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A Tutorial for Competent Memetic Algorithms:
Model, Taxonomy, and Design Issues

Natalio Krasnogor and Jim Smith

Abstract—The combination of evolutionary algorithms with
local search was named “memetic algorithms” (MAs) (Moscato,
1989). These methods are inspired by models of natural systems
that combine the evolutionary adaptation of a population with
individual learning within the lifetimes of its members. Addition-
ally, MAs are inspired by Richard Dawkin’s concept of a meme,
which represents a unit of cultural evolution that can exhibit local
refinement (Dawkins, 1976). In the case of MA’s, “memes” refer
to the strategies (e.g., local refinement, perturbation, or construc-
tive methods, etc.) that are employed to improve individuals. In
this paper, we review some works on the application of MAs to
well-known combinatorial optimization problems, and place them
in a framework defined by a general syntactic model. This model
provides us with a classification scheme based on a computable
index , which facilitates algorithmic comparisons and suggests
areas for future research. Also, by having an abstract model for
this class of metaheuristics, it is possible to explore their design
space and better understand their behavior from a theoretical
standpoint. We illustrate the theoretical and practical relevance of
this model and taxonomy for MAs in the context of a discussion
of important design issues that must be addressed to produce
effective and efficient MAs.

Index Terms—Design issues, evolutionary global–local search
hybrids, memetic algorithms (MAs), model, taxonomy.

I. INTRODUCTION

EVOLUTIONARY ALGORITHMS (EAs) are a class of
search and optimization techniques that work on a prin-

ciple inspired by nature: Darwinian Evolution. The concept of
natural selection is captured in EAs. Specifically, solutions to a
given problem are codified in so-called chromosomes. The evo-
lution of chromosomes due to the action of crossover, mutation,
and natural selection are simulated through computer code.

It is now well established that pure EAs are not well suited
to fine tuning search in complex combinatorial spaces and that
hybridization with other techniques can greatly improve the ef-
ficiency of search [3]–[6]. The combination of EAs with local
search (LS) was named “memetic algorithms” (MAs) in [1].
MAs are extensions of EAs that apply separate processes to
refine individuals, for example, improving their fitness by hill-
climbing.
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These methods are inspired by models of adaptation in natural
systems that combine the evolutionary adaptation of a popula-
tion with individual learning within the lifetimes of its members.
The choice of name is inspired by Richard Dawkins’ concept of
a meme, which represents a unit of cultural evolution that can
exhibit local refinement [2]. In the context of heuristic optimiza-
tion, a meme is taken to represent a learning or development
strategy. Thus, a memetic model of adaptation exhibits the plas-
ticity of individuals that a strictly genetic model fails to capture.

In the literature, MAs have also been named hybrid genetic
algorithms (GAs) (e.g., [7]–[9]), genetic local searchers (e.g.,
[10]), Lamarckian GAs (e.g., [11]), and Baldwinian GAs (e.g.,
[12]), etc. As noted above, they typically combine local search
heuristics with the EAs’ operators, but combinations with con-
structive heuristics or exact methods may also be considered
within this class of algorithms. We adopt the name of MAs
for this metaheuristic, because we think it encompasses all the
major concepts involved by the other ones, and for better or
worse has become the de facto standard, e.g., [13]–[15].

EAs and MAs have been applied in a number of different
areas, for example, operational research and optimization, auto-
matic programming, and machine and robot learning. They have
also been used to study and optimize of models of economies,
immune systems, ecologies, population genetics, and social sys-
tems, and the interaction between evolution and learning, to
name but a few applications.

From an optimization point of view, MAs have been shown
to be both more efficient (i.e., requiring orders of magnitude
fewer evaluations to find optima) and more effective (i.e., iden-
tifying higher quality solutions) than traditional EAs for some
problem domains. As a result, MAs are gaining wide accep-
tance, in particular, in well-known combinatorial optimization
problems where large instances have been solved to optimality
and where other metaheuristics have failed to produce compa-
rable results (see for example [16] for a comparison of MAs
against other approaches for the quadratic assignment problem).

II. GOALS, AIMS, AND METHODS

Despite the impressive results achieved by some MA prac-
titioners, the process of designing effective and efficient MAs
currently remains fairly ad hoc and is frequently hidden behind
problem-specific details. This paper aims to begin the process
of placing MA design on a sounder footing. In order to do this,
we begin by providing some examples of MAs successfully ap-
plied to well-known combinatorial optimization problems, and
draw out those differences which specifically arise from the hy-
bridization of the underlying EA, as opposed to being design
choices within the EA itself. These studies are exemplars, in the
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sense that they represent a wide range of applications and algo-
rithmic options for a MA.

The first goal is to define a syntactic model which enables
a better understanding of the interplay between the different
component parts of an MA. A syntactic model is devoid of
the semantic intricacies of each application domain and hence
exposes the bare bones of this metaheuristic to scrutiny. This
model should be able to represent the many different parts that
compose an MA, determine their roles and interrelations.

With such a model, we can construct a taxonomy of MAs, the
second goal of this paper. This taxonomy is of practical and the-
oretical relevance. It will allow for more sensible and fair com-
parisons of approaches and experimental designs. At the same
time, it will provide a conceptual framework to deal with more
difficult questions about the general behavior of MAs. More-
over, it will suggest directions of innovation in the design and
development of MAs.

Finally, by having a syntactic model and a taxonomy, the
process of more clearly identifying which of the many compo-
nents (and interactions) of these complex algorithms relate to
which of these design issues should be facilitated.

The rest of this paper is organized as follows. In Section III,
we motivate our definition of the class of metaheuristics under
consideration, and give examples of the type of design issues
that have motivated this study. This is followed in Section IV by
a review of some applications of MAs to well-known problems
in combinatorial optimization and bioinformatics. Section V
presents a syntax-only model for MAs and a taxonomy of
possible architectures for these metaheuristics is given in Sec-
tion VI. In Section VII, we return to the discussion of design
issues, showing how some of these can be aided by the insights
given by our model. Finally, we conclude with a discussion and
conclusions in Section VIII.

