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Abstract 8 

This study proposes an inerter-based nonlinear passive joint device and investigates its vibration 9 

suppression performance when inserted in coupled systems. The joint device comprises an axial inerter 10 

and a pair of lateral inerters creating geometric nonlinearity with the nonlinear inertance force being a 11 

function of the relative displacement, velocity, and acceleration of the two terminals. Both analytical 12 

approximations based on the harmonic balance method and numerical integrations are used to obtain 13 

the steady-state response amplitude. Force transmissibility and time-averaged energy flow variables are 14 

used as performance indices to evaluate the vibration transmission in the coupled system with 15 

subsystems representing the dominant modes of interactive engineering structures. Effects of adding 16 

the proposed joint to the force-excited subsystem or to the coupling interface of subsystems on 17 

suppression performance are examined. It is found that the insertion of the inerter-based nonlinear joint 18 

can shift and bend response peaks to lower frequencies, substantially reducing the vibration of the 19 

subsystems at prescribed frequencies. By adding the joint device, the level of vibration force and energy 20 

transmission between the subsystems can be attenuated in the interested range of excitation frequencies. 21 

It is shown that the inerter-based nonlinear joint can be used to introduce an anti-peak in the response 22 

curve and achieve substantially lower levels of the force transmission and reduced amount of energy 23 

transmission between subsystems. This work provides in-depth understanding of the effects of inerter-24 

based nonlinear devices on vibration attenuation and benefits enhanced designs of coupled systems for 25 

better dynamic performance. 26 

Keywords: Inerter; Vibration suppression; Geometric nonlinearity; Vibration transmission; Energy 27 

flow; Force transmissibility 28 

1. Introduction 29 

There has been a strong need for high-performance vibration suppression devices that can be used 30 

to reduce the vibration transmission between subsystems within dynamic systems in the forms of 31 

scientific equipment and engineering structures [1]. For instance, in built-up structures such as ships or 32 

civil engineering buildings, different parts as coupling subsystems can be connected by different types 33 

of joints. One example is that aircraft engines usually contain blade roots, under platform dampers, and 34 

flange joints [2]. Bolted joints with nonlinearity are adequately used in buildings due to slipping of 35 
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contacting surfacing and opening and closure of interfacial gaps [3]. Dramatic influence over the 36 

dynamic characteristics of the integrated system might be resulted from the interfacial nonlinearities in 37 

the structure [4]. Flange joints are widely used in pipes due to ease of maintenance of connected 38 

equipment and also the flexibility of the disconnection process compared with the traditional welding 39 

[5]. It is evident that the design of the joint devices is of great importance on the vibration transmission 40 

behaviour of the integrated system. Based on whether external energy input is needed, these suppression 41 

devices are classified into active vibration control systems and passive ones [6]. The applications of the 42 

former are sometimes constrained due to the consideration of reliability issues and also control efforts 43 

required, compared to passive devices [7]. In view of this, there have been much research interest in 44 

developing and investigation new passive suppression systems so as to achieve effective attenuation of 45 

vibration transmission between subsystems of an integrated system and also the vibration level of a 46 

particular subsystem. 47 

Many passive devices such as vibration isolators and dynamic vibration absorbers contain masses, 48 

springs and dampers and the performance associated with different design configurations has been 49 

investigated and explored. There have been much less studies on passive suppression devices with the 50 

inerter, which is a relatively recently proposed passive element. The inerter has the property that the 51 

applied force is proportional to the relative accelerations of two terminals, i.e., 𝐹𝑏 = 𝑏(𝑉1̇ − 𝑉2̇), where 52 

𝐹𝑏 is the coupling inertial force, 𝑏 is an intrinsic parameter of the inerter named inertance, 𝑉1̇ and 𝑉2̇ 53 

are the accelerations of two terminals [8]. The corresponding inertance effect of the rack–pinion inerter 54 

is realised according to the physical parameters of the actual design, such as the radius of gyration of 55 

the flywheel and the radii of the rack pinion, gear wheel, and flywheel pinion. Other possible inerter 56 

designs have also been proposed in the past few years. The ball–screw inerter is a modified model 57 

consisting of a screw, nut, and flywheel [9]. With the involvement of the ball screw, the linear motion 58 

of the two terminals is transformed into rotation of the flywheel, which leads to corresponding motion 59 

of the gear and flywheel. The flywheel provides a storage mechanism for kinetic energy, leading to 60 

amplification of the inertia effects. Another widely used type of design is fluid inerters, which can be 61 

readily adapted into various passive network layouts [10]. Many applications have addressed the 62 

benefits of the inerter in the realm of vibration mitigation, including automobile shock absorbers [11], 63 

landing gear systems [12], and structural vibration control [13]. There have also been many studies 64 

reported demonstrating the influence of inerters in single degree-of-freedom vibration isolators [14], 65 

dual-stage isolators [15], and laminated composite plates [16]. A recent study also shows that using 66 

inerters can lead to better damping performance of dynamic systems for a higher energy dissipation 67 

efficiency [17]. 68 

While there have been much recent attempts to investigate the dynamics of linear inerter-based 69 

passive suppression devices. There are much less studies on the use of nonlinear configurations of 70 

inerters for potential benefits in vibration suppression. It has been shown that the introduction of 71 
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nonlinearity can enhance the performance of vibration isolators and dynamic vibration absorbers. For 72 

instance, conventional linear single degree-of-freedom (DOF) vibration isolators have the property that 73 

effective attenuation of force transmission is achieved only when the excitation frequency is √2 times 74 

larger than the natural frequency. This brings about a trade-off between the having a lower natural 75 

frequency to enlarge the effective isolation band and a high static supporting stiffness. Nonlinear 76 

elements can be introduced to deal with the issue, by introducing a negative stiffness mechanism to 77 

have high static stiffness and a low dynamic stiffness [1]. Nonlinear vibration absorbers can also be 78 

tailored for vibration suppression of primary systems with different types of nonlinearities [18]. 79 

However, only limited studies have exploited the potential benefits of nonlinearities arising from the 80 

use of the inerters. Experimental tests have also been performed to analyse nonlinear effects on two 81 

types of inerters including the friction [19,20,21]. Yang et al. [22] proposed an inerter-based nonlinear 82 

vibration isolator by using the geometric nonlinearity of a nonlinear inertance mechanism (NIM) 83 

created by a pair of oblique inerters. It has been shown that the NIM-based isolator provides better 84 

performance compared with conventional linear isolator. 85 

It is noted that for performance evaluation of linear and nonlinear suppression devices, the force 86 

or displacement transmissibility has been often used as an index to describe the level of vibration 87 

transmission [23]. The time-averaged vibration energy flow variables have also been widely used for 88 

accessing the performance of linear vibration isolation systems. The vibration energy flow combines 89 

the effects of amplitudes of the velocity response and the force as well as their relative phase angle in 90 

one quantity, such that the vibration transmission within a dynamical system can be better quantified 91 

from energy viewpoint [24-26]. Various energy flow analysis approaches, such as the dynamic stiffness 92 

method [27], the receptance method [28], the mobility method [29], energy flow models based on finite 93 

element [30], a substructure method [31], a progressive approach [32], and a power flow formulation 94 

based on continuum mechanics [33] have been proposed to analyse the linear vibration control systems. 95 

Damping and mobility-based power flow mode theories have also been demonstrated to facilitate 96 

power-flow-based dynamic designs [34, 35].  In recently years, energy flow methods have also been 97 

developed to investigate the power flow behaviour of nonlinear systems, including the Duffing 98 

oscillator [36], dynamic vibration absorbers [18], and nonlinear vibration isolators [37]. Power flow 99 

characteristics and performance of single-DOF linear and nonlinear inerter-based isolators have also 100 

been investigated [14, 22]. 101 

This study proposes a nonlinear passive joint device by configuring linear inerters to achieve 102 

geometric nonlinearity. The performance of such joint in attenuations of vibrations of subsystems and 103 

also suppression of vibration transmission between subsystems when inserted in a coupled system is 104 

examined. The force transmissibility and time-averaged power flow variables are used for performance 105 

evaluation from both the viewpoint of force transmission and also vibration energy flow perspective. 106 

Both analytical approximations based on the harmonic balance methods and numerical integrations are 107 

used for the determinations of the steady-state responses and the performance indices. It will be shown 108 
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that effective suppression of vibrations and vibration transmission can be achieved by inserting the 109 

proposed joint device to the coupled system. The remainder of this paper is organised as follows. In 110 

Sect. 2, the inerter-based nonlinear joint and the coupled system models will be introduced and modelled. 111 

In Sect. 3, the steady-state response is obtained by using the harmonic balance method with analytical 112 

derivation and also the alternating-frequency-time scheme (AFT) with numerical continuations. In Sect. 113 

4, the performance indices of vibration transmission between the subsystems are defined. Both the force 114 

transmissibility as well as the time-averaged vibration energy flow variables are defined and formulated. 115 

In Sect. 5, the effects of different inerters and the positions or adding the proposed nonlinear joint on 116 

vibration transmission are examined systematically. Conclusions are provided at the end of the paper. 117 

