ered through cameras, microphones, and other sensors), with conversational language
models, to automatically populate the SGD with appropriate conversational items (Black
et al., 2016). For this application, a computational model of dialogue, based on CA, has
some clear benefits. For instance, the language model would already be closely related
to natural human-human conversational structures, appropriate next-responses could be
selected via the AP-type relationships, and so on. Our work may also be more generally
applicable to projects such as Multi3Generation (Barreiro et al., 2022), a network of re-
searchers exploring topics related to NLG, including data and information representation
and ML for structured prediction and representation learning.

Analysis of Dialogue In contrast to the text or speech producing applications of CAI
and SGD, when paired with an automated method of identification, the CA model may also
aid in the analysis of dialogue structure itself. Our directed dialogue structure graphs, in-
spired by the work of Midgley, Harrison, and Macnish (2006), illustrate frequent, or likely,
conversational ‘paths’, and identifies pairs of DA that are often produced consecutively.
Similar work by Pareti and Lando (2019), identified the intents of the conversation in-
dependently from the semantic representation. The proposed CA model, with its richer
representations, could similarly be applied to dialogue intent-induction, sentiment analy-
sis, or dialogue clustering (Maitreyee, 2020).

Thus far we have described applications within the CAI, NLG domains, but our ap-
proach could be equally valuable within fields of CA, or Discourse Analysis, for post hoc
evaluation of dialogue. For example, Pilnick et al. (2018) used CA to identify interactional
practices of particular patient groups in order to inform simulated patients for the pur-
pose of communication skills training for healthcare professionals. And Meredith (2020)
examined the differences between online and offline interactions using CA for sequential
and discursive analysis. In relation to these kinds of studies, and as our work on dia-
logue structure graphs has shown, the proposed representations can be used to identify
global structures common to all dialogues within a given domain, or to identify distinct
sub-groups. Or alternatively, for a more general identification of conversational discourse
types (Biber et al., 2021). Additionally, our methods of automatic annotation could re-
duce the labour required for such studies. For instance, Motozawa et al. (2021) manually
annotated AP for the purpose of analysing children’s intercultural communication, for
those that speak low-resource languages (in terms of machine translation). Indeed, DA
classification has already been applied to aid post hoc analysis. Lee et al. (2019) classified
DA to identify therapist conversational actions and gain an understanding of conversa-
tional flow during therapy sessions. Thus, a generalised method of identifying DA and AP
may be useful for a wide range of sociological and psychological studies.

The above points have highlighted some applications and future directions for our
research. It is our hope that this approach to dialogue modelling may have applications,
not only for dialogue systems and HCI, but also other fields that might benefit from the
identification and representation of dialogue in a human-centric format.
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CAMS Label Definitions

CAMS is intended to combine concepts of DA and AP into a single annotation scheme that
is able to capture the semantic and syntactic structure of a dialogue at the inter and intra
utterance level. Additionally, AP and DA may be applied to any type of conversational
interaction, independent of domain and topic, and as such, the schema is entirely domain
agnostic and applicable both to task and non-task-oriented dialogues.

The schema defines two sets of labels, DA and AP, which are combined to form AP-type
labels. When applying the schema, the intent is to assign each utterance of a dialogue one
DA and one AP label, which together are considered the AP-type label for that utterance.
The AP-type labels, for a fully annotated dialogue, can then be viewed as a representation
of its semantic and syntactic structure. It should be noted that the concept of a typed
AP is a key feature of AP present within the CA literature (Clift, 2016; Sidnell, 2010;
Liddicoat, 2007; Schegloff, 2007). However, the standard annotation schemes for CA do
not strictly require each utterance of dialogue to be labelled with an AP. Additionally,
CA annotation often includes non-verbal sounds, pauses and other types of disfluencies.
Gaps in annotations, where utterances are not labelled with AP, and other forms of non-
verbal annotation, for example ‘breathing’, are generally undesirable for computational
purposes. CAMS, therefore, is an attempt to define these concepts, and how they may be
applied, into a computationally compatible format where each utterance is labelled with
an AP-type.1

A.1 Adjacency Pairs

Adjacency pairs (AP) are the basic units on which sequences in conversation are built.
Their core features are:

1. Consist of two turns (utterances) by different speakers.

2. Placed next to each other in their basic (unexpanded) form.

3. Are ordered, so that one always occurs after another. Initiation of a sequence is a
‘First Pair Part’ (FPP) and the response ‘Second Pair Part’ (SPP).

4. Differentiated into AP-types. The relationship between FPP and SPP is constrained
by the type of FPP produced. For example, a ‘question’ followed by an ‘answer’.

1Label definitions and annotation guidelines are also available at: nathanduran.github.io/Conversation-
Analysis-Modelling-Schema.
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A.1. Adjacency Pairs

A.1.1 Base Pairs

The basic sequence is composed of two ordered turns at talk, the FPP and SPP. Partici-
pants in conversation orient to this basic sequence structure in developing their talk and
AP have a normative force in organising conversation, in that, AP set up expectations
about how talk will proceed.

Labels: FPP-base, SPP-base

Example:

a: What time is it? FPP-base
b: Three o’ clock. SPP-base

A.1.2 Expansions

Expansion allow talk which is made up of more than a single AP to be constructed and
understood as performing the same basic action and the various additional elements are
seen as doing interactional work related to the basic action under way (Liddicoat, 2007).
Sequence expansion is constructed in relation to a base sequence of a FPP and SPP in
which the core action under way is achieved. There are three types of expansion pairs:

Pre-expansions

Pre-expansions are designed to be preliminary to some projected base sequence and are
hearable by participants as preludes to some other action.

Labels: FPP-pre, SPP-pre

Example:

a: What you doing? FPP-pre
b: Not much. SPP-pre
a: Wanna drink? FPP-base
b: Sure. SPP-base

Insert-expansions

Insert-expansions occur between base adjacency pairs and separates the FPP and SPP.
Insert-expansions interrupt the activity previously underway but are still relevant to that
action and allows the second speaker (who must produce the base SPP), to do interactional
work relevant to the base SPP. Insert expansion is realised through a sequence of its own
and is launched by a FPP from the second speaker which requires a SPP for completion.
Once the sequence is completed the base SPP once again becomes relevant as the next
action.

Labels: FPP-insert, SPP-insert

Example:

a: Do you know the directions to the zoo? FPP-base
b: Are you driving or walking? FPP-insert
a: Walking. SPP-insert
b: Get on the subway. . . SPP-base

139



A.2. Dialogue Acts

Post-expansions

Sequences are also potentially expandable after the completion of the base SPP. Once an
SPP has been completed, the sequence is potentially complete: the action launched by
the FPP has run its course and a new action could appropriately be begun. However, it
is also possible for talk to occur after the SPP which is recognisably associated with the
preceding sequence. That is, it is possible for sequences to be expanded after their SPP.

Labels: FPP-post, SPP-post

Example:

a: What is the weather like today? FPP-base
b: Forecast for cloudy skies today. SPP-base
a: Okay. FPP-post
b: No problem. SPP-post

A.1.3 Minimal-expansions

Because dialogue does not always contain even numbers of utterances, there are also
single-utterance minimal-expansions, for utterances that do not belong to conventional
AP. CAMS defines three types of minimal-expansion Pre, Post, and Insert, which behave
in a similar manner to their expansion counterparts. That is, they must be produced
before, after, or inside a base sequence. These are closely related to the idea of minimal
post-expansions (Schegloff, 2007), in that they are not designed to project any further
sequences of talk, but rather open, close or add to sequences respectively. The primary
role is to allow for additional turns that behave as expansions but consist only of one
turn. There is no restriction on speaker order for minimal-expansions, which allows the
same speaker to produce more than one utterance of different types in succession, or for
a speaker to produce one utterance that does not belong to (initiate or conclude) an AP.

Labels: Pre, Insert, Post

Example:

a: When is my dentist appointment? FPP-base
b: The appointment is at 11 am with your Aunt. SPP-base
a: Thanks. Post

A.2 Dialogue Acts

An utterances dialogue act (DA) describes not just its meaning, but the speakers inten-
tions in the wider context of the conversation, and therefore, facilitate the computational
modelling of communicative behaviour in dialogue (Bunt et al., 2012). The DA within
CAMS are aligned with DiAML (ISO 24617-2) (British Standards Institution, 2012; Bunt
et al., 2012) and are arranged into eight categories according to their function. They are
grouped by their communicative function (though this differs slightly from the original Di-
AML organisation): Information-seeking, information-providing, commissives, directives,
feedback, time management, communication management, and social obligations manage-
ment.
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A.2.1 Information-seeking Functions

propositionalQuestion (Yes/No)

Communicative function of a dialogue act performed by the sender, S, in order to know
whether the proposition, which forms the semantic content, is true. S assumes that A
knows whether the proposition is true or not and puts pressure on A to provide this
information.

A propositional question corresponds to what is commonly termed a YN-question in
the linguistic literature. This standard prefers the term ‘propositional question’ because
the term ‘YN-Question’ carries the suggestion that this kind of question can only be
answered by ‘yes’ or ‘no’, which is not the case.

Example: “Does the meeting start at ten?”

setQuestion (Who/What/Where/How)

Communicative function of a dialogue act performed by the sender, S, in order to know
which elements of a given set have a certain property specified by the semantic content;
S puts pressure on the addressee, A, to provide this information, which S assumes that A
possesses. S believes that at least one element of the set has that property.

A set question corresponds to what is commonly termed a WH-question in the linguistic
literature. The term ‘set question’ is preferred because: (a) it clearly separates form from
function by removing any oblique reference to syntactic criteria for the identification of
such acts; and (b) it is not a language specific term (it may be further noted that even in
English, not all questioning words begin with ‘wh’, for example, “How?”).