III. BACKGROUND

A. Defining the Subject of Study

In order to be able to define a syntactic model and taxonomy,
we must first clarify what we mean by an MA. It has been argued
that the success of MAs is due to the tradeoff between the ex-
ploration abilities of the EA, and the exploitation abilities of the
local search used. The well-known results of MAs over multi-
start local search (MSLS) [17] and greedy randomized adaptive
search procedure (GRASP) [8] suggest that, by transferring in-
formation between different runs of the local search (by means
of genetic operators) the MA is capable of performing a much
more efficient search. In this light, MAs have been frequently
described as genetic local search which might be thought as the
following process [18]:

In each generation of GA, apply the LS operator to all
solutions in the offspring population, before applying the
selection operator.

Although many MAs indeed use this formula this is a somewhat
restrictive view of MAs, and we will show in the following sec-
tions that many other ways have been used to hybridize EAs
with LS with impressive results.

In [19], the authors present an algebraic formalization of
MAs. In their approach, an MA is a very special case of GA

where just one period of local search is performed. As we will
show in the following sections, MAs are used in a plethora
of alternative ways and not just in the way the formalism
introduced in [19] suggests.

It has recently been argued by Moscato that the class of MAs
should be extended to contain not only “EA-based MAs,” but
effectively include any population-based approach based on
a “k-merger” operator to combine information from solutions
[13], creating a class of algorithms called the polynomial
merger algorithm (PMA). However, PMA ignores mutation
and selection as important components of the evolutionary
metaheuristic. Rather, it focuses exclusively on recombination,
or it is more general form, the “k-merger” operator. Therefore,
we do not use this definition here, as we feel that it is both
restrictive (in that it precludes the possibility of EAs which do
not use recombination), and also so broad that it encompasses
such a wide range of algorithms as to make analysis difficult.

As the limits of “what is” and “what is not” an MA are
stretched, it becomes more and more difficult to assess the
benefit of each particular component of the metaheuristic in
search or optimization. A priori formalizations such as [13]
and [19] inevitably leave out many demonstrably successful
MAs and can seriously limit analysis and generalization of the
(already complex) behavior of MAs. Our intention is to provide
an a posteriori model of MAs, using algorithms as data; that
is, applications of MAs that have been proven successful. It
will be designed in such a way to encompass those algorithms.
Thus, we use a commonly accepted definition, which may be
summarized as [20]:

An MA is an EA that includes one or more local search
phases within its evolutionary cycle.
While this definition clearly limits the scope of our study, it

does not curtail the range of algorithms that can fit this scope.
As with any formal model and taxonomy, ours will have its own
“outsiders,” but hopefully they will be less numerous than those
left aside by [13] and [19]. The extension of our model to other
population-based metaheuristics is being considered in a sepa-
rate paper.

Finally, we should note that we have restricted the survey part
of this paper to MAs approaches for single-objective combina-
torial optimization problems (as opposed to multiobjective or
numerical optimization problems). This is not because MAs are
unsuited to these domains—they have been very successfully
applied to the fields of multiobjective optimization (see, e.g.,
[21]–[24], an extensive bibliography can be found in [25]),
and numerical optimization (see, e.g., [26]–[32]). Rather, the
reason for this omission is partly practical, to do with the space
this large field would demand. It is also partly because we wish
to introduce our ideas in the context of the simple algorithm

, where it is straightforward to
define a neighborhood, improvement, and the concept of local
optimality. When we consider multiobjective problems, the
whole concept of optimality becomes clouded by the trade-
offs between objectives, and dominance relations are usually
preferred. Similarly, in the case of numerical optimization, the
concept of local optimality is clouded by the difficulty, in the
absence of derivative information, of knowing when a solution
is truly locally optimal, as opposed to say, a point, a very small
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distance away. Nevertheless, it is worth stressing that the issues
cloud the exposition, rather than invalidate the concept of
“schedulers” which leads to our syntactic model and taxonomy,
and the subsequent design guidelines which can equally well
be applied in these more complex domains.

B. Design Issues for MAs

Having provided a fairly broad-brush definition of the class
of metaheuristics that we are concerned with, it is still vital to
note that the design of “competent” [33] MAs raises a number
of important issues which must be addressed by the practitioner.

Perhaps the foremost of these issues may be stated as:
“What is the best tradeoff between local search and the

global search provided by evolution?”
This leads naturally to questions such as the following.
• Where and when should local search be applied within the

evolutionary cycle?
• Which individuals in the population should be improved

by local search, and how should they be chosen?
• How much computational effort should be allocated to

each local search?
• How can the genetic operators best be integrated with

local search in order to achieve a synergistic effect?
As we will see in the following sections, there are a host

of possible answers to these questions, and it is important to
use both empirical experience and theoretical reasoning in the
search for answers. The aim of our syntactic model is to pro-
vide a sound basis for understanding and comparing the effects
of different schemes. The use of a formal model aids in this by
making some of the design choices more explicit, and by pro-
viding a means of comparing the existing MA literature with the
(far broader) body of research into EAs.

Similarly, while theoretical understanding of the interplay be-
tween local and global search is much less developed than that
of “pure” EAs, it is possible to look in that literature for tools
and concepts that may aid in the design of competent MAs, for
example:

• Is a Baldwinian or Lamarckian model of improvement to
be preferred?

• What fitness landscape(s) does the population of the MA
operate on?

• What local optima are the MAs operating with?
• How can we engineer MAs that efficiently traverse large

neutral plateaus and avoid deep local optima?

IV. SOME EXAMPLE APPLICATIONS OF MAS

IN OPTIMIZATION AND SEARCH

In this section, we will briefly comment on the use of MAs
on different combinatorial optimization problems and adaptive
landscapes. Applications to traveling salesman problem (TSP),
quadratic assignment problem (QAP), binary quadratic pro-
gramming (BQP), minimum graph coloring (MGC), and protein
structure prediction problem (PSP) will be reviewed.

This section does not pretend to be an exhaustive bibliog-
raphy survey, but rather a gallery of well-known applications
of MAs from which some architectural and design conclusions
might be drawn. In [34], a comprehensive bibliography can be
found.