2. Mathematical Modelling 118 

2.1. Inerter-based nonlinear joint 119 

Figure 1 provides a schematic representation of the proposed inerter-based nonlinear joint created 120 

by using a pair of lateral inerters and an inerter in the axial direction [15]. The nonlinear joint has two 121 

terminals A and B. One of the ends for the two lateral inerters are hinged together at terminal 𝐴 and 122 

their other ends are pinned at points 𝐶  and 𝐷, which are separated horizontally by 2𝑙0. The lateral 123 

inerters are with the same inertance of 𝑏1 while the axial inerter has inertance 𝑏0. Due to the symmetry 124 

of the nonlinear joint, its terminal B only has axial motion in the horizontal, and its displacement, 125 

velocity, and acceleration is denoted by 𝑥𝑏, 𝑥̇𝑏 and 𝑥̈𝑏, respectively. The displacement, velocity, and 126 

acceleration of the other terminal of the nonlinear joint, terminal 𝐴 is represented by 𝑥𝑎, 𝑥̇𝑎 and 𝑥̈𝑎, 127 

respectively. The relative displacement between the two terminals 𝐴 and 𝐵 is defined as 𝛿 = 𝑥𝑎 − 𝑥𝑏. 128 

Hence, the geometric nonlinearity is introduced by the inerter-based joint, where the total force between 129 

𝐴 and 𝐵 is [15]: 130 

 𝑓b(𝛿, 𝛿̇, 𝛿̈ ) = 𝑏0𝛿̈ + 2𝑏1 (
𝛿2𝛿̈

𝑙0
2+𝛿2 +

𝑙0
2𝛿𝛿̇2

(𝑙0
2+𝛿2)

2) = 𝑓b1 + 𝑓b2,                                (1) 131 

where 132 

𝑓b1 = (𝑏0 +
2𝑏1𝛿2

𝑙0
2+𝛿2) 𝛿̈ ,    𝑓b2 = 2𝑏1

𝑙0
2𝛿𝛿̇2

(𝑙0
2+𝛿2)

2 .                                    (2a, b) 133 

Eq. (1) shows that the nonlinear inertial force by the inerter-based joint depends on the displacement, 134 

velocity, and acceleration of two moving terminals 𝐴 and 𝐵. 135 

Figure 2 shows the variations of the nonlinear inertial forces 𝑓b1  and 𝑓b2  against the relative 136 

displacement 𝛿, velocity 𝛿̇, and acceleration 𝛿̈ of the two terminals for the inerter-based nonlinear joint. 137 

The parameters are set as 𝑏0 = 1 kg, 𝑏1 = 1 kg and 𝑙0 = 1 m. Fig. 2(a) shows that the value of 𝑓b1 138 

depends on both the relative displacement 𝛿 and relative acceleration 𝛿̈ of its two terminals. It shows 139 

that the value of 𝑓b1 is approximately proportional to the relative acceleration 𝛿̈ of two terminals when 140 

𝛿 𝑙0⁄  is large. This character can be demonstrated by setting 𝛿 𝑙0⁄  to infinity in Eq. (2), and the 141 

corresponding value of 𝑓b1 will be (2𝑏1 + 𝑏0)𝛿̈, suggesting two lateral inerters tend to orient in the 142 
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horizontal direction when 𝛿 𝑙0⁄  tends to infinity. Fig. 2(b) shows the effects of relative displacement 143 

and velocity of two terminals on the nonlinear force 𝑓b2. It is noted that the changes in 𝛿̇ has large 144 

impact on 𝑓b2 when 𝛿 ≈ 0. However, 𝑓b2 tends to zero when the relative displacement of two terminals 145 

𝛿̇ becomes large. 146 

 147 

 148 

Fig. 1. Schematic representation of the inerter-based nonlinear joint. 149 

 150 

Fig. 2. Nonlinear inertial force characteristics of the inerter-based nonlinear joint (𝑏0 = 𝑏1 = 1 kg, 𝑙0 = 1 m). 151 
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2.2. Coupled system with the inerter-based joint device 152 

Figure 3 provides a schematic representation of the model comprising two subsystems coupled with 153 

a mechanical joint characterized by a spring with stiffness coefficient 𝑘0. Subsystem one (S1) is a 154 

single-DOF system consisting of a mass 𝑚1  subject to an external harmonic excitation 𝑓(𝑡)  of 155 

amplitude 𝑓0 with frequency 𝜔 and phase angle 𝜙, a linear spring with stiffness coefficient 𝑘1, and a 156 

viscous damper of damping coefficient 𝑐1. Subsystem two (S2) is another single-DOF system consisting 157 

of a mass 𝑚2 , a linear spring with stiffness coefficient 𝑘2 , and a viscous damper with damping 158 

coefficient 𝑐2. There are also two possible positions 𝑃 and 𝑄 marked in Fig. 3, for the insertion of the 159 

inerter-based nonlinear joint. It is assumed that the masses both move horizontally without frictions and 160 

their static equilibrium positions are taken as reference when 𝑥1 = 𝑥2 = 0  and the springs are 161 

upstretched. 162 

 163 

Fig. 3. A schematic representation of the coupled system with a nonlinear inerter-based joint position at positions P or Q. 164 

When the nonlinear inerter-based joints are added at both positions 𝑃  and Q, the dynamic 165 

governing equations of the system are written in a matrix form as 166 

[
𝑚1 0
0 𝑚2

] {
𝑥̈1

𝑥̈2
} + [

𝑐1 0
0 𝑐2

] {
𝑥̇1

𝑥̇2
} + [

𝑘1 + 𝑘0 −𝑘0

−𝑘0 𝑘2 + 𝑘0
] {

𝑥1

𝑥2
} + {

𝑓bP + 𝑓bQ

−𝑓bP
} = {

𝑓0 exp(i(𝜔𝑡 + 𝜙)) 
0

},    167 

(3) 168 

where 𝑓𝑏𝑃  and 𝑓𝑏𝑄  represent the forces applied by the NIM-based nonlinear joint at P and Q, 169 

respectively, and are expressed by 170 

𝑓bP = 2𝑏1 (
𝛿2𝛿̈

𝑙0
2+𝛿2 +

𝑙0
2𝛿𝛿̇2

(𝑙0
2+𝛿2)

2) + 𝑏0𝛿̈,                                                (4a) 171 

𝑓bQ = 2𝑏1 (
𝑥1

2𝑥̈1

𝑙0
2+𝑥1

2 +
𝑙0

2𝑥1𝑥̇1
2

(𝑙0
2+𝑥1

2)
2) + 𝑏0𝑥̈1,                                                (4b) 172 

where 𝛿 = 𝑥1 − 𝑥2 is the relative displacement between the masses. 173 

To facilitate later formulations, the following non-dimensional parameters are introduced: 174 

𝜔1 = √
𝑘1

𝑚1
, 𝜔2 = √

𝑘2

𝑚2
, 𝜇 =

𝑚2

𝑚1
, 𝑋1 =

𝑥1

𝑙0
,   𝑋2 =

𝑥2

𝑙0
, 175 

  𝛥 = 𝑋1 − 𝑋2 =
𝛿

𝑙0
,   𝛾 =

𝑘2

𝑘1
,   𝜅 =

𝑘0

𝑘1
, 𝜁1 =

𝑐1

2𝑚1𝜔1
,   𝜁2 =

𝑐2

2𝑚2𝜔1
, 176 
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 𝜆0 =
𝑏0

𝑚1
,   𝜆1 =

𝑏1

𝑚1
,    𝐹0 =

𝑓0

𝑘1𝑙0
,    𝛺 =

𝜔

𝜔1
,    𝜏 = 𝜔1𝑡,                           (5) 177 

where 𝜔1 and 𝜔2 are the undamped natural frequencies of S1 and S2, respectively, 𝜇 is the mass ratio, 178 

𝑋1, 𝑋2 and 𝛥 are the non-dimensional displacements of masses 𝑚1, 𝑚2, and the relative displacement 179 

between the masses, respectively, 𝛾 and 𝜅 are the stiffness ratios, 𝜁1 and 𝜁2 are the damping ratios, 𝜆0 180 

and 𝜆1 are the inertance-to-mass ratios for the axial inerter and the lateral inerters in the nonlinear joint, 181 

respectively, 𝐹0 is the non-dimensional forcing amplitude, 𝛺 and 𝜏 are the dimensionless frequency and 182 

time, respectively.  183 

By using these parameters and variables, the governing Eq. (1) can be written into a non-dimensional 184 

form as 185 

𝐌𝐗′′ + 𝐂𝐗′ + 𝐊𝐗 + 𝐅𝐧𝐥(𝐗′′, 𝐗′, 𝐗) = 𝐅𝐞(τ),                                      (6) 186 

where 𝐗 = {𝑋1(𝜏), 𝑋2(𝜏)}T  is the displacement response vector, 𝐅𝐞(𝜏) = {𝐹0 exp(iΩ𝜏 + i𝜙) , 0}T 187 

denoting the external force vector, 𝐌, 𝐂, and 𝐊 represent the mass, damping and stiffness matrices of 188 

the system without adding inerter-based joints and are expressed by 189 

𝐌 = [
1 0
0 𝜇

],       𝐂 = [
2𝜁1 0
0 2𝜁2𝜇

],       𝐊 = [
1 +  𝜅 −𝜅

−𝜅 𝛾 + 𝜅
],               (7a, b, c) 190 

𝐅𝐧𝐥(𝐗′′, 𝐗′, 𝐗) = {𝐹bP + 𝐹bQ, −𝐹bP}
T

 representing the force vector generated by the addition of the 191 

inerter-based nonlinear joint, where 192 

 𝐹bP = 2𝜆1 (
𝛥2𝛥′′

1+𝛥2 +
𝛥𝛥′2

(1+𝛥2)2) + 𝜆0𝛥′′,                                               (8a) 193 

 𝐹bQ = 2𝜆1 (
𝑋1

2𝑋1
′′

1+𝑋1
2 +

𝑋1𝑋1
′2

(1+𝑋1
2)