Example: “What time does the meeting start?”; “How far is it to the station?”

choiceQuestion

Communicative function of a dialogue act performed by the sender, S, in order to know
which one from a list of alternative propositions, specified by the semantic content, is true;
S believes that exactly one element of that list is true; S assumes that the addressee, A,
knows which of the alternative propositions is true, and S puts pressure on A to provide
this information.

It is not very common in annotation schemes to specifically distinguish the concept
of choice questions from that of set questions. However, whereas it is common for the
concept set question to carry the expectation that all members of the set with a given
property should be returned by the addressee, for a choice-question the expectation is that
there will be exactly one. The different preconditions and effects indicate that these are
semantically different concepts, and they have been treated here as such.

Example: “Should the telephone cable go in telephone line or in external line?”

checkQuestion

Communicative function of a dialogue act performed by the sender, S, in order to know
whether a proposition, which forms the semantic content, is true, S holds the uncertain
belief that it is true S. S assumes that A knows whether the proposition is true or not and
puts pressure on A to provide this information.

Example: “The meeting starts at ten, right?”
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A.2.2 Information-providing Functions

inform (Statement)

Communicative function of a dialogue act performed by the sender, S, in order to make
the information contained in the semantic content known to the addressee, A; S assumes
that the information is correct.

The inform function may also have more specific rhetorical functions such as: explain,
elaborate, exemplify and justify; this is treated in this standard by means of rhetorical
relations.

Example: “The 6.34 to Breda leaves from platform 2.”

answer

Communicative function of a dialogue act performed by the sender, S, in order to make
certain information available to the addressee, A, which S believes A wants to know; S
assumes that this information is correct.

Example:

s: What does the display say?
a: Send error document ready.

agreement

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A that S assumes a given proposition to be true, which S believes that A
also assumes to be true.

DAMSL and SWBD-DAMSL use “Agreement” to refer to various degrees in which
some previous proposal, plan, opinion or statement is accepted; “accept” is one of these
degrees; “reject” is another.

Example: “Exactly.”

disagreement

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A that S assumes a given proposition to be false, which S believes that A
assumes to be true.

DAMSL and SWBD-DAMSL use “Agreement” to refer to various degrees in which a
speaker accepts some previous proposal, plan, opinion or statement; “accept” is one of
these degrees; “reject” is another.

Example:

s: Do you know where to find the ink cartridge?
a: Oh I think to the left of the paper.
s: Uh... no.

correction

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A, that certain information which S has reason to believe that A assumes to
be correct, is in fact incorrect and that instead the information that S provides is correct.
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Example: “To Montreal, not to Ottawa.”

confirm

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A, that certain information that A wants to know, and concerning which
A holds an uncertain belief, is indeed correct.

Example: “Indeed.”

disconfirm

Communicative function of a dialogue act performed by the sender, S, in order to let the
addressee, A, know that certain information that A wants to know, and concerning which
A holds an uncertain belief, is incorrect.

Example: “Nope.”

A.2.3 Commissive Functions

offer

Communicative function of a dialogue act by which the sender, S, indicates their willing-
ness and ability to perform the action, specified by the semantic content, conditional on
the consent of addressee A that S do so.

Example: “I will look that up for you.”

conditionalAccept (Consider/Address a Request/Suggestion/Offer)

Communicative function of a dialogue act by which the sender, S, indicates that they will
consider the performance of an action, depending on certain conditions that they make
explicit. The action may be one that they were requested to perform or was suggested that
they perform. Or to indicate that they are considering the possibility that the addressee,
A, performs the action that A has previously offered to perform.

The conditionalAccept function covers a range of possible responses to a request, sug-
gestion or offer. If the condition specified is met the sender commits to the action, or
accepts the offer, otherwise the sender in fact declines to perform the requested action or
accept the offer.

Example:

a: Please give me the gun.
s: If you push the bag to me.

accept (Request/Suggestion/Offer)

Communicative function of a dialogue act by which the sender, S, commits them self to
perform an action that they have been requested to perform or was suggested that they
perform. Or to inform the addressee, A, that S would like A to perform the action that
A has previously offered to perform.
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Example:

a: Would you like help with that?
s: Sure.

decline (Request/Suggestion/Offer)

Communicative function of a dialogue act by which the sender, S, indicates that they
refuse to perform an action that they have been requested to perform or was suggested
that they perform. Or to inform the addressee, A, that S does not want A to perform the
action that A has previously offered to perform.

Example:

a: Would you like help with that?
s: No thank you.

A.2.4 Directive Functions

request

Communicative function of a dialogue act performed by the sender, S, in order to create a
commitment for the addressee, A, to perform a certain action in the manner or with the
frequency described by the semantic content, conditional on A’s consent to perform the
action. S assumes that A is able to perform this action.

Example: “Please turn to page five”; “Please don’t do this ever again”; “Please drive
very carefully”.

suggest

Communicative function of a dialogue act performed by the sender, S, in order to make
the addressee, A, consider the performance of a certain action, specified by the semantic
content, S believes that this action is in A’s interest, and assumes that A is able to perform
the action.

Example: “Let’s wait for the speaker to finish.”

A.2.5 Feedback Functions

autoPositive (Positive Understanding/Feedback)

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A that S believes that S’s processing of the previous utterance(s) was
successful.

Feedback mostly concerns the processing of the last utterance from the addressee,
but sometimes, especially in the case of positive feedback, it concerns a longer stretch of
dialogue.

Example: “Uh-huh”; “Okay”; “Yes”

autoNegative (Negative Understanding/Feedback)

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A that S’s processing of the previous utterance(s) encountered a problem.
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Example: “Sorry?”; “What?”

A.2.6 Time Management Functions

stalling (Pausing)

Communicative function of a dialogue act performed by the sender, S, in order to have
a little extra time to construct their contribution or to suspend the dialogue for a short
while.

Pausing occurs either in preparation of continuing the dialogue, or because something
else came up which is more urgent for the sender to attend to.

Example: “Let me see...”; “Ehm...”; “Just a moment”; “Umm...”

A.2.7 Own and Partner Communication Management Functions

retraction (Abandon)

Communicative function of a dialogue act performed by the sender, S, in order to withdraw
or abandon something that they just said within the same turn.

Example: “Then we’re going to g– ”

A.2.8 Social Obligations Management Functions

greeting

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A that S is present and aware of A’s presence.

Greetings usually come in initiative-response pairs and are commonly used to open a
dialogue.

Example: “Hello!”; “Good morning”

goodbye

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A, that S intends the current utterance to be their final contribution to the
dialogue.

Goodbyes usually come in initiative-response pairs and are commonly used to close a
dialogue.

Example: “Bye bye, see you later.”

thanking

Communicative function of a dialogue act performed by the sender, S, in order to inform
the addressee, A, that S is grateful for some action performed by A; S puts pressure on A
to acknowledge this.

Utterances used for thanking often also indicate that the sender wants to end the
dialogue.

Example: “Thanks a lot.”
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acceptThanking

Communicative function of a dialogue act performed by the sender, S, in order to mitigate
to the feelings of gratitude which the addressee, A, has expressed.

Example: “Don’t mention it.”

apology

Communicative function of a dialogue act performed by the sender, S, in order to signal
that they want the addressee, A, to know that S regrets something; S puts pressure on A
to acknowledge this.

Example: “Sorry about that.”

acceptApology

Communicative function of a dialogue act performed by the sender, S, in order to mitigate,
the feelings of regret that the addressee, A, has expressed.

Example: “No problem.”
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Inter-annotator Agreement

IAA measures can be used as a means of assessing the reproducibility of a coding scheme or
determining the reliability of a produced ‘gold standard’ labelled dataset. Given that the
focus of this study is the labelling schema itself, the purpose of measuring IAA refers to the
former. That is, determining if the schema is inherently learnable, that the labels applied
to utterances are not entirely dependent on the biases of an individual annotator, and that
there is a common understanding of the meaning of labels and the utterances to which
they are applicable (Craggs and Wood, 2005). It should be noted, that reproducibility
is a natural prerequisite to demonstrating reliability of a coding scheme. If annotators
produce similar results, they likely have a similar understanding of the annotation scheme
and guidelines, and that these are able to represent the desired characteristics of the
data (Artstein and Poesio, 2008). Within the literature chance-corrected coefficients,
that is, accounting for the probability that annotators select the same label by chance,
such as Cohen’s Kappa (Cohen, 1960), or Scott’s Pi (Scott, 1955), are the preferable
measures of IAA (Craggs and Wood, 2005; Di Eugenio, 2000; Carletta, 1996). However,
weighted coefficients, such as Krippendorff’s Alpha (Krippendorff, 2004), are more suitable
to annotation tasks such as this, which require an element of semantic interpretation.

B.1 Agreement Coefficients

Agreement can be measured as the percentage of cases in which different annotators agree
on assigned labels. Percentage agreement, however, is distorted by the number of labels
within the coding scheme (Scott, 1955); where fewer labels naturally results in higher
agreement. Further, it does not correct for the distribution of labels, and as such, agree-
ment may be skewed when some labels are much more common than others (Artstein and
Poesio, 2008; Hsu and Field, 2003). Similarly, criticisms have been noted for measures of
association χ2 (Cohen, 1960), and correlation coefficients (Artstein and Poesio, 2005b).
For these reasons, the consensus within the literature is that chance-corrected coefficients,
that is, accounting for the probability that annotators select the same label by chance,
such as Cohen’s Kappa (Cohen, 1960), or Scott’s Pi (Scott, 1955), are generally more
preferable (Di Eugenio, 2000; Carletta, 1996). Though, as will be shown, weighted coeffi-
cients, such as Krippendorff’s Alpha (Krippendorff, 2004), are more suitable to annotation
tasks which require an element of semantic interpretation.