For the definition of the problems, the notation in [35] will
be used. The reader interested in the complexity and approx-
imability results of those problems is referred to the previous
reference. The pseudocode used to illustrate the different algo-
rithms is shown as used by the respective authors, with only
some minor changes made for the sake of clarity.

In [36], a “standard” local search algorithm is defined in terms
of a local search problem. Because this standard algorithm is
implicit in many MAs, we repeat it here.

Begin
produce a starting solution
to problem instance ;
Repeat Until (locally optimal) Do
using and generate the next
neighbor ;
If ( is better than ) Then

;
Fi

Od
End.

Algorithm captures the in-
tuitive notion of searching a neighborhood as a means of
identifying a better solution. It does not specify tie-breaking
policies, neighborhood structure, etc.

This algorithm uses a “greedy” rather than a “steepest” policy,
i.e., it accepts the first better neighbor that it finds. In general,
a given solution might have several better neighbors, and the
rule that assigns one of the (potentially many) better neigh-
bors to a solution is called a pivot rule. The selection of the
pivot rule or rules to use in a given instantiation of the stan-
dard local search algorithm has tremendous impact on the com-
plexity of the search and potentially in the quality of the solu-
tions explored.

Note also that the algorithm above implies that local search
continues until a local optima is found. This may take a long
time, and in the continuous domain proof of local optimality
may be decidedly nontrivial. Many of the local search proce-
dures embedded within the MAs in the literature are not stan-
dard in this sense, that is, they usually perform a shorter “trun-
cated” local search.

A. MAs for the TSP

The TSP is one of the most studied combinatorial optimiza-
tion problems. It is defined by the following.

Traveling Salesman Problem
Instance: A set of cities, and for each pair of cities

, a distance .
Solution: A tour of , i.e.,
a permutation .
Measure: The length of the tour, i.e.,

.
Aim: minimum length tour .
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In [37], a short review on early MAs for the TSP is presented,
where an MA was defined by the following skeleton code.

Begin
/ , , /
For To Do
Iterative_Improvement ;

Od
stop_criterion:= false
While ( stop_criterion) Do

;
For To Do
/ Mate /

;
/ Recombine /

;
Iterative_Improvement ;

;
Od
/ Select /

;
evaluate stop_criterion

Od
End.

Here, we can regard as a
particular instantiation of , and
appropriate code should be used to initialize the population,
mate solutions, and select the next generation. Note that the
mutation stage was replaced by the local search procedure.
Also, a selection strategy was applied. The use of
local search and the absence of mutation is a clear difference
between and standard EAs.

In [37], early works on the application of MAs to the TSP
were commented on. Those works used different instantiations
of the above skeleton to produce near-optimal solution for small
instances of the problem. Although the results were not defin-
itive, they were very encouraging, and many of the following
applications of MAs to the TSP (and also to other NPO prob-
lems) were inspired by those early works.

In [38], the MA is
used which has several nonstandard features. For details, the
reader is referred to [13] and [38]. We are interested here
in remarking the two important differences with the MA

shown previously. In this MA,
the local search procedure is used after the application of each of
the genetic operators and not only once in every iteration of the
EA. These two metaheuristics differ also in that in the last case
a clear distinction is made between mutations and local search.
In [38], the local search used is based on the powerful guided
local search (GLS) metaheuristic [39]. This algorithm was com-
pared against MSLS, GLS, and a second MA, where the local
search engine was the same basic move used by GLS without
the guiding strategy. In this paper, results were presented from
experiments using instances taken from TSPLIB [40] and
fractal instances [41]. In no case was the MSLS able to achieve

an optimal tour unlike the other three approaches. Out of 31
instances tested, the
solved 24 to optimality, MSLS 0, MA with simple local search
10, and GLS 16. It is interesting to note that the paper was not
intended as a “better than” paper but rather as a pedagogical
paper, where the MAs were exposed as a new metaheuristic in
optimization.

GLS_Based_Memetic_Algorithm
Begin
Initialize population;
For To sizeOf(population) Do

;

;
Evaluate(individual);

Od
Repeat Until (termination_condition)

Do
For To #recombinations Do.
selectToMerge a set

;
;

;
Evaluate(offspring);
Add offspring to population;

Od
For To #mutations Do
selectToMutate an individual in
population;
Mutate(individual);

;

Evaluate(individual);
Add individual to population;

Od
population=SelectPop(population);
If (population has converged) Then
population=RestartPop(population);

Fi
Od

End.

Merz and Freisleben in [42]–[44] show many different com-
binations of local search and genetic search for the TSP [in both
its symmetric (STSP) and asymmetric (ATSP) versions], while
defining purpose-specific crossover and mutation operators. In
[42], the following code was used to conduct the simulations.

STSP-GA
Begin
Initialize pop with

;
For To Do

, ;
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Od
Repeat Until (converged) Do
For To #crossover Do
Select two parents
randomly;

;
Lin-Kernighan-Opt ;
With probability do
Mutation-STSP ;
Replace an individual of by ;

Od
Od

End.

In this pseudocode, the authors employ specialized crossover
and mutation operators for the TSP (and a similar algorithm
for the ATSP). As in previous examples, the initial popu-
lation is a set of local optima, in this case, with respect to

. In this case, the LK heuristic
is also applied to the results of crossover and mutation. The
authors motivate this, saying:

and let a GA operate on the set of local optima to
determine the global optimum.
However, they also note that this can lead to a disastrous

loss of diversity, which prompts their use of a selection strategy
which is neither a nor a but a hybrid between
the two, whereby the new offspring replaces the most similar
member of the population, (subject to elitism). As the authors re-
mark, the large step Markov chains and iterated-Lin-Kernighan
techniques are special cases of their algorithm.

In [44], the authors change their optimization scheme to one
similar to , which has a
more traditional mutation and selection scheme and in [43] they
use the same scheme as but after finalization
of the GA run, postprocessing by means of local search is per-
formed.

It is important to notice that Merz and Freisleben’s MAs are
perhaps the most successful metaheuristics for TSP and ATSP,
and a predecessor of the schemes described was the winning al-
gorithm of the First International Contest on Evolutionary Op-
timization.