2) + 𝜆0𝑋1
′′,                                                      (8b) 194 

are the non-dimensional forces of the nonlinear joint placed at point P and point Q, respectively. 195 

To obtain the steady-state response and vibration energy flow behaviour, it is necessary to solve the 196 

governing equations. Two methods are used in the current study. The first one is the numerical 197 

integration based on the Runge-Kutta method. The use of this method can yield accurate results with 198 

relatively high computational cost. The other method is based on analytical approximations such as the 199 

harmonic balance method (HB). The use of HB can yield the determination of stable and unstable 200 

solution branches at relatively low computation cost. The combined use of both can also facilitate 201 

validation and comparison of the results from different approaches. 202 

3. Dynamic analysis by harmonic balance method 203 

3.1.  Analytical approximations  204 

Here analytical approximations based on the harmonic balance method are used to obtain the steady-205 

state frequency-response relationship the system. It is noted that for the forces created by the inerter-206 

based nonlinear joint shown by Eq. (8) can be Taylor expanded at the equilibrium position of 𝛥 = 0 207 

and 𝑋1 = 0, respectively, to have [22] 208 
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𝐹bP ≈ 𝜆0𝛥′′ + 2𝜆1𝛥2𝛥′′ + 2𝜆1(1 − 2𝛥2)𝛥𝛥′2
,                                        (9a) 209 

𝐹bQ ≈ 𝜆0𝑋1
′′ + 2𝜆1𝑋1

2𝑋1
′′ + 2𝜆1(1 − 2𝑋1

2)𝑋1𝑋1
′2.                                        (9b) 210 

Using a first order approximation, the dimensionless steady-state displacement 𝑋1 of the mass 𝑚1 and 211 

the relative displacement 𝑈 between the two masses of the subsystems are assumed to be  212 

𝑋1 = 𝑅1 exp(iΩ𝜏),       𝛥 = 𝑈 exp(iΩ𝜏 + i𝜃),                          (10a, b) 213 

where 𝑅1 and 𝑈 represent the real amplitude of the dimensionless displacement response of mass 𝑚1 214 

and that of the relative displacement, respectively, 𝜃 represents difference in the phase angles of 𝑋1 and 215 

𝛥. Note that in the steady state, the phase difference between 𝑋1 and the excitation force is denoted by 216 

𝜙. From Eq. (10a) and (b), we have the following expressions 217 

𝑋2 = 𝑅1 exp(iΩ𝜏) − 𝑈 exp(iΩ𝜏 + i𝜃),   𝑅2 = |𝑋2| = √𝑅1
2 + 𝑈2 − 2𝑅1𝑈 cos 𝜃,            (11a, b)   218 

𝑋1
′ = iΩ𝑅1 exp(iΩ𝜏),       𝑋1

′′ = −Ω2𝑅1 exp(iΩ𝜏),                            (11c, d) 219 

𝛥′ = iΩ𝑈 exp(iΩ𝜏 + i𝜃),       𝛥′′ = −Ω2𝑈 exp(iΩ𝜏 + i𝜃).                       (11e, f) 220 

where 𝑅2 represents the dimensionless response amplitude of mass 𝑚2. By inserting Eqs. (10) and (11) 221 

into Eq. (9) and retaining only the component at the fundamental frequency, the nonlinear forces by the 222 

inerter-based nonlinear joint are expressed by 223 

𝐹bP = − (𝜆0 + (1 +
𝑈2

2
) 𝜆1𝑈2) Ω2𝑈 exp(iΩ𝜏 + i𝜃),                              (12a) 224 

𝐹bQ = − (𝜆0 + (1 +
𝑅1

2

2
) 𝜆1𝑅1

2) Ω2𝑅1 exp(iΩ𝜏).                            (12b) 225 

Note that by using 𝛥 = 𝑋1 − 𝑋2 to replace 𝑋2 in Eq. (6), it follows that 226 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝜅Δ + 𝐹bP + 𝐹bQ = 𝐹0 exp(iΩ𝜏 + i𝜙),                            (13a) 227 

𝜇(𝑋1
′′ − 𝛥′′) + 2𝜁2𝜇(𝑋1

′ − 𝛥′) − 𝜅Δ + 𝛾(𝑋1 − Δ) − 𝐹bP = 0.                    (13b) 228 

By using Eqs. (10), (11) and (12) to substitute the response and nonlinear force terms into Eq. (13) and 229 

balancing of the coefficients of corresponding harmonic terms, it follows that 230 

(1 − (1 + 𝜆0)Ω2 + 2𝜁1iΩ − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω2) 𝑅1 + (𝜅 − 𝜆0Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝑈 exp(i𝜃) =231 

𝐹0 exp(i𝜙),                            (14a) 232 

(𝛾 − 𝜇Ω2 + 2𝜁2𝜇iΩ)𝑅1 − (𝛾 + 𝜅 − (𝜇 + 𝜆0)Ω2 + 2𝜁2𝜇iΩ − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝑈 exp(i𝜃) = 0. 233 

(14b) 234 

Eq. (14) is a nonlinear complex equation, and it can be further transformed into nonlinear algebraic 235 

equations by balancing the real part and imaginary part. It becomes 236 

(1 − (1 + 𝜆0)Ω2 − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω2) 𝑅1 + (𝜅 − 𝜆0Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝑈 cos 𝜃 = 𝐹0 cos 𝜙,   237 

(15a) 238 

2𝜁1Ω𝑅1 + (𝜅 − 𝜆0Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝑈 sin 𝜃 = 𝐹0 sin 𝜙,                 (15b) 239 

(𝛾 − 𝜇Ω2)𝑅1 − (𝛾 + 𝜅 − (𝜇 + 𝜆0)Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝑈 cos 𝜃 + 2𝜁2𝜇Ω𝑈 sin 𝜃 = 0, (15c) 240 
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2𝜁2𝜇Ω𝑅1 − (𝛾 + 𝜅 − (𝜇 + 𝜆0)Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝑈 sin 𝜃 − 2𝜁2𝜇Ω𝑈 cos 𝜃 = 0.  (15d) 241 

By using Eqs. (15c) and (15d) to cancel out the trigonometric terms, we have 242 

(𝛾 − 𝜇Ω2)2𝑅1
2 + (2𝜁2𝜇Ω𝑅1)2 = (𝛾 + 𝜅 − (𝜇 + 𝜆0)Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2)

2

𝑈2 + (2𝜁2𝜇Ω𝑈)2.   (16) 243 

By treating Eqs. (15c) and (15d) as linear algebraic equations of 𝑈 sin 𝜃  and 𝑈 cos 𝜃 , using the 244 

Cramer’s rule, we have 245 

𝑈 ∗ 𝑅1 sin 𝜃 =
2𝜁2𝜇Ω𝑅1

2(𝜅−𝜆0Ω2−(1+
𝑈2

2
)𝜆1𝑈2Ω2)

(2𝜁2𝜇Ω)2+(𝛾+𝜅−(𝜇+𝜆0)Ω2−(1+
𝑈2

2
)𝜆1𝑈2Ω2)

2 ≡ 𝐴1,                                 (17a) 246 

𝑈 ∗ 𝑅1 cos 𝜃 =
(𝛾+𝜅−(𝜇+𝜆0)Ω2−(1+

𝑈2

2
)𝜆1𝑈2Ω2)(𝛾−𝜇Ω2)+(2𝜁2𝜇Ω)2

(2𝜁2𝜇Ω)2+(𝛾+𝜅−(𝜇+𝜆0)Ω2−(1+
𝑈2

2
)𝜆1𝑈2Ω2)

2 𝑅1
2 ≡ 𝐴2,                     (17b) 247 

where 𝐴1 and 𝐴2 are introduced to enhance clarity of later formulations. A mathematical treatment of 248 

Eq. (15a) and (15b) leads to 249 

(1 − (1 + 𝜆0)Ω2 − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω2)
2

𝑅1
2 + (2𝜁1Ω𝑅1)2 + (𝜅 − 𝜆0Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2)

2

𝑈2 +250 

2 (1 − (1 + 𝜆0)Ω2 − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω
2

) (𝜅 − 𝜆0Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝐴2 + 4𝜁1Ω (𝜅 − 𝜆0Ω2 −251 

(1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝐴1 = 𝐹0

2.   (18) 252 

Note that Eqs. (16) and (18) are two nonlinear real algebraic equations with two unknowns 𝑅1
2 and 𝑈2 253 

for the displacement amplitudes. Many methods, such as the Newton-Raphson method, are available 254 

for solving nonlinear algebraic equations. Here, a standard bisection method can be used the following 255 

procedure. Using Eqs. (16), 𝑅1
2  can be represented by an expression of 𝑈2: 256 

𝑅1
2 =

(𝛾+𝜅−(𝜇+𝜆0)Ω2−(1+
𝑈2

2
)𝜆1𝑈2Ω2)