B.1.1 Unweighted Coefficients

Here the family of unweighted agreement coefficients is briefly described. Cohen’s Kappa
(Cohen, 1960), and Scott’s Pi (Scott, 1955), calculate agreement between two annotators.
However, in practice, two annotators are rarely enough to generate reliable agreement
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statistics. It is often more preferable to use generalised versions of the coefficients for
multiple annotators. Fleiss (1971), proposed a generalisation of Scott’s Pi, and a gener-
alisation of Cohen’s Kappa was suggested by Davies and Fleiss (1982), or Multi-Pi and
Multi-kappa respectively. 1 All four of these coefficients can be expressed in the form:

π, κ =
Ao −Ae
1−Ae

(B.1)

Where Ao is the observed agreement, the proportion of items where annotators agree, and
Ae is the expected agreement. These coefficients generate values that lie within −Ae

1−Ae
(no

agreement) and 1 (perfect agreement), with 0 signifying agreement is the same as would
be expected by chance, Ao = Ae. The coefficients all consider the probability that two
annotators will assign labels independently, and therefore, the probability they assign the
same label to a given item i, is the product of the probability that each annotator a,
assigns the label l, to the item, P (l|a1) × P (l|a2). The expected agreement is therefore
the sum of the product for all labels:

Ae =
∑
l∈L

P (l|a1)× P (l|a2) (B.2)

Where Pi, Kappa and their multi-annotator generalisations differ, is in the assumptions
around the distribution of assigned labels for an annotator operating only by chance, that
is, how P (l|ak) is estimated. When calculating Ae, Pi assumes that each annotator assigns
labels with the same distribution and therefore considered an unbiased coefficient, whereas
Kappa is biased, in that it calculates Ae from the observed distribution of individual
annotators.

B.1.1.1 Pi

Given that Pi assumes the same distribution is used by both annotators, the probability
that either annotator assigns a label to the item is the same:

P (l|a1) = P (l|a2) = P (l) (B.3)

P (l) is the total number of times label l is assigned by both annotators nl, divided by the
total number of assigned labels, that is, with two annotators, twice the number of items i:

P (l) =
nl
2i

(B.4)

For Pi, expected agreement can then be defined as:

Aπe =
∑
l∈L

(
nl
2i

)2 (B.5)

B.1.1.2 Kappa

As previously stated, Kappa assumes the distribution of labels assigned to items is unique
to each annotator, and as such, reflects the individual annotators bias. The probability
that an annotator aj assigns a label to an item is estimated from the proportion of items

1Artstein and Poesio (2005b), noted that Fleiss (1971), originally named the coefficient K, even though
it assumes a single probability distribution for all annotators and is therefore a generalisation of Scott’s
Pi. Here, the naming convention used by Artstein and Poesio (2005b), is adopted, where Multi-pi and
Multi-kappa refer to the generalisation of Scott’s Pi and Cohens Kappa respectively.
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actually assigned to l by the annotator, naj l. Thus, P (l|aj) is the number of times l is
assigned by aj divided by the number of items i:

P (l|aj) =
naj l

i
(B.6)

For Kappa, expected agreement can then be calculated as the joint probability for both
annotators:

AKe =
∑
l∈L

na1l
i
× na2l

i
(B.7)

B.1.1.3 Multi-Pi

With more than two annotators there will naturally be some items on which some anno-
tators agree, and others do not, and therefore Ao cannot be defined as the percentage of
items where there is agreement. Fleiss (1971), defined the amount of agreement on a par-
ticular item as the proportion of pairwise agreements out of the total number of annotator
pairs for that item.
The number of times an item i is assigned label l is calculated, nil. The number of pairwise
agreements for item i, and label l, is nil(nil − 1). The amount of agreement for item i, is
therefore, the sum of nil for all labels (L), divided by the total number of annotator pairs
a(a− 1).

agri =
1

a(a− 1)

∑
l∈L

nil(nil − 1) (B.8)

Observed agreement is then the mean agreement for all items:

Ao =
1

i

∑
i∈I

agri (B.9)

Similarly, pairwise comparisons are used in the calculation for expected agreement as
well. Fleiss (1971), also considered chance agreement on the basis of a single distribution
for all annotators (hence his Kappa being more properly thought of as a generalisation
of Scott’s Pi). As with Pi, P (l) is the number of items assigned label l by all coders nl,
divided by the total number of assigned labels - the number of annotators (a) multiplied
by the number of items i:

P (l) =
nl
ai

(B.10)

And, as with Pi, the probability that two annotators assign a label to a particular category
is the joint probability that they assign the label independently. Expected agreement is
therefore the sum of joint probabilities over all categories:

Aπe =
∑
l∈L

(
nl
ai

)2 (B.11)

B.1.1.4 Multi-Kappa

Because Multi-kappa uses a separate probability distribution for each annotator, the prob-
ability of a given annotator aj , assigning a label to an item is the same as the two-annotator
version of Kappa:

P (l|aj) =
naj l

i
(B.12)
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The probability of a given annotator pair, aj and ak, selecting a label for an item, is
the joint probability for each annotator P (l|aj)× P (l|ak), divided by the total number of
annotator pairs. The expected agreement is then the sum of all pairwise joint probabilities
for each label:

AKe =
∑
l∈L

1

a(a− 1)

a−1∑
j=1

a∑
k=j+1

P (l|aj)× P (l|ak) (B.13)

B.1.2 Weighted Coefficients

For some annotation tasks it does not make sense to treat all disagreements equally. For
example, the DA choiceQuestion and checkQuestion are semantically more similar than
request and accept. Both Pi and Kappa are limited in such circumstances, because they
only consider identical labels for agreement. This can result in very poor agreement
values and as such they are not considered an acceptable measure of agreement for DA
labelling tasks (Geertzen and Bunt, 2006; Artstein and Poesio, 2005b). A solution to this
problem is the use of weighted agreement coefficients, which consider the magnitude of
disagreement between assigned labels. Cohen (1968), proposed a weighted variation of
Kappa for two annotators. More frequently used however, and appropriate for this study,
is Krippendorff’s Alpha (Krippendorff, 2004), and the Beta statistic, proposed by Artstein
and Poesio (2005b). Both Alpha and Beta are calculated from the observed and expected
disagreements, rather than the agreement of the previously discussed coefficients. The
ratio of observed and expected disagreement is then subtracted from 1 to produce the
final agreement value:

α, β = 1− Do

De
(B.14)

Further, weighted coefficients use a distance function (see section B.2), which returns
a value between 0 and 1 representing the similarity between an arbitrary pair of labels.
0 indicates the two labels are identical and 1 indicates they are completely dissimilar.
This value is then used to weight pairs of assigned labels, penalising those that are more
dissimilar. The amount of disagreement for a given item is, therefore, the mean of the
distances between all pairwise assignments for that item. The number of annotators who
label item i, with label l, is nil. For every label pair lj and lk, there are niljnilk pairs of
assigned labels for an item, and each has a distance (d) of dlj lk , calculated by the distance
function. The mean disagreement for an item is then the sum of all weighted label pairs,
divided by the total number of annotator pairs, a(a− 1):

disagri =
1

a(a− 1)

l∑
j=1

l∑
k=1

niljnilkdlj lk (B.15)

Observed disagreement is then the mean disagreement for all items:

Do =
1

i

∑
i∈I

disagri (B.16)

Just as with Pi and Kappa, where Alpha and Beta differ is in their assumptions about
the distribution of assigned labels for an annotator operating only by chance. Similar
to Pi, Alpha assumes a single distribution for all annotators (unbiased), while Beta, like
Kappa, considers the individual annotators distributions (biased).
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B.1.2.1 Alpha

Given the single probability distribution for all annotators, the probability of assigning a
label to an item is the number of assignments of the label by all annotators nl, divided by
the total number of assignments - items i multiplied by the number of annotators a.

P (l) =
nl
ai

(B.17)

Again, the probability that two annotators assign labels lj and lk, is the joint probability of
each annotator assigning the label independently. The expected disagreement is, therefore,
the sum of the weighted joint probabilities for all label pairs, divided by the total number
of assignments:

Dα
e =

1

ai(ai− 1)

l∑
j=1

l∑
k=1

nljnlkdlj lk (B.18)

B.1.2.2 Beta

The Beta coefficient is, in essence, multi-annotator generalisation of Cohens weighted
Kappa (Artstein and Poesio, 2005b); in that, it is a weighted coefficient which considers
individual annotators label distributions (bias) and is applicable to more than two anno-
tators. The probability that annotator a, assigns label l, to an item, is the total number
of such assignments nal, divided by the total number of assignments for that annotator
(the same as Kappa and Multi-kappa):

P (l|aj) =
naj l

i
(B.19)

The probability that two annotators am and an, selecting different labels lj and lk, is
P (lj |am) × P (lk|an) + P (lj |am) × P (lk|an). The probability that a given pair of coders
assigns labels lm and ln, is the mean of the probabilities for all annotator pairs:

P (lj , lk) =
1

ai(ai− 1)

a−1∑
m=1

a∑
n=1

namljnanlk + namlknanlj (B.20)

The expected agreement for Beta is then, the mean of the probabilities for each pair of
labels weighted by the distances:

Dβ
e =

L−1∑
j=1

L∑
k=j+1

P (lj , lk)dlj lk (B.21)

It is worth noting, that if all disagreements are considered equal, with distance 1,
then Alpha and Beta produce the same result as their non-weighted equivalents Multi-pi
and Multi-kappa. Similarly, if data from only two annotators is used, and the distances
are equal, the results are the same as the non-weighted two annotator variants Pi and
Kappa. Figure B.1 summarises some of the characteristics of each coefficient with respect
to three different dimensions, bias and unbiased (Kappa and Pi), two or multiple coders
(multi-Kappa and multi-Pi) and weighted (Alpha and Beta).