In [45], Nagata and Kobayashi described a powerful MA with
an intelligent crossover, in which the local searcher is embedded
in the genetic operator. The authors of [46] describe a detailed
study of Nagata and Kobayashi’s work, and relate it to the local
searcher used by Merz and Freisleben.

B. MAs for the QAP

The QAP is found in the core of many practical problems such
as facility location, architectural design, VLSI optimization, etc.
Also, the TSP and GP can be recast as special cases of QAP. The
problem is formally defined as the following.

Quadratic Assignment Problem
Instance: A,B matrices of .
Solution: A permutation .
Measure: The cost of the permutation, i.e.,

Aim: Minimun cost permutation
.

Because of the nature of QAP, it is difficult to treat with
exact methods, and many heuristics and metaheuristics have
been used to solve it. In this section, we will briefly comment
on the application of MAs to the QAP.

In [9], the following MA described as a “hybrid GA meta-
heuristic” is proposed.

Begin
;

For To m Do
generate a random permutation ;
Add to ;

Od
Sort ;
For To number_of_generations Do
For To num_offspring_per_
generation Do
select two parents , from ;

;
Add to ;

Od
Sort ;

;
Od
Return the best ;

End.

In the code shown above, and are initializa-
tion and improvement heuristics, respectively. In particular, the
authors reports on experiments where is a tabu search
(TS) heuristic. At the time that paper was written, their MA was
one of the best heuristics available (in terms of solution quality
for standard test instances).

It is interesting to remark that as in
and , the

GA is seeded with a high-quality initial population, which is
the output of an initial local search strategy, (TS in this
case). Again, we find that the selection strategy, represented
by , is a strategy as in the previous MAs.
The authors further increase the selection pressure by using a
mating selection strategy. As in ,
no explicit mutation strategy is used: Fleurent and Ferland
regard and as mutations that are applied with
a probability 1. As in , the opti-
mization step is applied only to the newly generated individual,
that is, the output of the crossover stage.

In [16], results were reported which are improvements to
those in the paper previously commented, and for other meta-
heuristics for QAP. The sketch of the algorithm used is the
following.
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QAP_MA
Begin
Initialize population ;
For To Do

;
individual:=Local_Search(individual);

Od
Repeat Until (terminate=True) Do
For To #recombinations Do
Select two parents
randomly;

;
;

Add individual to ;
Od

;
If Then
For To ,

Do
;

individual:=Local_Search(Mutate
(individual));

Od
Fi

Od
End.

Regardless of the new representation and crossover on which
the MA relies to perform its search, it should be particularly
noted that is applied only when a diversity crisis
arises, and immediately after mutating a solution of the popu-
lation a new local search improvement is performed. Because
the selection strategy is again a strategy, it may be
the case that an old individual, i.e., one that survived many
generations, goes through local search many times unlike in

.
In this case, the initial population is obtained by the use

of the local search engine. As a marginal comment, we can
mention that the local search procedure employed was a variant
of also known as the pairwise interchange
heuristic.

C. MAs for the BQP

Binary quadratic programming is defined by the following.

Binary Quadratic Programming Problem
Instance: Symmetric rational matrix .
Solution: Binary vector of of length .
Measure: The benefit of , i.e,

Aim: Maximum benefit solution

As well as being a well-known NP-Hard problem, BQP has
many applications, i.e., financial analysis, CAD problems, ma-
chine scheduling, etc. In [47], the authors used an MA with the

same architecture as in but tailored for BQP, and
they were able to improve over previous approaches based on
TS and simulated annealing (SA). They also were able to find
new best solutions for instances in the ORLIB [48].

D. MAs for the MGC

The MGC is one of the most studied problems in graph
theory, with many applications in the area of scheduling and
timetabling. Its definition is the following.

Graph Coloring
Instance: Graph .
Solution: S, a coloring of , i.e.,
a parition of into disjoint sets
such that each is an independent set for
Measure: Cardinality of the coloring
Aim: Minimum coloring: .

In [49], an MA was presented for this problem which used an
embedded kind of after the mu-
tation stage. The selection strategy used was a generational GA
with 1-elitism (the worst individual of the new population is re-
placed with the best of the previous one) and the algorithm also
used some specially designed operators. The authors reported
what, at the time the paper was written, were exciting results.

Fleurent and Ferland [50] studied a number of MAs for MGC
based on the hybridization of a standard steady-state GA with
problem-specific local searchers and TS. The improvement
stage was used instead of the mutation stage of the standard
GA. The authors also ran experiments with a problem-specific
crossover. The pseudocode employed in this paper is omitted be-
cause of its similarity with
already discussed.

In [51], Dorne and Hao’ proposed an MA for the MGC. This
MA used a new crossover, based on the union of independent
sets, which is itself a kind of local searcher. The mutation stage
was replaced by the powerful TS. With this MA, the authors
were able to improve over the best known results of some large
instances of the famous Dimacs benchmarks. Their algorithm is
as follows.

GL_for_Coloring
Begin
/ , : fitness function and /
/ best value encountered so far /
/ : best individual encountered so
far /
/ : returns the best
individual /
/ of the population P /

;
generate ;

;
;

While ( and ) Do
;

/ using specialised crossover /
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;
/ using Tabu search /
If Then

;
;

Fi
;

Od
End.

E. MAs for the PSP

Protein structure prediction is one the most exciting problems
that computational biology faces today. In the words of Smith
[52]:

Although we understand how genes specify the se-
quence of amino acids in a protein, there remains the
problem of how the one-dimensional string of amino acids
folds up to form a three-dimensional protein it would
be extremely useful to be able to deduce the three-dimen-
sional form of a protein from the base sequence of the
genes coding for it; but this is still beyond us.

Because “all-atom” simulations are extremely expensive re-
searchers often resort to a simplified model of the PSP. One
well-studied example is Dill’s HP model [53]. Despite being
a simplification, variations of this model have been shown
NP-hard, see for example [54]–[56]. It may be defined as
follows.