2

+(2𝜁2𝜇Ω)2

(𝛾−𝜇Ω2)2+(2𝜁2𝜇Ω)2 𝑈2.                                  (19) 257 

By inserting Eq. (19) into Eq. (18) to replace 𝑅1
2, we have a single nonlinear algebraic equation with one 258 

known 𝑈2. It can be solved by a standard bisection method. Subsequently, the displacement amplitude 259 

𝑅1  and the phase angle differences 𝜃  and 𝜙  can be obtained, yielding the steady-state response 260 

information. Compared with the Newton-Raphson method, the main benefit of using the bisection 261 

method is that it can conveniently determine all the possible solutions with using numerical continuation 262 

for path following. 263 

Note that for the original coupled system without adding inerter-based joint, Eqs. (16) and (18) 264 

becomes 265 

(𝛾 − 𝜇Ω2)2𝑅1
2 + (2𝜁2𝜇Ω𝑅1)2 = (𝛾 + 𝜅 − 𝜇Ω2)2𝑈2 + (2𝜁2𝜇Ω𝑈)2,                (20a) 266 

(1 − Ω2)2𝑅1
2 + (2𝜁1Ω𝑅1)2 + 𝜅2𝑈2 + 2𝜅(1 − Ω2)𝐴2 + 4𝜁1Ω𝜅𝐴1 = 𝐹0

2,              (20b) 267 

where  268 

𝐴1 =
2𝜁2𝜇Ω𝜅𝑅1

2

(2𝜁2𝜇Ω)2+(𝛾+𝜅−𝜇Ω2)2,          𝐴2 =
(𝛾+𝜅−𝜇Ω2)(𝛾−𝜇Ω2)+(2𝜁2𝜇Ω)2

(2𝜁2𝜇Ω)2+(𝛾+𝜅−𝜇Ω2)2 𝑅1
2.                 (21a, b) 269 
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When the nonlinear joint is placed at point Q, we have 270 

(𝛾 − 𝜇Ω2)2𝑅1
2 + (2𝜁2𝜇Ω𝑅1)2 = (𝛾 + 𝜅 − 𝜇Ω2)2𝑈2 + (2𝜁2𝜇Ω𝑈)2,                (22a) 271 

(1 − (1 + 𝜆0)Ω2 − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω2)
2

𝑅1
2 + (2𝜁1Ω𝑅1)2 + 𝜅2𝑈2 + 2 (1 − (1 + 𝜆0)Ω2 −272 

(1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω
2

) 𝜅𝐴2 + 4𝜁1𝜅Ω𝐴1 = 𝐹0
2,   (22b) 273 

where 274 

𝐴1 =
2𝜁2𝜇Ω𝜅𝑅1

2

(2𝜁2𝜇Ω)2+(𝛾+𝜅−𝜇Ω2)2,      𝐴2 =
(𝛾+𝜅−𝜇Ω2)(𝛾−𝜇Ω2)+(2𝜁2𝜇Ω)2

(2𝜁2𝜇Ω)2+(𝛾+𝜅−𝜇Ω2)2 𝑅1
2.              (23a, b) 275 

When the nonlinear joint is placed at point P, Eq. (14) is simplified into 276 

(𝛾 − 𝜇Ω2)2𝑅1
2 + (2𝜁2𝜇Ω𝑅1)2 = (𝛾 + 𝜅 − (𝜇 + 𝜆0)Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2)

2

𝑈2 + (2𝜁2𝜇Ω𝑈)2,     (24a) 277 

(1 − Ω2)2𝑅1
2 + (2𝜁1Ω𝑅1)2 + (𝜅 − 𝜆0Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2)

2

𝑈2 + 2(1 − Ω2) (𝜅 − 𝜆0Ω2 −278 

(1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝐴2 + 4𝜁1Ω (𝜅 − 𝜆0Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2) 𝐴1 = 𝐹0

2,   (24b) 279 

where 𝐴1 and 𝐴2 keep the original form shown by Eq. (17a) and (17b), respectively.  280 

The backbone curves correspond to the relationship between the displacement amplitudes and the 281 

oscillation frequency of the unforced and undamped system, i.e., 𝜁1 = 𝜁2 = 0 and 𝐹0 = 0. For the 282 

current system, they can be obtained by solving the following two equations 283 

(𝛾 − 𝜇Ω2)2𝑅1
2 = (𝛾 + 𝜅 − (𝜇 + 𝜆0)Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2)

2

𝑈2,                    (25a) 284 

(1 − (1 + 𝜆0)Ω2 − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω2)
2

𝑅1
2 + (𝜅 − 𝜆0Ω2 − (1 +

𝑈2

2
) 𝜆1𝑈2Ω2)

2

𝑈2 + 2 (1 −285 

(1 + 𝜆0)Ω2 − (1 +
𝑅1

2

2
) 𝜆1𝑅1

2Ω
2

) (𝜅 − 𝜆0Ω2 − (1 +
𝑈2

2
) 𝜆1𝑈2Ω2) 𝐴2 = 0,   (25b) 286 

where 287 

𝐴2 =
(𝛾−𝜇Ω2)

(𝛾+𝜅−(𝜇+𝜆0)Ω2−(1+
𝑈2

2
)𝜆1𝑈2Ω2)

𝑅1
2.                                                (26) 288 

3.2. HB with Alternating-frequency-time scheme 289 

To determine the steady-state responses of the system, Eq. (6) can also be solved by the harmonic 290 

balance (HB) method with alternating-frequency-time (AFT) technique [38]. The displacement 291 

response vector is approximated by a truncated N-th order Fourier series with a fundamental frequency 292 

of Ω: 293 

𝐗 = {∑ 𝑅̃(1,𝑛)
𝑁
𝑛=0 exp (i𝑛Ω𝜏), ∑ 𝑅̃(2,𝑛)

𝑁
𝑛=0 exp (i𝑛Ω𝜏)}

T
,                    (27)      294 

where 𝑅̃(1,𝑛) and 𝑅̃(2,𝑛) are the complex Fourier coefficients of the n-th order Fourier approximations 295 

associated with 𝑋1 and 𝑋2, respectively. By taking the differentiation of Eq. (27), the velocity and 296 

acceleration vectors can be obtained, and they are expressed as 297 

𝐗′ = {∑ i𝑛Ω𝑅̃(1,𝑛)
𝑁
𝑛=0 exp (i𝑛Ω𝜏), ∑ i𝑛Ω𝑅̃(2,𝑛)

𝑁
𝑛=0 exp (i𝑛Ω𝜏)}

T
,                (28a) 298 
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𝐗′′ = {−∑ (𝑛Ω)2𝑅̃(1,𝑛)
𝑁
𝑛=0 exp(i𝑛Ω𝜏) , − ∑ (𝑛Ω)2𝑅̃(2,𝑛)

𝑁
𝑛=0 exp (i𝑛Ω𝜏)}

T
,          (28b) 299 

respectively. The nonlinear force vector generated by the inclusion of the nonlinear joints are  300 

𝐅𝐧𝐥(𝐗′′, 𝐗′, 𝐗) = {∑ 𝐻̃(1,𝑛)
𝑁
𝑛=0 exp (i𝑛Ω𝜏), ∑ 𝐻̃(2,𝑛)

𝑁
𝑛=0 exp (i𝑛Ω𝜏)}

T
,             (29) 301 

where 𝐻̃(1,𝑛)  and 𝐻̃(2,𝑛)  are the complex Fourier coefficients of the n-th order associated with the 302 

nonlinear force terms 𝐹bP + 𝐹bQ and −𝐹bP, respectively. For the treatment of the nonlinear force, the 303 

AFT scheme is applied to determine the Fourier coefficient associated with a general nonlinear force, 304 

which may be smooth or non-smooth functions of the displacement, velocity or the acceleration [39]. 305 

The main idea of the AFT scheme is to replace the continuous Fourier transform of the nonlinear forces 306 

by a discrete Fourier transform so that samples of the nonlinear forces at equidistant time instants within 307 

one period of oscillation are taken. 308 

By inserting Eqs. (27), (28) and (29) into Eq. (6) and balancing the coefficients of the n-th (0 ≤ 𝑛 ≤309 

𝑁) order harmonic term, we have 310 

(−(𝑛Ω)2𝐌 + i(𝑛Ω)𝐂 + 𝐊)𝐑̃𝑛 = 𝐒̃𝑛 − 𝐇̃𝑛,                                   (30) 311 

where  𝐑̃𝑛 = {𝑅̃(1,𝑛), 𝑅̃(2,𝑛)}
T

, 𝐇̃𝑛 = {𝐻̃(1,𝑛), 𝐻̃(2,𝑛)}
T

 and 𝐒̃𝑛 = {𝐹0, 0}T. Note that Eq. (23) is an 312 

algebraic equation of complex numbers, and it can be transformed into two real algebraic equations. 313 