B.2 Weighted Coefficient Distance Functions

The calculation of Alpha and Beta requires a distance function d, that returns a distance
value between 0 and 1 for each possible label pair. The value indicates the amount of
dissimilarity between the two labels, with 0 indicating they are identical and 1 indicating
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Figure B.1: Agreement coefficients in three dimensions, bias, number of
coders, and weighted. Adapted from the ’Coefficient Cube’, (Artstein
and Poesio, 2005b).

they are completely dissimilar. In this section 3 distance functions are defined, one for
each of the label types defined within CAMS. The constraints suggested by Artstein and
Poesio (2005b), to which all distance metrics in (Krippendorff, 2004), and (Geertzen and
Bunt, 2006) conform, are adopted here. That is, (1) the distance between a label and itself
is 0, and (2), the distance between two labels is not dependent on their order. Because
CAMS defines DA and AP, and they combine to form AP-types, it is necessary to define
distance functions, such that, the distance of the combined DA and AP label still falls in
the range 0 to 1, and conforms to the above constraints.

B.2.1 Dialogue Act Distance Function

Geertzen and Bunt (2006), proposed a distance function based on a hierarchical ancestor-
offspring relationship between DA labels within the Dynamic Interpretation Theory
(DIT++) annotation scheme. Given that DIT++ shares many characteristics of the
DAMSL scheme (Allen and Core, 1997), and that both of these are precursors to DiAML
(British Standards Institution, 2012), a similar approach is employed here. However, their
metric considered both the difference in depth and the minimal depth between two labels
in the hierarchy, and these are each modified by two constants a and b. To avoid selecting
two arbitrarily chosen constant values, which may affect the coefficient calculation, the
DA distance function defined here only considers the distance between two labels within
the relationship hierarchy.

The DA relationships are characterised in an undirected graph, where leaf nodes are
DA labels and intermediate nodes represent the communicative function subcategories.
All edges are considered to have an equal distance of 1. DA are arranged according to
their communicative functions which closely match those defined in DiAML. However, in
a number of cases DA have been separated into subcategories that more closely resemble
their semantic intent. For example, within DiAML the information-providing functions
include the DA agreement and disagreement, which clearly have opposing sentiments, pos-
itive and negative. In such cases, DA that are assigned to more appropriate subcategories,
for example, positive and negative responses. Figure B.2 depicts the Information-transfer
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sub-tree of the DA relationship graph. 2

Figure B.2: The Information-transfer sub-tree of the DA relationship
graph. Leaf nodes are DA, while intermediate nodes represent the com-
municative function subcategories.

For each pair of DA, daj , dak ∈ DA, the distance value is calculated as follows. First
the path distance (p), between daj and dak, is calculated as the sum of the number (N)
of edges e, each with distance 1 for the shortest path between daj and dak:

pdajdak =

N∑
i=1

ei (B.22)

The path distance pdajdak , is then normalised by the minimum and maximum path dis-
tances for all possible label pairs (Pmin and Pmax), to yield the distance d(daj , dak), in
the range 0 to 1:

d(daj , dak) =
pdajdak −Pmin

Pmax −Pmin
(B.23)

B.2.2 Adjacency Pair Distance Function

AP, like DA, can be organised into categories that represent their function: base, pre,
post and insert. However, the paired nature of FPP and SPP, means representing their
relationship in a graph-like structure is less appropriate. For example, FPP-pre and FPP-
post could be considered similar, in that they both initiate a sequence. Yet functionally,
the pre and post expansion types have opposing meanings, pre expansions should take place
before a base pair and post expansions after. Therefore, the distance function defined here
considers the difference between the AP labels prefix and postfix, that is, whether they are
part of an adjacency pair and initiating or responsive within a sequence (FPP or SPP),
or a minimal expansion, and whether they belong to the same base sequence or expansion
type (pre, post and insert).

For each pair of AP, apj , apk ∈ AP, the distance value is calculated as follows. First
set the distance between apj and apk to 0, (dapjapk = 0). Then, separately compare the

2The full DA relationship graph can be found in figure B.3.
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prefix and postfix of the two labels. If they do not match, increase the distance by 0.5:

d(apj , apk) =
∑

0.5(1− δ(apprej , apprek )) + 0.5(1− δ(appostj , appostk )) (B.24)

Thus, two identical AP labels will have a distance of 0, and two completely different labels
will have the maximum distance of 1, and two FPP labels will have a distance of 0.5,
as in the previous example with FPP-pre and FPP-post. Similarly, a minimal expansion
will have a distance of 0.5 to the FPP and SPP expansions within the same functional
category.

B.2.3 AP-type Distance Function

Within CAMS, an AP-type label is considered the combination of the DA and AP labels
assigned to that utterance, and a similar approach is taken for the AP-type distance cal-
culation. The distance between two AP-type labels is considered the sum of the distances
for the individual components, d(daj , dak) +d(apj , apk), normalised by the minimum and
maximum distances for all possible label pairs (Dmin and Dmax). Thus, for each pair of
AP-type labels, aptj , aptk ∈ (DA ∪AP), the ‘raw’ distances, daptjaptk , are calculated as:

daptjaptk = d(daj , dak) + d(apj , apk) (B.25)

The distance function is then:

d(aptj , aptk) =
daptjaptk −Dmin

Dmax −Dmin
(B.26)

This simple formulation has the advantage of maintaining consistency with the DA and
AP distance functions, allowing for comparison of coefficient values between the component
label types. Additionally, the large number of possible combinations of DA and AP (297,
though not all combinations are valid), would make defining a distinct AP-type distance
function laborious and prone to errors and inconsistencies. It should also be noted that this
distance function effectively results in the normalised mean of the DA and AP distances.

B.3 Coefficient Selection

The following section discusses considerations around the selection of agreement coeffi-
cients for calculating IAA. Given that annotators assign the CAMS DA and AP labels
independently, and that each label type has a distinct distance function, it is also possible
to calculate independent IAA values for each label type.

The DA within the schema can be grouped into semantically similar communicative
functions (Bunt, 2011), such as, information seeking and information providing. Further,
some utterances can be thought of as multidimensional (Bunt, 2006), that is, they could be
assigned two equally valid DA labels (or arguably both). Consider the following example:

a1: What is the weather going to be today and tomorrow?
b1: What city would you like to know the weather about?
a2: I want to know if it will drizzle in Durham.

Utterance A2 could be considered an answer to the previous question B1, the location
they want to know the weather for, or a question in its own right, “will it drizzle in
Durham.” Clearly, even with well-defined label definitions, there is a certain amount of
subjectivity in assigning a single label to certain utterances. A similar semantic grouping
is also true for AP, where, for example, FPP-insert and SPP-insert are more closely related
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to an insert expansion than AP from the Pre and Post groups. It seems reasonable to
treat assignments that belong to different expansion types more seriously than those from
the same group. The above, and the use of weighted agreement for DA annotation by
(Geertzen and Bunt, 2006), indicates the use of weighted agreement measures, such as
Alpha and Beta, are the appropriate choice for DA and AP annotation because the labels
are not equally distinct from each other.

What is less clear, however, is the choice between these two coefficients. There has
been much debate on this matter (Artstein, 2018; Craggs and Wood, 2005; Di Eugenio
and Glass, 2004; Krippendorff, 2004; Hsu and Field, 2003; Byrt, Bishop, and Carlin, 1993;
Zwick, 1988). Of course, Krippendorff built the notion of a single distribution into his
Alpha coefficient, and Craggs and Wood (2005), argued strongly against the use of coeffi-
cients with bias, stating that, “the purpose of assessing the reliability of coding schemes is
not to judge the performance of the small number of individuals participating in the trial,
but rather to predict the performance of the schemes in general.” Yet, Artstein and Poesio
(2005b), in their proposal of the Beta statistic believe that, “assuming that coders act in
accordance with the same probability distribution is too strong of an assumption, hence
‘biased’ measures are more appropriate.”