HP-model of Protein Structure Prediction
Instance: A simplified protein sequence of length ,
i.e., a string .
Solution: A self-avoiding path which embeds into
a two or three dimensional lattice (i.e., or )
This defines a Distance Matrix, , of inter-residue dis-
tances.
Measure: Potential energy, of the sequence in that fold,
approximated by the number of pairs of H-type residues,
which are not sequence-adjacent, but are at distance 1 in

Aim: Minimum energy solution
.

In [57], we applied the following MA to the PSP.

PF_MA
Begin
Random initialize population Parents;
Repeat Until (Finalization_cri-

teria_met) Do
Local_Search(Parents);
mating_pool=Select_mating(Parents);
offsprings:=Cross(mating_pool);
Mutate(offsprings)
Parents:=Select(Parents+offsprings)

Od
End.

This algorithm was able to find optimum configurations
for 19 out of 20 protein instances of moderate size, out per-
forming a GA with identical architecture except for the use
of . In this MA, a replacement
strategy was used, together with fitness-proportionate selection
for mating. In contrast to all the previous MA, in this scheme

is considered a “first class” operator. It
receives the entire population and applies with probability a
complex local search algorithm to each individual. Under this
scheme, solutions are improved during all their life span. In
[58], several MAs for other molecular conformation problems
are briefly commented on. In [59], a comparison of SA against
GA and LS hybrids is presented for the closely related drug
docking domain. In [60], a coevolutionary memetic approach
is introduced, while in [61] the authors introduce a memetic
crossover for the PSP.

V. SYNTACTIC MODEL FOR MAS

A. Syntactic Model for EAs

Following [62], the EA can be formalized within a “generate-
and-test” framework by the following:

• : Initial population.
• : -ary finite-discrete problem repre-

sentation.
• : Initial parameter set for operators.
• : Population size.
• : Number of offspring.
• : Length of representation.
• : Fitness function.
• : Generating function.
• : Updating function.

Note that in this model, we consider the effects of survivor se-
lection at the end of one generation, and parent selection at the
start of the next, to be amortized into a single function , which
is responsible for updating the working memory of our algo-
rithm. The MAs’ literature, as does the general EA literature,
contains examples of the incorporation of diversity-preservation
measures into . These have included implicit measures, such
as the imposition of spatial structure on the population (e.g.,
[42], [63], and [64]) or explicit measures such as duplicate pre-
vention (e.g., [65] and [66]). This issue will be discussed in more
depth in Section VII.

Examples of as generating functions are mutation and
crossover operators. A recombination operator has as its signa-
ture1 and a mutation operator .
The initial values for parameters of the operators used (e.g.,
mutation probabilities) are represented by . If
denotes the set of offspring, then an iteration of the GA is

(1)

where is the time step.

1Note that the use of the superscript � permits the modeling of crossover
operators with variable arity, e.g., Moscato’s K-mergers.
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Although the formalization above assumes a finite-discrete
problem representation with each element of the representation
having the same arity, this is done simply for the sake of clarity,
and the framework permits the use of any desired representation
via suitable redefinition of .

B. Extension to MAs

We will need to extend this notation to include local search
operators as new generating functions. We define these to be
members of a set, , of local search strategies
available to the MA.

Examples of so called “multimeme algorithms” where the
local search phase has access to several distinct local searchers
(i.e., ) can be found in [20] and [67]. The signature of
each member of the set is , where is a
strategy_specific parameter (with a role equivalent to ), is an
index into the set , and is a constant that determines how
many solutions the local searcher uses as its argument and how
many solutions it returns. In general, we will assume that
and, consequently, drop the subscript for the sake of clarity, but
as an example of a local searcher with , the reader might
consider Jones’ Crossover Hill Climber [68].

As can be seen from the pseudocode in the previous sections,
the local search stage can happen before or after crossover, mu-
tation, and selection, or in any imaginable combination, and the
local searchers are members of a (potentially) large set of alter-
native heuristics, approximate or exact algorithms with which
solutions could be improved.

To model this, we define entities called schedulers which are
higher order functions.2 An early example of the application of
higher order functions to MAs see [69], where the authors im-
plement Radcliffe and Surry’s formalism [19] in a functional
language.

C. Coordinating Local Search With Crossover and Mutation

The fine-grain scheduler (fS) coordinates when, where, and
with which parameters local searchers from will be applied
during the mutation and crossover stages of the evolutionary
cycle. It has the following signature:

The receives three arguments. The first is a generating
function with signature , that is, recombination (with

) or mutation (with ). The second is a set of local
searchers to be scheduled, which have signatures .
Usually will have the value 1: for example, in most of the
examples above, local search is applied after recombination or
mutation. However, our model should not rule out other possi-
bilities—for example, doing local search on the parents before
recombination, in which case . Finally, it receives a set
of solutions by means of the and operators and two sets of
strategy specific parameters and . In the simplest case, there

2A higher order function or functional is a function whose domain is itself
a set of functions, e.g., the indefinite integral of a function is a higher order
function.

will be a mutation and a recombination sched-
ulers with the following signatures:

To illustrate this point, consider the case where a single local
search method is used: , where is an in-
dividual, is a mutation operator, and is the local searcher
with parameters . Note that we are not specifying how and

will be used “inside” the scheduler. As examples of how the
scheduler might operate, consider a simple case where mutation

is applied to and the result of this operation is given as an
argument to . The symmetric case is equally valid, i.e., ap-
plying mutation to the result of improving with . More
complex scenarios can be imagined, it is up to to organize
the correct pairing of inputs/outputs to functions.

A similar case can be stated for , where
in this case we are receiving as actual parameter a population
of individuals (usually, a subset of ) rather than a single
individual.

An illustration of this can be found in [46], where the authors
argue in favor of encapsulating a local searcher
into an algorithm with Nagata’s and Kobayashi’s edge assembly
crossover [45]. The latter is a good example of an “intelligent”
crossover operator which uses information about edge lengths to
construct an offspring by connecting subtours common to both
parents. However, in both the Nagata and Kobayashi’s original
algorithm, and Watson et al.’s “improved” version the crossover
operator is used to generate a single offspring. In the original
paper, iterative child generation is used, i.e., the scheduler re-
peatedly applies the crossover operator until a good solution is
found, and in Watson’s version, a 2-opt local search is applied
after the crossover operator.