When the N-th order HB approximations are carried out, there will be a total number of 2(2N+1) real 314 

algebraic equations, which can be solved by Newton-Raphson method. To track the solution branches 315 

with variations of the system parameters or excitation parameters, the pseudo-arclength continuation 316 

methods is also used. Therefore, the steady-state response of the system can be determined and the 317 

effects of the nonlinear joints on the dynamics and the power flow behaviour of the coupled system can 318 

be determined. 319 

To compare and verify the results obtained from different methods, Fig. 4(a) and (b) shows the 320 

steady-state displacement amplitudes ⌊𝑋1⌋max and ⌊𝑋2⌋max  of masses 𝑚1  and 𝑚2 , respectively. The 321 

system parameters are set as 𝜇 = 1, 𝛾 = 1, 𝜅 = 10, 𝜁1 = 𝜁2 = 0.01, 𝐹0 = 0.05 and the inerter-based 322 

nonlinear joint is added at position P.  The solid line is for the system without adding inerter-based joint, 323 

i.e., 𝜆0 = 𝜆1 = 0. The HB-AFT results are based on 3rd order approximation and are denoted by the 324 

dashed line. The 1st HB results based on analytical derivations shown by Eq. (25), solved by a standard 325 

bisection method. The figure shows relatively good agreements of the results obtained from the three 326 

different approaches.  327 
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 328 

Fig. 4.  Comparison of the response amplitudes obtained using different methods. Solid line:  Dashed line: HB-329 

AFT; Circles: RK results; Triangles: analytical HB. 330 

4. Vibration transmission and energy flow 331 

4.1. Force transmissibility 332 

For vibration suppression of coupled systems, the vibration transmission between subsystems is of 333 

interest. In this study, the force transmission and vibration energy flow are both used to quantify the 334 

level of vibration transmission. 335 

The force transmission TR from the primary system to the secondary system can be defined as the 336 

ratio between the magnitude of the force transmitted to S2 and that of the excitation force 337 

𝑇𝑅 =
|𝐹𝑇|

𝐹0
 ,                                                                     (31)  338 

where 𝐹𝑇 represents the transmitted force to mass 𝑚2 and is expressed by 339 

𝐹𝑇 = 𝜅(𝑋1 − 𝑋2) + 𝐹bP.                                                     (32) 340 

4.2. Time-averaged energy flow and kinetic energies  341 

4.2.1 Energy input 342 

The dimensionless instantaneous input power into the system is the product of the excitation force 343 

and the velocity of mass 𝑚1: 344 

 𝑃in = ℜ{𝐹0 exp(iΩ𝜏 + i𝜙)}ℜ{𝑋1
′},                                                 (33) 345 

where the symbol ℜ denotes the operation of taking the real part of a complex number.  The time-346 

averaged input power is 347 

𝑃in =
1

𝜏p
∫ 𝑃in

𝜏0+𝜏p

𝜏0
d𝜏 = 0.5𝐹0ℜ{(iΩ𝑅̃(1,1))

∗
} ≈ 0.5𝐹0𝑅1Ω sin 𝜙,                  (34) 348 

 349 

 350 
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where 𝑋1
′ = ∑ i𝑛Ω𝑅̃(1,𝑛)

𝑁
𝑛=0 exp (i𝑛Ω𝜏) obtained from Eq. (21), 𝜏0 is the starting time for the averaging, 351 

𝜏p is the averaging time span set as one cycle of the excitation with 𝜏p = 2𝜋 Ω⁄ , the symbol operator * 352 

denotes the operation of taking complex conjugate of a complex number, and Eq. (11a) has been used 353 

for the approximation . 354 

4.2.2 Energy dissipation 355 

The dimensionless instantaneous dissipated powers 𝑃d1 and 𝑃d2 by dampers 𝑐1 and 𝑐2 in S1 and S2 356 

are obtained by taking the product of the damping forces and the corresponding relative velocities across 357 

the two ends of the dampers. The time-averaged dissipated powers are represented by 358 

𝑃d1 =
1

𝜏p
∫ 𝑃d1

𝜏0+𝜏p

𝜏0
d𝜏 =

1

𝜏p
∫ 2𝜁1{ℜ{𝑋1

′}}
2𝜏0+𝜏p

𝜏0
d𝜏 ≈ 𝜁1𝑅1

2Ω2,                           (35a) 359 

𝑃d2 =
1

𝜏p
∫ 𝑃d2

𝜏0+𝜏p

𝜏0
d𝜏 =

1

𝜏p
∫ 2𝜁2𝛾{ℜ{𝑋2

′ }}
2𝜏0+𝜏p

𝜏0
d𝜏 ≈ 𝜁2𝛾𝑅2

2Ω2,                       (35b) 360 

where the first-order expressions of the velocities shown by Eq. (11a) and (b) have been used for the 361 

approximations. Note that over a cycle of a periodic response, the total mechanical energy remains 362 

unchanged, i.e., the total input energy by the excitation force should be fully dissipated by viscous 363 

dampers 𝑐1 and 𝑐2. Therefore, we have 𝑃in = 𝑃d1 + 𝑃d2. 364 

4.2.3 Energy transmission 365 

The dimensionless instantaneous time-averaged transmitted power to S2 is the product of the 366 

transmitted force and the corresponding velocity of mass 𝑚2 367 

𝑃t = ℜ{𝐹T}ℜ{𝑋2
′ }.                                                          (36) 368 

Time-averaged transmitted power is then obtained as 369 

𝑃t =
1

𝜏p
∫ 𝑃t

𝜏0+𝜏p

𝜏0
d𝜏 ≈ 𝜁2𝛾𝑅2

2Ω2,                                                  (37) 370 

where that first-order expressions of the transmitted force 𝐹T  and velocity 𝑋2
′  were used for the 371 

approximation. Note that for a periodic response, there is not net change in the total mechanical energy 372 

of subsystem S2 over a cycle of motion. Therefore, all the transmitted energy to S2 is dissipated by 373 

damper 𝑐2. Consequently, we have 𝑃t = 𝑃d2. This behaviour was shown by first-order approximations 374 

shown by Eqs. (28b) and (30). The power transmission ratio 𝑅𝑡 can be defined as the ratio between 𝑃t 375 

and 𝑃in: 376 

𝑅𝑡 =
𝑃t

𝑃in
=

𝑃d2

𝑃d1+𝑃d2
.                                                             (38) 377 

5. Results and discussions 378 

In this section, the influence of adding the inerter-based nonlinear joint at two positions P and Q is 379 

investigated individually. Position P corresponds to the interface of the two subsystems S1 and S2, 380 

while position Q is placed within subsystem S1. The effects of the design parameters of lateral inerters 381 

and axial inerters are analysed, respectively. With a balanced consideration of the accuracy of the results 382 

and the computational efforts, the HB-AFT method with order 𝑁 = 3 is used to obtain the displacement 383 
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response, force transmissibility, and time-averaged power flow variables. The values of the system 384 

parameters and the excitation are selected as 𝜇 = 1, 𝛾 = 1, 𝜅 = 10, 𝜁1 = 𝜁2 = 0.01, 𝐹0 = 0.05. The 385 

HB-AFT results are presented by different types of lines and are compared with those obtained by the 386 

fourth order RK method denoted by different kinds of symbols. 387 

5.1 Inerter-based joint added to position P (𝐹bQ = 0) 388 

5.1.1. Effects of the lateral inerters 389 

Here the inclusion of the inerter-based nonlinear joint to position P at the coupling interface of the 390 

subsystems is considered. Figs. 5. 6 and 7 show the effects of the parameters of the lateral inerters on 391 

the steady-state displacement response, the time-averaged input and transmitted powers, as well as the 392 

force transmissibility and power transmission ratio, respectively. Case one is for the system without 393 

adding the nonlinear joint by setting the inertance of both the axial and the lateral inerters to be 𝜆0 =394 

 𝜆1 = 0. The effects of the lateral inerters are investigated by changing their inertance 𝜆1 from 0, to 1 395 

and then to 5 in Cases two, three and four, respectively, while fixing the inertance of the axial inerter 396 

as 𝜆0 = 1.  The HB-AFT results for Cases one, two, three and four are represented by the solid, dashed, 397 

dash-dotted and dotted lines, respectively. 398 

Figure 5(a) and (b) shows the influence of the lateral inerters on the steady-state displacement 399 

response amplitude ⌊𝑋1⌋max  of mass 𝑚1  and the relative displacement amplitude ⌊𝑋2 − 𝑋1⌋max 400 

between the masses. Fig. 5(a) shows that for the original coupled system without adding the nonlinear 401 

joint, there are two resonant peaks in the curve of ⌊𝑋1⌋max. After adding a joint with only the axial 402 

inerter with an inertance-to-mass ratio of 𝜆0 = 1, the second peak of ⌊𝑋1⌋max moves to the left and the 403 

corresponding peak value is increased. However, the first peak frequency and value of ⌊𝑋1⌋max remain 404 

nearly unchanged in spite of the variations in 𝜆0 and 𝜆1 for the four cases. There is an anti-peak in each 405 

curve of ⌊𝑋1⌋max, which shifts to low-frequency range with the addition of the axial inerter 𝜆0. This 406 

anti-peak remains almost the same regardless of the changes in the inertance 𝜆1 of the lateral inerters in 407 

Cases two, three and four. The reason for the effects is that when the response amplitude is large, the 408 

nonlinearity introduced by the lateral inerters as shown by the nonlinear force term becomes stronger. 409 