The argument against the use of biased coefficients, illustrated by Krippendorff (2004),
and others (Di Eugenio and Glass, 2004; Byrt, Bishop, and Carlin, 1993; Zwick, 1988),
lies in its calculation of expected agreement. Though biased measures, such as Kappa and
Beta, estimate expected agreement on the basis of individual annotator label distributions,
they fail to account for unequal distributions between annotators. In so doing, biased
coefficients effectively discount some of the disagreement resulting from different annotator
distributions by incorporating it into expected agreement (Artstein and Poesio, 2008).
Thus, for a fixed observed agreement, when annotators produce unequal distributions for
the available categories – when bias is present – the values of biased coefficients will exceed
those of non-biased coefficients. The objection, then, is the ‘paradox’ that as annotators
become less similar, biased measures can increase (Di Eugenio and Glass, 2004), and begin
to diverge from their non-biased counterparts. However, Artstein and Poesio (2005b) point
out that in practice the difference between biased and non-biased measures often doesn’t
amount to much, and that bias is a source of disagreement in its own right. To this latter
point, Banerjee et al. (1999), in reference to Zwick (1988), suggested that, “rather than
straightway ignoring marginal disagreement or attempting to correct for it, researchers
should be studying it to determine whether it reflects important rater differences or merely
random error.” For example, Hsu and Field (2003) demonstrated how Kappa can give
useful information even when the individual annotators distributions are very different, and
Wiebe, Bruce, and O’Hara (1999), exploited bias to improve the annotation process. In any
case, what does seem to be agreed upon, is that as the number of annotators is increased
the difference between biased and non-biased measures becomes less significant (Artstein
and Poesio, 2008, 2005a; Craggs and Wood, 2005). Further, as stated by Di Eugenio and
Glass (2004), the biased and non-biased paradigms reflect distinct conceptualizations of
the problem, and in agreement with Artstein and Poesio (2008), the choice should depend
on the desired interpretation of chance agreement. However, Di Eugenio and Glass (2004),
also believed the bias coefficient (Kappa) is more appropriate for discourse and DA tagging,
because “it is questionable whether the assumption of equal distributions underlying Pi is
appropriate for coding in discourse and dialogue work”. Yet, they also suggested reporting
Kappa and Pi together, to account for the ‘bias problem’ we have just described. Here a
similar approach is taken, and both Alpha and Beta will be reported.
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B.4 Coefficient Evaluation

To reiterate, the purpose of measuring agreement for this study is to assess the repro-
ducibility of the schema for annotating dialogues with DA, AP and ultimately AP-types.
If multiple annotators can be shown to reliably assign similar labels to a set of data, it can
be inferred that they have a similar understanding of the meaning of the labels, the data
items to which they are applicable and that the observed agreement (or disagreement) is
not purely a product of chance or an individual’s interpretation of the scheme. Unfortu-
nately, the question of what constitutes reliable agreement when interpreting agreement
coefficients seems to be an unanswered question (Artstein and Poesio, 2008; Craggs and
Wood, 2005; Krippendorff, 2004).

The principal approach is based on a range of values proposed by Landis and Koch
(1977). Values below zero are considered ‘Poor’ agreement, and values between 0 and
1 are separated into five ranges: Slight (.0 - .2), Fair (.21 - .4), Moderate (.41 - .6),
Substantial (.61 - .8), and Perfect (>.81). Though they themselves concede that the
divisions are arbitrary and only provide a useful benchmark. In Computational Linguistics,
it is generally accepted that values of >0.8 can be considered “good reliability”, and values
in the range [0.67, 0.8] allow for “tentative conclusions to be drawn” (Krippendorff, 2004;
Carletta, 1996). Though it is acknowledged that, as with the original Landis and Koch
(1977) values, these ranges are somewhat arbitrary and are not suitable in all cases (Di
Eugenio and Glass, 2004; Krippendorff, 2004; Carletta, 1996). This is especially true
for annotation tasks such as this, where there is a degree of subjectivity in choosing an
appropriate label, where some prior subject-specific knowledge is required, and notably for
AP, prefect agreement will generally require annotators to agree on two (or more) labels,
rather than one for DA. Indeed, it has been shown that achieving even the minimum
0.67 value is extremely difficult for discourse annotation (Poesio and Vieira, 1998; Hearst,
1997). This problem is further compounded when using weighted agreement coefficients,
because the choice of distance function greatly impacts the calculated coefficient value, as
shown by Artstein and Poesio (2005b). Furthermore, regarding the bias problem discussed
in the previous section, differences in annotator distributions (bias) will increase biased
coefficient values, causing them to diverge from non-biased measures. Thus, in the presence
of bias, a biased coefficient will always be larger than a non-biased one, and for this reason
Geiß (2021) suggests that applying the same range of values is not appropriate, because
they warrant different interpretations. Unfortunately, to the best of our knowledge no
alternative scale for interpreting biased coefficients has been proposed within the literature,
though some have made attempts to ‘correct’ for bias when there are only two categories
(Byrt, Bishop, and Carlin, 1993). We therefore choose to evaluate both coefficients, Alpha
and Beta, with respect to the ranges typically adopted throughout the literature; with the
caveat that, for Beta it is necessary to be cautious when drawing conclusions if there is a
significant difference between the two coefficients.

Ultimately, choosing an arbitrary agreement threshold should not be the sole measure
upon which an annotation schema, or labelled corpus, should be considered valid or reli-
able (Artstein and Poesio, 2008; Craggs and Wood, 2005). Instead, the methodology for
collecting and calculating reliability should be thoroughly communicated, so that conclu-
sions can be drawn based on the characteristics and motivations of the particular study
(Artstein and Poesio, 2008). Thus we follow the 8 recommendations outlined by Bay-
erl and Paul (2011),for information that should be included when reporting annotation
reliability:

1. Number of annotators.

2. Type and amount of material annotated.
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3. Number of categories in the scheme.

4. Criteria for selecting annotators.

5. Annotators’ expert status (novices, domain experts, schema developers, native
speakers).

6. Type and intensity of training.

7. Type and computation of the agreement index.

8. Purpose for calculating the agreement index (including whether the goal was to reach
a certain threshold or achieve “highest-possible” agreement).

The following additional annotation methodology considerations as suggested by Krippen-
dorff (2004, ch. 11), and reiterated by (Artstein, 2018):

1. Annotators must work independently, so agreements come from a shared under-
standing not through discussion.

2. Annotators should come from a well-defined population, so that researchers are aware
of previous knowledge or assumptions they bring to the annotation process.

3. Annotation instructions should be exhaustively formulated, clear and contain step-
by-step instructions on how to use it.
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Figure B.3: The full DA relationship graph represents distances between
DA for calculating weighted agreement coefficients. Leaf nodes are DA,
while intermediate nodes represent the communicative function subcat-
egories.
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Appendix C

Alpha vs Beta

Previous results have shown that in all cases the Beta coefficient results in significantly
higher agreement values than Alpha, and that this is principally caused by the differences
in annotator label distributions increasing the Beta values. As discussed in section 4.2.3,
the difference between these two coefficients lies only in their calculation of expected
disagreement. That is, Alpha estimates disagreement on the basis that all annotators
assign labels with the same probability distribution, while Beta considers the individual
annotators distributions. Here, these different estimations are tested, using the actual
annotator label distributions from this study, to determine the extent to which annotators
use similar, or different distributions.

Jensen-Shannon Divergence The difference, or similarity, between probability distri-
butions can be calculated using the Jensen-Shannon divergence (JSD) method. Here, the
generalisation of JSD is adopted, which calculates a distance value between two or more
probability distributions. The distance value is bounded in the range 0 ≤ JSD ≤ log2(n),
where n is the number of input distributions; the lower bound represents identical dis-
tributions and the upper bound maximally different distributions. For each dialogue set
the JSD distance was calculated for the probability distributions of all annotators that
labelled that set. Thus, in each case n = 3 and the range is 0 ≤ JSD ≤ 1.58. Table C.1
shows the JSD distances for the DA and AP label distributions over each dialogue set. We
can see that both DA and AP have low distance values, within ˜1/6th of the lower range,
and therefore, overall differences between annotator distributions is relatively small using
this measure. AP labels show a lower average distance than DA over all dialogue sets,
with a mean of 0.22 and 0.25 respectively, which is likely due to the fewer number of AP
labels. However, AP also show a higher standard deviation than DA and this may reflect
the higher disagreement and bias for AP labels that was previously observed.

Table C.1: JSD distance for DA and AP labels of each dialogue set.

Group DA AP

set 1 0.272 0.15

set 2 0.305 0.177

set 3 0.183 0.307

set 4 0.232 0.17

set 5 0.26 0.296

µ 0.251 0.22

σ 0.041 0.067
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Pearsons Chi-squared In addition to calculating the distance between groups of anno-
tator probability distributions, we can also examine the extent to which label distributions
are dependent on the individual annotators that assigned them. For this purpose, an χ2

test was conducted using the cumulative annotator label distributions. For each dialogue
set a separate χ2 test was performed for all pairwise annotator combinations, results are
shown in table C.2.

Table C.2: χ2 analysis of annotator label distributions.

DA AP

Group User 1 User 2 χ2
crit χ2 p-value χ2

crit χ2 p-value

usr1-1 usr11-1 31.41 19.953 .461 15.507 11.5 .175

usr1-1 usr6-1 28.869 21.281 .265 16.919 14.496 .106Set 1

usr11-1 usr6-1 31.41 20.61 .42 16.919 12.353 .194

usr12-2 usr2-2 28.869 24.878 .128 18.307 14.181 .165

usr12-2 usr7-2 30.144 24.91 .164 18.307 16.687 .082Set 2

usr2-2 usr7-2 30.144 19.882 .402 15.507 11.973 .152

usr13-3 usr3-3 30.144 13.084 .834 18.307 17.263 .069

usr13-3 usr8-3 28.869 18.934 .396 18.307 40.194 <.001Set 3

usr3-3 usr8-3 27.587 9.853 .91 18.307 23.635 .009

usr14-4 usr4-4 30.144 17.509 .555 18.307 9.667 .47

usr14-4 usr9-4 27.587 12.955 .739 18.307 15.892 .103Set 4

usr4-4 usr9-4 24.996 19.519 .191 18.307 17.311 .068

usr10-5 usr15-5 28.869 26.42 .091 18.307 20.48 .025

usr10-5 usr5-5 28.869 17.459 .492 18.307 18.725 .044Set 5

usr15-5 usr5-5 30.144 17.333 .567 16.919 26.192 .002

1. For DA, in none of the pairwise comparison between annotators are the observed
label frequencies significantly different. In other words, regardless of which annota-
tor assigned the labels, the distribution would still be largely the same - although
individual assignments could still be very different.

2. For AP, in 1/3 of cases (2 in set 3 and all of set 5), we see significant results when
comparing the critical value to the test statistic, and also significant p-values. As
such, we must reject the null hypothesis and concluded that the label distributions
(in 1/3 of cases) were dependent on the annotator that assigned them. Therefore,
certain annotators were producing label distributions that were quite distinct from
each other.