An even clearer example can be found in [70], where a new
crossover for the job-shop scheduling problem is proposed. In
this case, the crossover is a local search procedure that uses
a two-solutions-based neighborhood. In other words, we can
make a clear distinction between a generating operator that only
ever considers one or two potential offspring, (even if it “intelli-
gently” uses heuristics such as edge distances in its construction
phase) and one that constructs and evaluates several solutions
before returning an offspring. The latter case clearly is that of a
scheduled local search, where the “neighborhood” of a (pair of)
point(s) is defined by the action of a generating operator.

D. Coordinating Local Search With Population Management

An alternative model, as illustrated in Section IV-E, is to co-
ordinate the action of local search with the population manage-
ment and updating functions. A coarse-grain scheduler (cS) is
defined by

In this scheduler, the formal parameters stand for the updating
function , the set of the local searchers , the sets of parents
and offspring ( and , respectively), and the operator specific
parameter sets and . The goal of this scheduler is to organize
the application of a local searcher to either the set of parents,
the set of offspring, or to their union. The difference between
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a coarse-grain scheduler and a fine-grain scheduler is that the
former can provide population statistics to its local search oper-
ator, while the fine-grain scheduler knows just one individual at
a time (or two for the one associated with crossover).

By the introduction of the local search schedulers, we can
simulate any of the algorithmic combinations above. Also, by
using a set of local searchers by the schedulers, we can model
powerful multioperator hybrid strategies like those described in
[71]–[73]. We can also include the approaches discussed in [74]
and [75], where partial Lamarckianism or “sniffs” rather than
complete local searches are allowed and allocated dynamically
during the search. Further, it is possible to model the local search
methods described in [26], where statistics from the population
are used to apply local search selectively. Another interesting
example of the use of coarse-grain schedulers can be seen in
[76], where a hybrid metaheuristic is introduced which uses con-
cepts of both EAs and gradient search. Under this scheme, po-
tentially all the individuals in the populations are continuously
“learning” since each stage of LS may be truncated rather than
continue to local optimality.

E. Incorporating Historical Information

The natural extension to this model is to introduce a meta
scheduler (mS) with the following signature:

where .
The meta scheduler is able to use information from previous

populations to influence its search by means of and the el-
ements of , hence a kind of evolutionary memory is intro-
duced into the evolutionary search mechanisms. Note that in
these cases the parameter sets associated with the schedulers
may now represent complex data structures rather than simple
probability distributions.

With the introduction of this scheduler, a new class of meta-
heuristics is available given by the many possible instantiations
of

(2)

where the use of superscripts recognizes that the several pa-
rameters may be time-dependant. We have not found this kind
of MAs in the literature, yet they represent a novel, qualitatively
different and perhaps powerful family of MAs. As an example
of its use, one can imagine that the elements of are based on
TS and that the metascheduler uses the information of ancient
populations to update their tabu lists, thus combining global
and local information across time. An advantage of considering
metaschedulers which affect , is that by setting all elements of

to the identity function, it is possible to include within our
model the work on adaptive GAs which use a history of pre-
vious results to update the probabilities of applying genetic op-
erators, such as those described in [77]–[79]. Furthermore, the
more recent approach to optimization called “hyperheuristics,”
in particular, those described in [80] and [81] can be considered

to be multimeme algorithms, where the set of low-level opera-
tors (i.e., local searchers and constructive heuristics) are adap-
tively applied to one solution by the metascheduler
(called hyper-manager in hyperheuristics terminology).

VI. TAXONOMY FOR MAS

A. Scheduler-Based Taxonomy

With the use of (2), it is possible to model the vast majority
of the MAs found in the literature, capturing the interaction be-
tween local search and the standard evolutionary operators (mu-
tation, crossover, selection). From this syntactic model, a tax-
onomy of architectural classes can be naturally derived based
on an index number which can be ascribed to any MA

.
is a 4 bit binary number with

each taking the value 0 or 1 according to whether scheduler
is absent, respectively present, in . To understand the ordering
of the bits, note that the least significant bit is associated to the
scheduler that receives as one of its arguments at most one solu-
tion, the next bit to the one that receives at most solutions, the
next 2 bits are assigned to the schedulers that employ at most

or solutions, respectively, in their argu-
ments.

To illustrate this point with examples from the review
above, the algorithm has
an index because just the fine-grain scheduler
associated with crossover and meme is present, while

has , since
the mutation and crossover schedulers are used.

Table I classifies the various methods discussed in Section III
accordingly to their number, but it will rapidly be seen that
only a small fraction of the alternative MAs were employed
and investigated, and that the pattern is inconsistent across dif-
ferent problem types. Of particular interest are the frontiers for

and . Although throughout this paper we have
concentrated mainly on single-objective problems, we have in-
cluded in this table a reference to [21]. In that paper, the au-
thors tackle a multiobjective problem using a MA with what
they call a “nondominated Pareto archive” as an evolutionary
memory. This work represents a clear example of an MA that
resides above the frontier . It is clear from visual inspec-
tion of this table that there are plenty of alternative MAs waiting
to be investigated for these problems.

B. Relationship to Other Taxonomies

The taxonomy presented here complements the one intro-
duced in [91] by Calegary et al. who provide a comprehensive
taxonomic framework for EAs. They define a “Table of Evo-
lutionary Algorithms” (TEA), where the main features of the
design space of EAs are placed in the columns of the table. In
a related and complementary work, Talbi [92] provides a gen-
eral classification scheme for metaheuristics based on two dif-
ferent aspects of a metaheuristic: its design space and its imple-
mentation space. He then develops a hierarchical organization
for each one. Specifically, for the design space of hybrid meta-
heuristics, he identifies what he called low-level-relay hybrids
(LRH), low-level-cooperative hybrids (LCH), high-level-relay
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TABLE I
CLASSIFICATION OF ALGORITHMS DISCUSSED IN SECTION III ACCORDING TO PROBLEM AND D

hybrids (HRH), and high-level-cooperative hybrids(HCH). Re-
garding those two works, MAs can be considered to be repre-
sented in Calegary et al. work with a TEA, where the column
associated to an improving algorithms always receives a value of
“yes,” while in Talbi’s taxonomy an MA could be placed within
the LCH class.