In contrast, when the response amplitude is low, as is the case at the anti-peak, the response amplitude 410 

is small such as the nonlinear force term is small, leading to a negligible effect of the changing inertance 411 

of the lateral inerters on the response. Fig. 5(a) also shows that the displacement amplitude ⌊𝑋1⌋max at 412 

the second peak frequency of mass 𝑚1 is reduced by adding the nonlinear joint in Cases three and four, 413 

compared to Case two. This behaviour demonstrates that the inerter-based nonlinear joint can be used 414 

to suppress the vibration at prescribed excitation frequencies. Fig. 5(b) shows that only one peak exists 415 

in each curve of the relative displacement amplitude |𝑋1 − 𝑋2|max, corresponding to the out-of-phase 416 

mode of the system. It is found that the addition of the axial inerter can move this peak to lower 417 

frequency range. This peak bends to the left with the addition of lateral inerters. An increase in the value 418 
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of 𝜆1 from 0, to 1 and then to 5 for the lateral inerters can further twist the peak to low-frequency range 419 

with slight increases in the peak value. 420 

 421 

Fig. 5. Effects of the inerter-based nonlinear joint on (a) the response amplitude of mass 𝑚1, and (b) the relative 422 
response of masses 𝑚1  and 𝑚2 when the inerter-based joint is added at 𝑃  (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =423 
0.01, 𝐹0 = 0.05). 424 

As shown in Fig. 6 (a) and (b), the time-averaged input power 𝑃̅in and transmitted power 𝑃̅t are 425 

examined. Fig. 6(a) shows two peaks in each curve of 𝑃̅in. It is shown that with the addition of axial 426 

inerter 𝜆0 = 1 from Case one to Case two, the second peak of time-averaged input power moves to 427 

lower frequency range from Ω ≈ 4.6 to Ω ≈ 2.6. This peak further bends towards the low frequencies 428 

as 𝜆1 increases from 0 to 1, and to 5, from Cases two to three and four. There are slight changes in the 429 

second peak value of 𝑃̅in  with the changes in 𝜆0  and 𝜆1 . However, the first peak value and peak 430 

frequency obtained at Ω ≈ 1 remain almost the same regardless of the changes in 𝜆0 and 𝜆1 in the four 431 

cases considered. Fig. 6(a) shows that the time-averaged power into the system is mainly affected by 432 

the lateral inerters at the coupling interface when the excitation frequency is in the vicinity of the second 433 

resonance peak. The addition of inerter-based nonlinear joint reduces the time-averaged input power 434 

when Ω > 3.2 and the effects of the nonlinear joint are relatively small at low excitation frequencies 435 

with Ω < 2. Fig. 6(b) shows that an anti-peak of time-averaged transmitted power 𝑃̅t is introduced by 436 

the addition of the axial inerter at the interface of the coupled system. The second peak of the transmitted 437 

power moves to lower frequencies after introducing the linear inerter at position P. It is further bent to 438 

the lower frequency range with the involvement of lateral inerters. This phenomenon indicates that a 439 

large value of inertance 𝜆0  and 𝜆1  leads to higher amount of vibration power transmission from 440 

subsystem one to subsystem two from Ω ≈ 1.9 to Ω ≈ 2.8 and also in the high-frequency range Ω >441 

7.1. A reduction of power transmission is noticed between 2.8 < Ω < 7.1 in Fig. 6(b), especially in the 442 

vicinity of the anti-peak obtained at Ω ≈ 3.2. This figure suggests that the vibration transmission can 443 

be effectively reduced at prescribed excitation frequencies. The value of the inerter-based nonlinear 444 
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joint can be further tailored for the suppression of vibration transmission based on the excitation 445 

frequency. 446 

 447 

Fig. 6. Effects of the inerter-based nonlinear joint on (a) the time-averaged input power 𝑃̅in, and (b) the time-448 
averaged transmitted power 𝑃̅t  when the inerter-based joint is added at 𝑃  ( 𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =449 
0.01, 𝐹0 = 0.05). 450 

Figure 7(a) and (b) illustrates the influence of adding the inerter-based joint at the interface of the 451 

coupled system on the force transmissibility and power transmission ratio from subsystem one to 452 

subsystem two. In Fig. 7(a), it is observed that the addition of the linear inerter at the interface of the 453 

coupled system causes the resonance peak of force transmissibility to shift to a lower frequency range. 454 

An anti-peak is introduced at Ω ≈ 3.2 around where the force transmissibility is greatly reduced. The 455 

peak bends towards lower frequencies when the nonlinear inerter is further included. Fig. 7(a) shows 456 

that the effect of inerter is negligible at low frequencies with Ω < 1.5. The force transmission from 457 

subsystem one to subsystem two is increased with the inclusion of the axial inerter in the joint device 458 

from Ω ≈ 1.3 to Ω ≈ 2.8 for Case four, and gretly reduced from Ω ≈ 2.8 to Ω ≈ 7.2. This character 459 

suggests that the force transmission can be effectively reduced in prescribed excitation frequency range. 460 

In Fig. 7(b), the influence of the inerter-based nonlinear joint on the power transmission ratio 𝑅𝑡 from 461 

subsystem one to subsystem two is examined. It is shown that the inclusion of the linear inerter shifts 462 

the original peak of 𝑅𝑡  from Ω ≈ 3.3  to Ω ≈ 2.3  with the similar peak height. An anti-peak is 463 

introduced at Ω ≈ 3.2 resulted from the anti-peak introduced in the time-averaged transmitted power 464 

𝑃̅t at this frequency. A fluctuation of power transmission ratio is observed within 1.3 < Ω < 2.7 when 465 

the lateral inerters are further included. As shown in the enlarged view in Fig. 7(b), compared with Case 466 

two with only the axial inerter 𝜆0 = 1, the nonlinear joint in Cases three and four with 𝜆1 = 1 and 5 467 

introduces a horizontal notch in the curve of 𝑅𝑡. A larger nonlinear inertance value 𝜆1 of the lateral 468 

inerter leads to a wider horizontal notch of the power transmission ratio 𝑅𝑡 . When the excitation 469 

frequency is relatively small, i.e., Ω < 1.3, the impact of the inerter-based nonlinear joint tends to be 470 

small. The power transmission ratio is increased at high frequencies Ω > 5.8 with the inclusion of the 471 
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joint device in Cases two, three and four, compared with Case one. This phenomenon indicates that the 472 

power transmission ratio of the coupled system can be highly reduced at prescribed frequencies. 473 

 474 

Fig. 7. Effects of the inerter-based nonlinear joint on (a) the force transmissibility 𝑇𝑅, and (b) the time-averaged 475 
power transmission ratio 𝑅𝑡  when the inerter-based joint is added at 𝑃  ( 𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =476 
0.01, 𝐹0 = 0.05). 477 

5.1.2. Effects of the axial inerter 478 

In this section, the influence of the axial inerter is investigated. The inerter-based nonlinear joint is 479 

added at position P. Figs. 8, 9 and 10 show the effects of the parameters of the axial inerter on the 480 

steady-state response, the time-averaged power flow as well as the force transmissibility and power 481 

transmission ratio of the system. There are four cases considered and the HB-AFT results are shown by 482 

different curves. Case one with 𝜆0 = 𝜆1 = 0 refers to the original system without adding the joint and 483 

the results are presented by solid lines. In Cases two, three and four, a nonlinear joint with different 484 

inertance of the axial inerter is added at position P setting 𝜆0 = 1, 5 and 10, respectively, while fixing 485 

𝜆1 = 2. The HB-AFT results for Cases two, three and four are shown by the dashed, dash-dotted, and 486 

dotted lines, respectively, while the corresponding RK results are shown by circles, squares and 487 

triangles. 488 

In Fig. 8, effects of the axial inerter on the maximum steady-state displacement response |𝑋1|max of 489 

the primary mass 𝑚1 and the amplitude of the relative displacement |𝑋1 − 𝑋2|max between the masses 490 

𝑚1 and 𝑚2 are investigated. Fig. 8(a) shows two peaks in the curve of Case one. The addition of a 491 

nonlinear joint at position P in Cases two, three and four shifts the second peak of |𝑋1|max to lower 492 

frequencies. By the increase in 𝜆0 from 1, to 5 and then to 10, the second peak and the anti-peak in each 493 

curve of |𝑋1|max both move to the low-frequency range with larger second peak value and also the 494 

value at the anti-peak. It is noted that with the increase in the value of 𝜆0, there is less bending in the 495 

second peak of |𝑋1|max  suggesting that the nonlinearity becomes weaker. In Case four, with the 496 

inertance-to-mass ratio of the axial inerter increases to 𝜆0 = 10, the second peak corresponding to the 497 

out-of-phase mode of |𝑋1|max tends to merge with the first peak, which is associated with the in-phase 498 
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mode. It is also shown that the bending out-of-phase peak is slightly higher than the in-phase peak when 499 

𝜆0 = 10, 𝜆1 = 2. The effects of the changes in 𝜆0 of the inerter-based nonlinear joint on the value of 500 

|𝑋1|max is negligible in the low-frequency range with Ω < 0.96. Fig. 8(b) shows the influence of the 501 

variations in the inertance 𝜆0 of the inerter-based joint on the relative displacement of two masses 𝑚1 502 

and 𝑚2. It is observed that with the increase of the inertance 𝜆0 of the axial inerter from 1 to 5 and then 503 