These two conclusions seem to support the results from the JSD comparison. Firstly,
there seems to be less variance in the annotator’s DA label assignments, likely contributing
to the observed higher agreement values. Secondly, AP seem to be more dependent on the
individual annotator which assigned them (overall p-values are lower, indicating a higher
degree of idiosyncratic interpretation). As such, agreement for AP was lower, while bias
was higher, and this may also be indicative of the misunderstanding surrounding the use
of FPP and SPP that was discussed in section 4.2.5.4, and the differences in interpretation
observed in 4.2.5.2 and 4.2.5.3. These results also suggest that both the JSD and χ2 tests
could serve as additional measures for the homogeneity of annotators interpretation, and
understanding, of the material and coding scheme.
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From these measures, and regarding Alpha and Beta, it seems that annotators do,
in fact, use more similar distributions for DA labels. In most cases this also appears
true for AP, though there is a greater variance (in part due to misunderstanding FPP
and SPP) between some groups of annotators. However, as we have seen, these small
differences can result in drastically different values between the two coefficients. Given
that there is a certain amount of semantic interpretation when assigning both DA and
AP labels, the assumption that annotators will use the same distribution is, as Artstein
and Poesio (2005b) stated, too strong. Consequently, Alpha may be too harsh in its
estimation of annotator distributions and punish individual interpretation too severely.
Yet, as shown in our AP label agreement results (4.2.5.4), when using the suffix-only
distance function, the Beta coefficient exhibited smaller changes in agreement values.
Further, as shown throughout our results, in the presence of bias – which is itself a form
of disagreement – the Beta coefficient is consistently higher than Alpha. Therefore, it may
be a less sensitive measure of agreement, even hiding some causes of disagreement, which
makes drawing conclusions of reliability problematic, using the Beta coefficient alone.
However, that Alpha and Beta diverge, and the extent to which they do, can provide
useful information in its own right. In our case it has clearly signified the higher degree
of idiosyncratic interpretation between annotators when assigning AP labels, and also
highlighted differences between task and non-task-oriented, or dialogue corpora, groups.
This information would not have been apparent from the calculation of either coefficient
alone, and so in agreement with Di Eugenio and Glass (2004), for annotation that require
a high degree of semantic interpretation, it seems more helpful to report both biased
and unbiased values. Though, if the goal is to reach high agreement values, and hence
reliability of labelled data, the more stringent unbiased coefficient should be used.
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Appendix D

CAMS-KVRET Label
Distributions

Table D.1: Count and proportion of DA labels within the CAMS-KVRET corpus.

DA Count % Train Count Train % Test Count Test % Val Count Val %

thanking 2491 14.39 1994 14.38 259 14.88 238 13.98

acceptThanking 2403 13.88 1922 13.86 248 14.24 233 13.68

setQuestion 2337 13.50 1897 13.68 219 12.58 221 12.98

answer 2182 12.61 1765 12.73 213 12.23 204 11.98

request 2150 12.42 1702 12.28 234 13.44 214 12.57

inform 1767 10.21 1417 10.22 186 10.68 164 9.63

propositionalQuestion 1247 7.21 1001 7.22 110 6.32 136 7.99

accept 1177 6.80 921 6.64 125 7.18 131 7.69

confirm 549 3.17 439 3.17 48 2.76 62 3.64

disconfirm 527 3.05 433 3.12 42 2.41 52 3.05

autoPositive 215 1.24 166 1.20 27 1.55 22 1.29

choiceQuestion 126 0.73 99 0.71 13 0.75 14 0.82

goodbye 57 0.33 46 0.33 5 0.29 6 0.35

suggest 41 0.24 34 0.25 4 0.23 3 0.18

checkQuestion 19 0.11 12 0.09 5 0.29 2 0.12

apology 8 0.05 5 0.04 2 0.11 1 0.06

conditionalAccept 4 0.02 4 0.03 0 0.00 0 0.00

acceptApology 2 0.01 1 0.01 1 0.06 0 0.00

agreement 1 0.01 1 0.01 0 0.00 0 0.00

autoNegative 1 0.01 1 0.01 0 0.00 0 0.00

disagreement 1 0.01 1 0.01 0 0.00 0 0.00

correction 1 0.01 1 0.01 0 0.00 0 0.00

greeting 1 0.01 1 0.01 0 0.00 0 0.00

Table D.2: Count and proportion of AP labels within the CAMS-KVRET corpus.

AP Count % Train Count Train % Test Count Test % Val Count Val %

FPP-base 6579 38.01 5302 38.25 645 37.05 632 37.11

SPP-base 6579 38.01 5302 38.25 645 37.05 632 37.11

FPP-insert 1243 7.18 988 7.13 123 7.06 132 7.75

SPP-insert 1243 7.18 988 7.13 123 7.06 132 7.75

Post 766 4.43 628 4.53 65 3.73 73 4.29

Insert 529 3.06 420 3.03 58 3.33 51 2.99

FPP-post 170 0.98 105 0.76 41 2.35 24 1.41

SPP-post 170 0.98 105 0.76 41 2.35 24 1.41

Pre 28 0.16 25 0.18 0 0.00 3 0.18
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Appendix E

Model Hyperparameters

Table E.1: Summary of Hyperparameters for the supervised sentence en-
coders. We use Comet.ml to tune each model and results can be viewed at:
comet.ml/nathanduran/sentence-encoding-for-da-model-optimisation.

Dim Trainable
Model Encoder

Reduction
Classifier Optimiser (α)

Params

Filters: 64 Max Nodes: 224
CNN

Kernel Size: 5 Pool Size: 8 Dropout: 0.27
Adam (0.002) 294,905

Filters: 128 Max Nodes: 224
TextCNN

Kernel Size: [1, 2, 3, 4, 5] Pool Size: 8 Dropout: 0.1
Adagrad (0.02) 2,357,625

Filters: 64 Nodes: 128
DCNN

Kernel Size: [7, 5]
K-max

Dropout: 0.1
Adagrad (0.02) 1,677,129

Units: 256 Nodes: 128
RCNN

Filters: 64
Max

Dropout: 0.02
RMSprop (0.001) 2,497,225

Units: 256 Nodes: 128
LSTM

Dropout: 0.2
Average

Dropout: 0.02
RMSprop (0.001) 2,709,577

Units: 256 Nodes: 128
GRU

Dropout: 0.2
Max

Dropout: 0.02
RMSprop (0.001) 1,113,129

Units: 256 Nodes: 128
Bi-LSTM

Dropout: 0.2
Average

Dropout: 0.02
RMSprop (0.001) 3,313,737

Units: 256 Nodes: 128
Bi-GRU

Dropout: 0.2
Max

Dropout: 0.02
RMSprop (0.001) 1,420,841

Units: 256 Nodes: 128
LSTM 2-lyr

Dropout: 0.2
Average

Dropout: 0.02
RMSprop (0.00075) 3,235,913

Units: 256 Nodes: 128
LSTM 3-lyr

Dropout: 0.2
Average

Dropout: 0.02
RMSprop (0.00075) 3,762,249

Units: 256 Nodes: 128
GRU 2-lyr

Dropout: 0.2
Average

Dropout: 0.02
RMSprop (0.00075) 1,507,881

Units: 256 Nodes: 128
GRU 3-lyr

Dropout: 0.2
Average

Dropout: 0.02
RMSprop (0.00075) 1,902,633
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Table E.2: Summary of Hyperparameters for the language model sentence encoders.

Dim Trainable
Model Encoder

Reduction
Classifier Optimiser (α)

Params

Units: 768 Nodes: 256
BERT

Layers: 12
Average

Dropout: 0.05
Adagrad (0.0015) 85,261,865

Units: 768 Nodes: 256
RoBERTa

Layers: 12
Average

Dropout: 0.05
Adam (2e− 5) 124,853,033

Units: 768 Nodes: 256
GPT2

Layers: 12
Average

Dropout: 0.02
Adam (2e− 5) 124,647,209

Units: 768 Nodes: 256
DialoGPT

Layers: 12
Average

Dropout: 0.02
Adam (2e− 5) 124,853,033

Units: 768 Nodes: 256
XLNet

Layers: 12
Average

Dropout: 0.02
Adam (2e− 5) 116,925,737

Units: 512 Nodes: 256
ConveRT

Layers: 2
N/A

Dropout: 0.02
Adam (0.001 272,937

Nodes: 256
ELMo Units: 1024 Average

Dropout: 0.01
Adagrad (0.04) 272,941

Nodes: 256
USE Units: 512 N/A

Dropout: 0.02
Adam (0.001 141,865

Units: 1024 Nodes: 128
mLSTM

Chars: 64
Average

Dropout: 0.02
Adam (0.001) 529,705

Nodes: 256
NNLM Units: 128 N/A

Dropout: 0.02
Adam (0.0001 124,686,249

Table E.3: Summary of Hyperparameters for the base context encoders. We use Comet.ml
to tune each model and results can be viewed at: comet.ml/nathanduran/context-
encoding-for-da-model-optimisation.