Our approach categorizes the architecture of a subclass of the
algorithms both of the previous taxonomies include. In that way,
a more refined classification is obtained for the subclass of EAs
and hybrid metaheuristic that are MAs. Of course such a syn-
tactic model and taxonomy is of little interest to the practitioner
unless it in some way aids in the conceptualization and design
process. In the following sections, we shall move on to show
how the model may be used during the design of an algorithm.

C. Distinguishing Types of Local Search Strategies

Making the separation into two sets of objects (candidate so-
lutions in the EA’s population, and local search heuristics), with
interactions mediated by a set of schedulers facilitates a closer
examination of the potential nature of the elements of . In
keeping with the name given to this class of algorithms, so co-
incidentally very much in the spirit of his idea, we will adapt
Dawkins’ original definition and call each a “meme.”
Metaphorically speaking, memes can be thought of as repre-
senting alternative improvement strategies that could be applied
to solutions, where these strategies may be imitated, improved,
modified, etc.

The model presented in (2) already allows us to distinguish
and define three cases.

• If , then we call a static meme.
• If adapts through changes in its parameters as

increases, then we call an adaptive meme.
• If adapts through changes in itself, e.g., by evolving

under a GP approach, (and possibly in also), then we
call a self-adaptive meme.

It is important to realize that it is sufficient for any
to be adaptive to make the whole set of memes into an adaptive
meme set. In the same way, if just one is self-adaptive then
the entire is self-adaptive.3

To the best of the authors’ knowledge the only MAs
that scheduled more than one static local searcher at a

3For the sake of clarity of the model, we have left out the minor signature
modifications that are needed to reflect the fact that a meme might change its
arguments or change itself.

time are those described in [71]–[73]. Almost all the pa-
pers studied in this work use single static memes with the
exceptions of the algorithms described in [76] (if the mo-
mentum term is included into the model described therein),

and . As
examples of self-adaptive memes, we refer the reader to the
more recent in [93]–[98].

The extension to considering a set of adaptive or self-adap-
tive memes, rather than a single local search method, gives rise
to an extra level of complexity in the schedulers. The simplest
case uses static memes and requires that is enlarged to include
a probability distribution function (pdf) for the likelihood of ap-
plying the different memes, in addition to their operational pa-
rameters. More complex cases might involve a different pdf for
each scheduler.

The simplest adaptive case requires that is time-dependent,
with the scheduler becoming responsible for adapting the pdf.
In more complex scenarios, it might be necessary to store a dif-
ferent pdf for each member of the population—i.e., individual
rather than population level adaptation in the terminology of
[99] and [100]. Allowing for adaptivity within, MAs makes it
necessary to couple the adaptation over time of and to the
evolutionary (2).

VII. DESIGN ISSUES FOR “COMPETENT” MAS

In [33], Goldberg describes “competent” GAs as:

Genetic algorithms that solve hard problems quickly, re-
liably, and accurately.

As we have described above, for a wide variety of problems,
MAs can fulfil these criteria better than traditional EAs. How-
ever, the simple inclusion of a given local search method is
not enough to increase the competence of the underlying EA.
Rather, the design of “competent” MAs raises a number of im-
portant issues. It is now appropriate to revisit these issues, in the
light of our syntactic model and taxonomy, in order to see what
new insights can be gained. While we are not suggesting that
all implementations of MAs should follow the scheduler-based
viewpoint, we would argue that it is certainly beneficial to con-
sider this perspective to inform design decisions.

To recap, some of the principal design issues are,

• What local search operator should be used?
• Which fitness landscape(s) is the MA navigating?
• With what local optima is the MA operating?
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• Where, and when, should local search be applied within
the evolutionary cycle?

• Is a Baldwinian or Lamarckian model to be preferred?
• How can the genetic operators best be integrated with

local search in order to achieve a synergistic effect?
• How can we engineer MAs that can efficiently traverse

large neutral plateaus and avoid deep local optima?
• Which individuals in the population are to be improved

by local search and how do we choose among them?
• How much CPU budget will be allocated to the local

search?

We now discuss these items according to the grouping above.

A. Choice of Local Search Operators

The reader will probably not be surprised to find that our an-
swer to the first question is “it depends.” In [67], we showed
that even within a single problem class (in that case TSP) the
choice of which single LS operator gave the best results when
incorporated in an MA was entirely instance-specific. Further-
more, studies of the dynamic behavior of various algorithms
(including multi-Meme MAs) showed that in fact the choice of
which LS operator yielded the biggest improvements was also
time-dependent.

It is well known that most metaheuristics suffer from getting
trapped in local optima. It is also trivially true that a point which
is locally optimal with respect to one operator may not be with
respect to another (unless it is globally optimal). Taking these
points together has motivated recent work into metaheuristics
such as variable neighborhood search [101], which utilize mul-
tiple local search operators.

In earlier sections, we have listed a number of papers in the
recent MA literature which use multiple LS operators, and we
would certainly argue that faced with a choice of operators, a
sensible design approach would be not to decide a priori but to
incorporate several. Given such an approach, for the sake of ef-
ficiency, it is worth considering methods to avoid spending time
utilizing nonproductive operators, which implies at least some
way of adapting the operator probabilities in . This in turn im-
plies a coarse-grain or metascheduler is present. It is perhaps
worth noting that in [95], it was shown that while coarse-grain
adaptation of was sufficient for a steepest-ascent LS, the extra
noise inherent in an first-ascent approach gave worse results.
It was suggested that in such a case using a “history” of rela-
tive performance gains, as per Paredis’ LTFE would be benefi-
cial—in other words a metascheduler.

Related to this point are the two more theoretical issues con-
cerning landscape and local optima. Merz et al. in [10], [102],
and [103] employ the concept of fitness landscape distance cor-
relation to assess the behavior of MAs. Although the correlation
measures discussed in those papers can provide very valuable
indications on the likely performance of MAs, they can some-
times be misleading. In particular, as a fitness distance corre-
lation is measured based on one particular move operator (e.g.,
local searcher), if any of the schedulers in (2) has access to more
than one local searcher, then different fitness landscapes will
need to be considered. This fact was recognized by Jones’ “one
operator, one landscape” axiom [104].