10, the peak frequency of |𝑋1 − 𝑋2|max is reduced but the peak value increases. From Case two to Case 504 

four, there is less bending of the peak, suggesting that the nonlinear inertial effect brought by the 505 

addition of the nonlinear joint becomes weaker. Comparing Case four with Case one, Fig. 8(b) shows 506 

that the increase in 𝜆0 results in a reduction of relative displacement at high frequencies with Ω > 1.4. 507 

There is an increase in |𝑋1 − 𝑋2|max when the excitation frequency is between 0.4 < Ω < 1.4. This 508 

inerter-based joint has weaker influence on |𝑋1 − 𝑋2|max at low frequencies with Ω < 0.4. 509 

 510 

Fig. 8. Effects of the inerter-based nonlinear joint on (a) the response amplitude of mass 𝑚1, and (b) the relative 511 
response of masses 𝑚1  and 𝑚2 when the inerter-based joint is added at 𝑃  (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =512 
0.01, 𝐹0 = 0.05). 513 

Figure 9(a) and (b) shows the effects of the inertance-to-mass ratios 𝜆0 and 𝜆1 of the inerter-based 514 

joint on the time-averaged input power 𝑃̅in and the time-averaged transmitted power 𝑃̅t to the secondary 515 

mass 𝑚2, respectively. Fig. 9(a) shows that the lateral inerters bend the second peak of 𝑃̅in to low-516 

frequency range. With the increase in 𝜆0 from 1, to 5 and then to 10 for the axial inerter, this peak is 517 

shifted to the low-frequency range. The corresponding peak height remains almost the same with the 518 

increase of 𝜆0 from Case two to Case four. The other peak associated with the in-phase mode remains 519 

to be approximately at the same frequency and of the same value regardless of the changes in 𝜆0 and 520 

𝜆1. In Case four with 𝜆0 = 10 for the axial inerter, the bending peak merges with the corresponding 521 

peak associated with the in-phase mode. Also, for this case, the corresponding peak value of 𝑃̅in for the 522 

out-of-phase mode becomes smaller than the peak associated with in-phase mode. It is observed that 523 

with the increase of 𝜆0 from Case two to Case four, there is less extent of the bending. Fig. 9(b) shows 524 

that the second peak of the time-averaged transmitted power bends towards low frequencies by the 525 
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addition of the inerter-based nonlinear joint at position P. The inclusion of the joint in Case two 526 

introduces an anti-peak of 𝑃̅t at Ω ≈ 3.17. Both the out-of-phase mode peak and the anti-peak move to 527 

lower frequency range with the increase of axial inertance 𝜆0 from Case two to Case four. In Case four 528 

with 𝜆0 = 10, the out-of-phase peak merges with the in-phase peak as well as the anti-peak. As shown 529 

in the enlarged view in Fig. 9(b), the peak value of the in-phase mode peak is not reduced, while the 530 

out-of-phase mode peak is slightly reduced compared with Case one. Comparing Case four with Case 531 

one, an increase of power transmission to subsystem two is noticed at high frequencies Ω >7 and the 532 

effect of inerter-based nonlinear joint becomes small at low frequencies. From the viewpoint of power 533 

transmission, the level of vibration transmission to subsystem S2 is greatly reduced within 1.5 < Ω <534 

7 by the using nonlinear joint in Case four. 535 

 536 

Fig. 9. Effects of the inerter-based nonlinear joint on (a) the time-averaged input power 𝑃̅in, and (b) the time-537 
averaged transmitted power 𝑃̅t  when the inerter-based joint is added at 𝑃  ( 𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =538 
0.01, 𝐹0 = 0.05). 539 

Figure 10(a) and (b) shows the effects of the inerter-based nonlinear joint on the force 540 

transmissibility TR and power transmission ratio 𝑅𝑡 within the system, respectively. Fig. 10(a) shows 541 

only one peak in each curve of TR, corresponding to the out-of-phase mode of the system. Compared 542 

with Case one, the addition of the inerter-based nonlinear joint in Case two twists the peak of force 543 

transmissibility to lower frequencies. The increase of the inertance 𝜆0 of the axial inerter shifts this peak 544 

to lower frequency range and correspondingly reduces the peak value. However, the corresponding 545 

bending effect due to the nonlinearity of lateral inerters becomes smaller with the increase of 𝜆0. An 546 

anti-peak of force transmissibility is introduced by adding the inerter-based joint in Cases two, three 547 

and four. The peak value of TR is reduced after increasing the value of axial inertance 𝜆0 from 1 to 10. 548 

The anti-peak almost disappears when the inertance 𝜆0 of the axial inerter increases to 10. The figure 549 

shows that the level of force transmission to mass 𝑚2 can be reduced at the original peak frequency of 550 

Case one, i.e., the original system without adding the joint. However, there might be larger force 551 

transmission at high excitation frequencies. Fig. 10(b) shows that compared with Case one an anti-peak 552 
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exits in each curve of the power transmission ratio in Cases two, three and four. A horizontal fluctuation 553 

appears at 𝑅𝑡 ≈ 0.45 due to the addition of lateral inerters. This fluctuation becomes smaller as the 554 

inertance of the axial inerter increases. The figure also shows that the inclusion of the inerter-based joint 555 

increases the power transmission ratio at high frequencies. A larger value of the inertance 𝜆0 leads to a 556 

higher value of power transmission ratio 𝑅𝑡 in the high-frequency range. The figure shows that both TR 557 

and 𝑅𝑡 both tend to asymptotic values when the excitation frequency Ω increases in the high-frequency 558 

range. The effects of adding the inerter-based nonlinear joint on force transmissibility and the power 559 

transmission ratio becomes weaker at low excitation frequencies.  560 

 561 

Fig. 10. Effects of the inerter-based nonlinear joint on (a) the force transmissibility 𝑇𝑅 , and (b) the time-averaged 562 
power transmission ratio 𝑅𝑡  when the inerter-based joint is added at 𝑃  ( 𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =563 
0.01, 𝐹0 = 0.05). 564 

5.2. Nonlinear Inerter added to position Q (𝐹bP = 0) 565 

5.2.1. Effects of the lateral inerters 566 

Here the effects of the lateral inerters in the inerter-based nonlinear joint at position Q on the steady-567 

state response, time-averaged input and transmitted powers, force transmissibility, and the power 568 

transmission ratio are investigated. Four cases are considered with Case one for the original system 569 

without adding the inerter-based joint (i.e., 𝜆0 = 𝜆1 = 0) and the analytical results are represented by 570 

solid lines. In Cases two, only the axial inerter exits in the joint device by setting 𝜆0 = 1 and 𝜆1 = 0  571 

and the analytical results are shown by dashed lines. In Cases three and four, the inertance 𝜆1 of the 572 

lateral inerters is selected as 𝜆1 = 1 and 𝜆1 = 5, while fixing 𝜆0 = 1, which are represented by dash-573 

dotted and dotted lines, respectively. 574 

Figure 11(a) shows that there are two resonance peaks and one anti-peak in each curve of the steady-575 

state response amplitude of displacement |𝑋1|max. A comparison of Cases one and two shows that by 576 

the addition of the joint comprising only the axial inerter with 𝜆0 = 1, both peaks of |𝑋1|max shift to 577 

the low-frequency range. The height of the first peak is slightly increased, while the second one reduces. 578 

However, for both cases, an anti-peak is obtained at Ω ≈ 3.3 and the corresponding value of |𝑋1|max 579 
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remains almost the same. The first peak bends towards lower frequency range with the further inclusion 580 

of lateral inerters in Case three and four. Comparing Case three with Case four, it shows that a larger 581 

value of 𝜆1 of the lateral inerters can bend the first peak further to the low-frequency range, and the 582 

corresponding peak value becomes larger. However, the second peak as well as the anti-peak change 583 

little despite of the variations in the values of 𝜆1 in the inerter-based nonlinear joint compared with Case 584 

one. It is observed that the effect of adding the inerter-based joint is negligible at low frequencies with 585 

Ω < 3.4. Compared with Case one, the response amplitude |𝑋1|max associated with the other three 586 

cases is reduced at high frequencies Ω > 4.2 . Fig. 11(b) shows the variations of the relative 587 

displacement amplitude |𝑋1 − 𝑋2|max of two masses 𝑚1 and 𝑚2. It shows that the use of the axial 588 

inerter results in another peak in the low-frequency range and also an anti-peak between the two peaks. 589 

Detailed analysis of the time histories shows that the peak in low-frequency range corresponds to an in-590 

phase mode, while the one found at a higher frequency corresponds to an out-of-phase mode. This 591 

property is investigated in more details in Fig. 12 by examining the time histories of the steady-state 592 

displacement responses. 593 

 594 

Fig. 11. Effects of the inerter-based nonlinear joint on (a) the response amplitude of mass 𝑚1, and (b) the relative 595 
response of masses 𝑚1  and 𝑚2 when the inerter-based joint is added at 𝑄  (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =596 
0.01, 𝐹0 = 0.05). 597 