Sentence Context Dim Trainable

Model Encoder Reduction
Classifier Optimiser (α)

Params

Filters: 32 Max Nodes: 256
CNN

Kernel Size: [6, 4, 2] Pool Size: 2 Dropout: 0.1
109,901,420

Units: 512 Nodes: 512/256
BERT

LSTM
Dropout: 0.2

Average
Dropout: 0.1

Adam (2e− 5)

113,821,708

Filters: 32 Max Nodes: 256
CNN

Kernel Size: [6, 4, 2] Pool Size: 2 Dropout: 0.1
125,064,812

Units: 512 Nodes: 512/256
RoBERTa

LSTM
Dropout: 0.2

Average
Dropout: 0.1

Adam (2e− 5)

128,985,100

Filters: 128 Average Nodes: 128/64
CNN

Kernel Size: [6, 4, 2] Pool Size: 2 Dropout: 0.1
2,495,740

Units: 256 Nodes: 128
LSTM

LSTM
Dropout: 0.1

Average
Dropout: 0.1

RMSprop (0.001)

3,594,940

Filters: 128 Average Nodes: 256
CNN

Kernel Size: [6, 4, 2] Pool Size: 2 Dropout: 0.1
1,167,036

Units: 256 Nodes: 256
TextCNN

LSTM
Dropout: 0.1

N/A
Dropout: 0.1

RMSprop (0.001)

2,036,796
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Appendix F

Model Variants Results

F.1 Supervised Model Variants

F.1.1 Multi-layer and Bi-directional Models

In addition to our baseline recurrent models (LSTM and GRU) we also test their bi-
directional and multi-layer variants, both of which have previously been explored within
DA classification studies (Ribeiro, Ribeiro, and De Matos, 2019; Bothe et al., 2018a;
Chen et al., 2018; Kumar et al., 2017). The bi-directional models (Bi-LSTM and Bi-
GRU) process the input sequence in the forwards and then backwards directions. Each
pass generates a 256 dimensional vector (equivalent to the number of hidden units) per
timestep, which are then concatenated to form a single 512 dimensional vector. As with the
baseline recurrent models, we take the output at each timestep and apply max pooling for
dimensionality reduction. The multi-layer models (Deep-LSTM and Deep-GRU), simply
stack multiple recurrent layers on top of each other, with the output for a given layer, at
each timestep, becoming the input for the following layer. We use the same number of
hidden units and apply the same max pooling operation as the other recurrent models.

Table F.1 shows our results for 1, 2, and 3-layer LSTM and GRU models on both
corpora. Starting with the LSTM models, we can see that for the SwDA data the single
layer LSTM outperforms the 2 and 3-layer variants, and on Maptask the 2-layer LSTM
yields a small improvement, though in all cases this is non-significant (P (rope) ≥ .97). For
the GRU models results are inverted, with the 2-layer, and 1-layer GRU resulting in better
performance on SwDA and Maptask respectively. However, in both cases the differences
between the GRU models is not statistically significant, with P (2-lyr > 1-lyr) = .38, and
P (1-lyr > 2-lyr) = .61, for SwDA and Maptask respectively. Our results for the LSTM
models support those reported by Kumar et al. (2017), and others (Ribeiro, Ribeiro,
and De Matos, 2019; Papalampidi, Iosif, and Potamianos, 2017), who also found that
increasing the number of layers did not lead to an improvement in performance. Regarding
the difference we observed between the LSTM and GRU models, we speculate that this is
likely due to the difference in the number of parameters between them. The single layer
LSTM has ˜2.7 million parameters, while the GRU has ˜1.1 million. Thus, the GRU
benefited more from an increased number of parameters when applied to the larger SwDA
dataset, while the same factor may have led to overfitting on the smaller Maptask data.

Comparing the Bi-LSTM and Bi-GRU to their uni-directional equivalents: for SwDA
both uni-directional models outperformed the bi-directional (P (Uni > Bi) ≥ .99), and for
Maptask they were equivalent (P (rope) ≥ .99). Bi-directional models have been employed
at both the context/discourse level (Chen et al., 2018; Kumar et al., 2017), and for sentence
encoding (Li et al., 2019b; Bothe et al., 2018a). However, for the latter task it seems bi-
directionality, at least in isolation, has no benefit.
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F.2. Context Model Variants

Table F.1: Validation accuracy for 1, 2, and 3-layer recurrent models on
the SwDA and Maptask data.

SwDA Maptask

Model µ σ µ σ

LSTM 1-lyr 75.76 0.16 58.15 0.15

LSTM 2-lyr 75.40 0.14 58.30 0.17

LSTM 3-lyr 75.37 0.20 58.10 0.24

GRU 1-lyr 74.80 0.16 58.49 0.36

GRU 2-lyr 75.32 0.18 57.96 0.35

GRU 3-lyr 75.09 0.19 57.48 0.28

F.1.2 Attentional Models

Throughout the DA classification literature different attention mechanisms have been ap-
plied, in various contexts (Bothe et al., 2018a; Chen et al., 2018; Ortega and Vu, 2017;
Tran, Haffari, and Zukerman, 2017; Shen and Lee, 2016). We investigate the effect of
adding a simple attention mechanism to each of our supervised models. During param-
eter tuning we tested both additive attention (Bahdanau, Cho, and Bengio, 2015), and
multiplicative attention (Luong, Pham, and Manning, 2015), and found that in all cases
additive resulted in the best performance. We incorporated the attention mechanism into
our models by inserting an attentional layer between the utterance encoder layer and the
dimensionality reduction layer. The attention layer takes as input the encoded utterance,
and its output is later concatenated with the original utterance encoding, before being
passed to the classification layers.

Our experimental results indicate that no attentional models show an improvement,
and in most cases attention was detrimental to performance. On SwDA the only statisti-
cally significant result is for the DCNN model over its attentional variant (P (DCNN >
DCNN -Attn) = .99), with an increase of just 0.77%, and for Maptask all models are
considered equivalent to their attentional variants(P (rope) ≥ .81). As with bi-directional
recurrent models, attention mechanisms are frequently combined at both the context/dis-
course, and sentence encoding, level (Li et al., 2019b; Bothe et al., 2018a; Tran, Haffari,
and Zukerman, 2017; Tran, Zukerman, and Haffari, 2017; Shen and Lee, 2016). While
most of these attention mechanisms are unique implementations, and therefore not directly
comparable to our experiments, it does seem that the benefit of using standard attention
mechanisms for sentence encoding should be accompanied by appropriate testing to es-
tablish its true impact on performance.

F.2 Context Model Variants

As with our sentence encoders (F.1), we explore several variations of recurrent context
encoder models. Including, a GRU, a bi-directional GRU and LSTM, and additive, or
multiplicative attention with a GRU as the base context encoder. Each uses RoBERTa as
a sentence encoder and we use 5 previous context utterances. We only apply these models
to the Maptask corpus, with results shown in table F.2.

It can be seen that there are minimal differences across all model variants, with at
most a +0.61% difference between Bi-GRU and Attn-Add. Unsurprisingly, in no case
do we see statistically significant differences. Instead, we only see statistically signifi-
cant equivalence; for Bi-GRU and LSTM (P (rope) = .82), and conversely Bi-LSTM and
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F.2. Context Model Variants

Table F.2: Context encoder bi-directional and attentional variant result
for the Maptask validation set.

Model µ σ

RoBERTa-LSTM 67.93 0.57

RoBERTa-Bi-LSTM 67.76 0.54

RoBERTa-GRU 67.84 0.45

RoBERTa-Bi-GRU 67.46 0.50

RoBERTa-Attn-Add 68.07 0.47

RoBERTa-Attn-Dot 68.06 0.46

GRU (P (rope) = .84). For the attentional models Attn-Add is equivalent to the GRU
(P (rope) = .82), and also Attn-Dot (P (rope) = .85). Thus, similar to our results for
sentence encoder variants, it appears the addition of bi-directional and attentional layers
do not result in significant improvements. Such models are used extensively throughout
the DA classification literature (Li et al., 2019b; Raheja and Tetreault, 2019; Chen et al.,
2018; Kumar et al., 2017; Ortega and Vu, 2017), yet are often not accompanied by ap-
propriate ablation studies to determine if their effect on performance is indeed significant.
We, therefore, continue using only RoBERTa-LSTM as our base context model. In the fol-
lowing section we extend this model, by investigating various speaker and label encoders,
and establish the impact of incorporating such contextual information.
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Appendix G

CAMS Classification Results

G.1 AP Identification Results

(a) No-context (b) Context

Figure G.1: Confusion matrices for DA predictions on the validation
set using non-contextual (a), and contextual (b), classification models.
Note that here we are only showing the 15 most frequent labels.

168



G.1. AP Identification Results

Table G.1: Difference in validation set accuracy and top-3 accuracy,
between full and partial context models and the baseline classifiers
(RoBERTa, prior, and most frequent label).

RoBERTa Prior Most Frequent

Label Type Acc Top-3 Acc Acc Top-3 Acc Acc Top-3 Acc

Full Context

DA 5.57 10.3 83.56 88.29 80.56 85.29

AP 13.37 13.97 69.78 70.37 62.27 62.86

AP-type 12.61 17.23 84.97 90.58 78.46 84.07

Partial Context

DA 5.02 10.37 83.01 88.36 80.01 85.36

AP 2.28 11.29 58.69 67.69 51.18 60.18

AP-type 5.86 14.49 78.22 87.84 71.71 81.33

Table G.2: Validation and test set accuracy and top-3 accuracy, as well as macro and
weighted F1 scores, for each label type. DA First, AP First, and Parallel are the three
different multi-label architectures tested, and k denotes the number of probabilities that
were concatenated with the dialogue segment encoding.