B. Integration Into EA Cycle

We have grouped together the next three issues in our list as
they are intimately related, and there has been some confusion
in the previous literature.

Some researchers [18] consider that when the LS operator
is applied before crossover and mutation, then the MA is a
“Lamarckian” algorithm, and when the LS operator is ap-
plied after crossover and mutation, it is a pure “Darwinian”
algorithm. This is an erroneous interpretation of Lamarckian
versus Baldwin learning. In both cases, local search is used
to improve (if possible) the fitness of the candidate solution,
thus changing its selection probabilities. The difference is
simply that in the case of Lamarckian (but not Baldwinian)
learning the modifications are also assimilated into the indi-
vidual—in other words, the fitter neighbor replaces the original
candidate solution. As is clearly illustrated in the case of

, Lamarckian learning
in MAs can happen before or after the application of the other
genetic operators. However, there is little point in applying
Baldwinian search after parent selection but before recombina-
tion and mutation, since the resultant offspring will need to be
reevaluated anyway.

If a Lamarckian local search is continued to optimality,
then on average the recombination and mutation are likely to
reduce the fitness of a solutions which were previously locally
optimal. The hoped-for synergy in such an MA is that the use
of genetic variation operators will produce offspring which are
more likely to be in the basin of attraction of a high-quality
local optimum than simply randomly selecting another point
to optimize. Clearly, in order to achieve this synergy, i.e., to
avoid selection discarding these new points, it is a good idea
to perform local search on these offspring prior to selection.
In other words, an algorithm “select-local search—probabilis-
tically recombine—probabilistically mutate-select ” makes
little sense.

In practice, most recent work has tended to use a Lamarckian
approach, and the papers cited by Merz and Freisleben are typ-
ical in their (highly successful) advocacy of running the local
search to optimality. However, as noted in Section IV, simply
incorporating one or more powerful local searchers into an EA
can lead to a rapid loss of diversity if steps are not taken to pre-
vent this during the design phase. This has clear implication for
the likelihood of the algorithm getting stuck in local optimum,
or “stagnating” on a plateau.

The use of coarse-grain schedulers provides a simple means
of avoiding this by monitoring population convergence statis-
tics. In , this is done by monitoring convergence,
then applying vigorous mutation to the whole population. An
alternative approach can be seen in [20] and [57] which utilizes
a Boltzmann criteria in the pivot rule of local search, with the
inverse of the population fitness range determining the temper-
ature and, hence, the likelihood of accepting a worse neighbor
in a local search.

C. Managing the Global-Local Search Tradeoff

The majority of MAs in the literature apply local search to
every individual in every generation of the EA, our model makes
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it clear that this is not mandatory. In [26] and [74], the authors
explore these issues and suggest various mechanisms by which
individuals are chosen to be optimized by local search, the
intensity of local search, and the probability of performing the
local optimization. They achieve this by providing sophisticated
coarse-grain schedulers that measure population statistics and
take them into consideration at the time of applying local
search.

In [74], Land addresses the problem of how to best integrate
the local search operators with the genetic operators. He proposes
the use of fine-grain schedulers, both for mutation and crossover,
that “sniff” (sample) the basin of attraction represented by a
solution. That is, instead of performing a complete local search
in every solution generated by the evolutionary operators, a
partial local search is applied; only those solutions that are
in promising basin of attraction will be assigned later (by the
coarse-grain scheduler) anextended CPU budget for local search.
In a similar spirit, Krasnogor in [20] proposes “crossover-aware”
and “mutation-aware” local searchers.

In [57] and [71], the issue of large neutral plateaus and deep
local optima is addressed by providing modified local searchers
that can change their behavior accordingly to the convergence
state of the evolutionary search. As we have noted above, a dif-
ferent approach to avoid getting trapped in a local optimum is
to use various local searchers simultaneously in the population.
In [67], [72], and [73] the authors resort to that technique to im-
prove the robustness of the MAs.

VIII. CONCLUSION AND FURTHER WORK

In this paper, we committed ourselves to the study of several
works on MAs, coming from different sources, with the purpose
of designing a syntactical model for MAs. In contrast with
[19] where an a priori formal MA is given, ours is an a
posteriori formalization based on the papers cited here and
several others.

The syntactical model obtained allowed for the definition of
an index number into the taxonomy of MAs implicit in (2).
When plotting the index for a number of papers, we were
able to identify classes of MAs that had received a lot of atten-
tion and other classes that were little explored from a theoretical
and practical point of view. For example, we found no represen-
tatives of MAs (for mono objective optimization) with ,
although their counterparts are well known in the GA literature
and in the multiobjective MA literature.

Furthermore, our syntactical model suggests the existence of
a novel class of metaheuristic in which four schedulers interact.
The reader should note that while a higher value implies a
more complex algorithm, it does not necessarily result in a better
algorithm; all things being equal, a lower algorithm should be
preferred to one with a larger .

We were able to identify two kinds of helpers, static and adap-
tive, and to generalize a third type: self-adaptive helpers. While
examples were found of the first two types, the third type was
just recently explored [93]–[98] suggesting another interesting
line of research.

The adaptation of the index to reflect the kind of helpers
being used by the schedulers is straightforward.

Another important avenue of research is the study of which
kind of MA, defined by its index, is suitable for different types
of problems. As shown in the second graph, just a few MAs’ ar-
chitectures were studied for each of the problem surveyed, it re-
mains to be seen whether there are structural or merely historical
reasons for the grouping observed. Our taxonomy complements
the taxonomies in [91] and [92]. Both the syntactic model and
the taxonomy aids our understanding of the design issues in-
volved in the engineering of MAs.

Finally, we were able to revisit a list of important design ques-
tions and reconsider them in the light of our model, which of-
fered us some new insights and ways of seeing common threads
in disparate successful MAs. While we are not suggesting that
all implementations of MAs should follow this scheduler-based
viewpoint, we would argue that it is certainly beneficial to con-
sider this perspective to inform design decisions.
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