Validation Test

Label Type µ σ top3-µ top3-σ µ σ top3-µ top3-σ macro-F1 weighted-F1

DA First

DA 93.73 0.46 99.15 0.12 94.35 0.28 99.11 0.13 0.7 0.94

AP 88.56 0.45 97.56 0.28 88.25 0.48 97.62 0.4 0.75 0.86

AP-types 85.23 0.45 93.55 0.18 84.78 0.4 92.72 0.4 0.28 0.81

AP First

DA 93.5 0.43 99.12 0.22 94.44 0.33 99.05 0.16 0.7 0.94

AP 88.51 0.4 97.4 0.32 88.48 0.29 97.79 0.49 0.71 0.86

AP-types 85.19 0.49 93.62 0.42 85.01 0.2 92.49 0.42 0.27 0.81

Parallel

DA 93.61 0.38 99.14 0.14 94.38 0.3 99.11 0.12 0.7 0.94

AP 88.87 0.32 97.66 0.33 88.22 0.28 97.81 0.27 0.74 0.86

AP-types 85.31 0.27 93.57 0.39 84.67 0.28 92.44 0.35 0.28 0.81

DA First k=3

DA 93.58 0.31 99.1 0.08 94.46 0.31 99.03 0.1 0.7 0.94

AP 88.88 0.34 97.65 0.29 88.58 0.18 97.83 0.41 0.75 0.87

AP-types 85.43 0.31 93.52 0.56 85.05 0.32 92.47 0.53 0.28 0.81

AP First k=3

DA 93.48 0.35 99.11 0.07 94.47 0.48 99.06 0.13 0.7 0.94

AP 88.58 0.3 97.51 0.23 88.37 0.44 97.9 0.47 0.73 0.86

AP-types 85.05 0.39 93.63 0.52 84.7 0.48 92.53 0.51 0.28 0.81

Parallel k=3

DA 93.68 0.24 99.09 0.11 94.37 0.31 99.04 0.12 0.7 0.94

AP 88.62 0.18 97.57 0.17 88.34 0.33 97.94 0.53 0.72 0.87

AP-types 85.03 0.16 93.81 0.51 84.76 0.36 92.63 0.39 0.28 0.81
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G.2. Next-label Results

G.2 Next-label Results

Table G.3: Difference in validation set accuracy and top-3 accuracy, between full and
partial context next-label models, the baseline classifiers (RoBERTa, prior, and most
frequent label), and the contextual RoBERTa-LSTM.

RoBERTa-LSTM RoBERTa Prior Most Frequent

Label Type Acc Top-3 Acc Acc Top-3 Acc Acc Top-3 Acc Acc Top-3 Acc

Full Context

DA -11.26 -0.63 2.11 13.33 58.52 69.75 51.0 62.23

AP -28.31 -10.24 -15.69 7.98 56.67 80.34 50.15 73.82

AP-type -28.51 -8.14 -22.94 2.15 55.05 80.14 52.05 77.15

Partial Context

DA -6.32 -1.62 -4.04 9.67 52.37 66.08 44.86 58.56

AP -24.39 -10.11 -18.53 5.37 53.84 77.73 47.32 71.21

AP-type -29.47 -9.11 -24.45 1.26 53.54 79.25 50.55 76.25

Table G.4: Next-label validation and test set accuracy and top-3 accuracy, as well as macro
and weighted F1 scores, for each label type. DA First, AP First, and Parallel are the three
different multi-label architectures tested, and k denotes the number of probabilities that
were concatenated with the dialogue segment encoding.

Validation Test

Label Type µ σ top3-µ top3-σ µ σ top3-µ top3-σ macro-F1 weighted-F1

DA First

DA 64.48 0.54 89.96 0.52 66.57 0.64 90.76 0.32 0.36 0.63

AP 82.15 0.27 96.19 0.34 81.54 0.32 95.59 0.24 0.44 0.76

AP-types 60.31 0.61 84.13 0.37 62.39 0.58 83.52 0.22 0.14 0.55

AP First

DA 64.59 0.6 90.04 0.35 66.36 0.64 90.64 0.39 0.36 0.63

AP 82.15 0.4 96.18 0.16 81.39 0.6 95.61 0.27 0.48 0.76

AP-types 60.46 0.46 83.87 0.46 62.18 0.71 83.71 0.44 0.13 0.55

Parallel

DA 64.14 0.78 89.99 0.29 66.33 0.94 90.58 0.31 0.36 0.63

AP 82.27 0.41 96.06 0.25 81.35 0.43 95.57 0.28 0.48 0.76

AP-types 60.39 0.56 83.91 0.28 62.26 0.58 83.56 0.31 0.14 0.55

DA First k=3

DA 64.5 0.74 90.18 0.3 66.71 1.04 90.74 0.32 0.36 0.63

AP 82.24 0.37 96.11 0.33 81.47 0.38 95.6 0.18 0.46 0.76

AP-types 60.34 0.92 84.1 0.4 62.39 0.8 83.69 0.39 0.14 0.55

AP First k=3

DA 64.25 0.41 89.95 0.3 66.7 0.62 90.6 0.41 0.37 0.63

AP 82.2 0.63 96.08 0.22 81.38 0.4 95.51 0.16 0.46 0.76

AP-types 60.03 0.84 83.88 0.35 62.24 0.59 83.59 0.37 0.14 0.55

Parallel k=3

DA 64.63 0.56 90.02 0.52 66.49 0.85 90.51 0.41 0.36 0.62

AP 82.21 0.47 96.13 0.19 81.16 0.64 95.53 0.23 0.48 0.76

AP-types 60.83 0.46 83.86 0.39 62.29 0.82 83.4 0.45 0.14 0.54
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Appendix H

Dialogue Structure Evaluation and
Analysis

Table H.1: BLEU, METEOR, and ROUGE-L scores for GPT-3 response
generation with different label types included in the prompt.

Label Type BLEU METEOR ROUGE-L

No Label 0.078 0.412 0.413

DA 0.078 0.452 0.449

AP 0.078 0.436 0.434

AP-types 0.078 0.451 0.452

Figure H.1: A directed dialogue structure graph with 11 nodes and 25
edges. Created using the χ2 data for all AP within CAMS-KVRET.
Nodes are AP and edges are transitions from one AP to another. Edges
are coloured according to the χ2 value, and edge widths represent the
frequency of occurrences.
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Figure H.2: A directed dialogue structure graph with 20 nodes and 63
edges. Created using the χ2 data for all DA within CAMS-KVRET.
Nodes are DA and edges are transitions from one DA to another. Edges
are coloured and labelled according to the χ2 value, and edge widths
represent the frequency of occurrences.
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Figure H.3: A directed dialogue structure graph with 10 nodes and
100 edges. Created using the χ2 data for all AP-types within CAMS-
KVRET. Nodes are AP and edges are DA transitions from one AP to
another. Edges are coloured and labelled according to the χ2 value, and
edge widths represent the frequency of occurrences.
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(a) DA Weather

(b) DA Schedule (c) DA Navigate

Figure H.4: AP-type directed dialogue structure graphs for each dia-
logue task type within CAMS-KVRET. Nodes are AP and edges are
DA transitions from one AP to another. Edges are coloured according
to the χ2 value, and edge widths represent the frequency of occurrences.
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Gašić, M. (2011). “Statistical Dialogue Modelling”. PhD thesis, p. 240.
Ge, W. and B. Xu (2015). “Dialogue Management Based on Multi-domain Corpus”. In:

AnnualMeeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL),
pp. 364–373.

Geertzen, J. and H. Bunt (2006). “Measuring Annotator Agreement in a Complex Hierar-
chical Dialogue Act Annotation Scheme”. In: Proceedings of the 7th SIGdial Workshop
on Discourse and Dialogue. Sydney, Australia: Association for Computational Linguis-
tics, pp. 126–133. isbn: 193243271X. doi: 10.3115/1654595.1654619.

Geertzen, J., V. Petukhova, and H. Bunt (2008). “Evaluating Dialogue Act Tagging with
Naive and Expert Annotators”. In: Proceedings of the 6th International Conference
on Language Resources and Evaluation, LREC 2008. Marrakech, Morocco: European
Language Resources Association (ELRA), pp. 1076–1082. isbn: 2951740840.

Geis, M. L. (1995). Speech Acts and Conversational Interaction. Cambridge University
Press. isbn: 9780521464994.

Geiß, S. (2021). “Statistical Power in Content Analysis Designs: How Effect Size, Sample
Size and Coding Accuracy Jointly Affect Hypothesis Testing – A Monte Carlo Sim-
ulation Approach.” In: Computational Communication Research 3.1, pp. 61–89. issn:
2665-9085. doi: 10.5117/ccr2021.1.003.geis.

Godfrey, J. J., E. C. Holliman, and J. McDaniel (1992). “SWITCHBOARD Telephone
Speech Corpus for Research and Development”. In: Proceedings of the 1992 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP-92).
Vol. 1, pp. 517–520. isbn: 1520-6149 VO - 1. doi: 10.1109/ICASSP.1992.225858.

Goodwin, C. (1981). Conversational Organization: Interaction Between Speakers and
Hearers. Academic Press. isbn: 9780122897801. doi: 10.1007/BF01871829.

Grau, S., E. Sanchis, M. Castro, and D. Vilar (2004). “Dialogue Act Classification Using a
Bayesian Approach”. In: 9th Conference Speech and Computer. St. Petersberg, Russia.

181

https://arxiv.org/abs/2109.04919
https://arxiv.org/abs/2006.06110
https://doi.org/10.3390/APP10103386
https://doi.org/10.1007/s12559-020-09718-4
https://doi.org/10.1080/01638539809545029
https://doi.org/10.3115/1654595.1654619
https://doi.org/10.5117/ccr2021.1.003.geis
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1007/BF01871829


Bibliography

Green, J., M. Franquiz, and C. Dixon (1997). “The Myth of the Objective Transcript:
Transcribing as a Situated Act”. In: TESOL Quarterly 31.1, p. 172. issn: 00398322.
doi: 10.2307/3587984.

Grice, H. P. (1975). “Logic and Conversation”. In: Syntax and Semantics 3, pp. 45–47.
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