Figure 12(a) and (b) presents the time histories of the dimensionless steady-state displacements |𝑋1| 598 

and |𝑋2| to reveal the reason for the presence of an extra peak in |𝑋1 − 𝑋2|max by the addition of the 599 

inerter-based joint for Case two. Fig. 12(a) shows that two displacement curves reach their maximum 600 

value and minimum value at the same time, which indicates that the first peak in Fig. 11(a) and (b) 601 

corresponds to an in-phase mode. On the contrary, in Fig. 12(b) with Ω = 3.98, when |𝑋1| reaches its 602 

maximum value, |𝑋2|  is at its minimum, suggesting that the second peak in Fig. 11(a) and (b) 603 

correspond to an out-of-phase mode. It is recalled that the influence of the inerter-based nonlinear on 604 

the first peak (in-phase-mode) is stronger than that on the second peak (out-of-phase mode) in Fig. 11(a). 605 

This behaviour arises from the fact that the inerter-based nonlinear joint is now added to position Q. 606 
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The nonlinearity and also the nonlinear inertance force depend on the response of the first mass only. 607 

As shown in Fig. 12, the displacement amplitude of mass 𝑚1 at Ω = 0.81 is much larger than the one 608 

at Ω = 3.98. Consequently, there is a stronger effect introduced by the nonlinearity of the joint device 609 

at the first peak. 610 

 611 

Fig. 12. Time histories of the steady-state dimensionless displacement response |𝑋1| and |𝑋2| with excitation at 612 
(a) Ω = 0.81, and (b)  Ω = 3.98 (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 = 0.01, 𝐹0 = 0.05, 𝜆0 = 1, 𝜆1 = 1). 613 

In Fig. 13(a) and (b), the influence of adding the inerter-based joint to point Q on the time-averaged 614 

input power 𝑃̅in and transmitted power 𝑃̅t is examined. It shows that two peaks are observed in each 615 

curve 𝑃̅in and 𝑃̅t. Compared with Case one, the inclusion of the axial inerter in the joint device shifts 616 

both peaks in each curve to lower frequency range. The second peak in Case two reduces slightly after 617 

connecting the linear inerter at position Q compared with Case one, while the height of the first peak 618 

remains almost the same despite of changes in 𝜆0 and 𝜆1. By adding the lateral inerters in Case three, 619 

the first peak corresponding to the in-phase mode bends to lower frequency range. A higher inertance 620 

of the lateral inerter with 𝜆1 = 5 in Case four bends the first peak to further lower frequency range. The 621 

addition of the inerter-based nonlinear joint has much weaker influence when the excitation frequency 622 

is small. The figure shows that by adding the inerter-based joint to the system as in Cases two, three 623 

and our, there is less amount of the time-averaged input and transmitted power at high excitation 624 

frequencies. Note that the second peak in Case one reduces slightly after connecting the linear inerter 625 

at position Q, while the height of the first peak remains almost the same despite of changes in 𝜆0 and 626 

𝜆1, suggesting the potential benefits of the inerter-based joint in vibration suppression in terms of 627 

vibration energy transmission within the system. 628 
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 629 

Fig. 13. Effects of the inerter-based nonlinear joint on (a) the time-averaged input power 𝑃̅in, and (b) the time-630 
averaged transmitted power 𝑃̅t  when the inerter-based joint is added at 𝑄  (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =631 
0.01, 𝐹0 = 0.05). 632 

Figure 14(a) and (b) shows the influence of the inerter-based joint at point Q on the force 633 

transmissibility TR and the power transmission ratio 𝑅t, respectively. Fig. 14(a) shows that for the 634 

original system without the inerter-based joint as in Case one, only one peak is observed in the curve 635 

of TR. The inclusion of the inerter-based joint with only the axial inerter in Case two reduces this peak 636 

value and the peak frequency, which is beneficial for suppression of vibration transmission. Another 637 

peak in the curve of TR is introduced at a lower value of the excitation frequency, the value of which 638 

is smaller than the second peak value. An anti-peak is generated between these two peaks at Ω ≈ 1, 639 

which can be used to substantially reduce vibration force transmissibility. In Case three with the 640 

addition of the lateral inerters in the joint, the first peak of TR bends towards low frequencies with 641 

slightly larger peak value. In Case four, the value of 𝜆1 is further increased to 5, which leads to the 642 

further bending of the first peak in TR to the left with a higher peak value. However, the second peak 643 

and the anti-peak in each curve of TR keep almost the same for Cases two, three and four regardless 644 

the variations in 𝜆1. Fig. 14(b) shows a peak in each cure of the power transmission ratio 𝑅𝑡. It shows 645 

that the power transmission is not sensitive to the changes in the values of 𝜆0 and 𝜆1 for the four cases 646 

considered. Detailed explanations and mathematical derivations are shown in the Appendix. 647 
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 648 

Fig. 14. Effects of the inerter-based nonlinear joint on (a) the force transmissibility 𝑇𝑅, and (b) the time-averaged 649 
power transmission ratio 𝑅𝑡  when the inerter-based joint is added at 𝑄  ( 𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =650 
0.01, 𝐹0 = 0.05). 651 

5.2.2. Effects of the axial inerter 652 

Here the effects of the axial inerter in the inerter-based nonlinear joint added to position Q with 653 

subsystem S1 are investigated. Figs. 15, 16 and17 show the variations of the steady-state response, the 654 

time-averaged power flow, force transmissibility, and power transmission of the system. Four cases are 655 

considered in each figure, which are obtained by HB-AFT method and verified by RK method. The 656 

solid line represents the results from Case one considering the system without adding inerter-based joint, 657 

i.e., 𝜆0 = 𝜆1 = 0. To examine the effect of the axial inerter, the value of 𝜆0 changes from 1, to 5 and 658 

then to 10 in Cases two, three and four, respectively, while setting the inertance of the lateral inerters 659 

𝜆1 = 2. The corresponding HB-AFT results are plotted by the dashed, dash-dotted, and dotted lines, 660 

respectively. 661 

Figure 15 demonstrates the effects of the inerter-based nonlinear joint added at position Q on the 662 

displacement response amplitude |𝑋1|max of the primary mass and the relative displacement response 663 

amplitude |𝑋1 − 𝑋2|max of two masses. Fig. 15(a) shows that two peaks exist in each curve of |𝑋1|max . 664 

The inclusion of nonlinear inerter-based joint with 𝜆0 = 1 and 𝜆1 = 2 in Case two shifts the first peak 665 

to lower frequencies and bend it towards the left. Examinations of Cases two, three and four shows that 666 

increases of the inertance 𝜆0 from 1 to 5 then to 10 shift the first peak to lower frequencies and the 667 

corresponding peak value increases. As the inertance of the lateral inerters are fixed, the extent of 668 

bending of the first peak reduces from Case two to Case four. The second peak of |𝑋1|max found at a 669 

relatively higher frequency also shifts to the left with the increase of 𝜆0, and the corresponding peak 670 

value reduces. In comparison, the frequency where the anti-peak is found on each curve remains almost 671 

the same regardless of the variations in the inertance-to-mass ratios 𝜆0 and 𝜆1. Compared with Case 672 

one, the addition of the inerter-based joint in Case two can reduce the response amplitude of the mass 673 

𝑚1 at prescribed frequencies, especially at high frequencies with Ω > 4.2 and near the original peak 674 
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frequency of Ω ≈ 1. This behaviour shows the benefits of using the inerter-based joint on vibration 675 

suppression. The effects of adding the joint device on the dynamic response becomes weak at low 676 

excitation frequencies with Ω < 0.14. Fig. 15(b) shows that for the original system without the inerter-677 

based joint (i.e., Case one), only one peak exists in the curve of the relative displacement amplitude. In 678 

contrast, for Cases two, three and four, there are two peaks in each curve of |𝑋1 − 𝑋2|max and an anti-679 

peak is found between the two peaks. The first peak found at low frequencies bends towards the left 680 

while there is no noticeable bending for the second peak. For a fixed value of 𝜆1 = 2 for the lateral 681 

inerters, an increase of inertance 𝜆0 for the axial inerter shifts both peaks to the low-frequency range, 682 

while the anti-peak is found at approximately the same frequency. With the increase in 𝜆0 from Case 683 

two to Cases three and four, the first peak corresponding to the in-phase mode becomes higher, while 684 

the second peak becomes lower. As the excitation frequency reduces to the range where Ω < 0.14, the 685 

curves associated with the four cases tend to merge, suggesting that the addition of the inerter-based 686 

joint has less impact on the relative displacement amplitude. 687 

 688 

Fig. 15. Effects of the inerter-based nonlinear joint on (a) the response amplitude of mass 𝑚1, and (b) the relative 689 
response of masses 𝑚1  and 𝑚2 when the inerter-based joint is added at 𝑄  (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =690 
0.01, 𝐹0 = 0.05). 691 

In Fig. 16(a) and (b), the influence of the inerter-based nonlinear joint on the time-averaged input 692 

power 𝑃̅inand on the transmitted power 𝑃̅t  is investigated, respectively. The figure shows that the 693 

changes in the inerter-based joint affect 𝑃̅in and 𝑃̅t in a similar way. It shows that from Case one to case 694 

two with the addition of the inerter-based joint at position Q, both peaks on each curve of time-averaged 695 

power flow shift to the low-frequency range. This behaviour is beneficial for suppression of vibration 696 

transmission at high excitation frequencies. The figure shows that the height of the first peak 697 

corresponding to the in-phase mode remains almost the same for Cases two, three and four. In contrast, 698 

the increase in 𝜆0  from Case two to four leads to a reduction in the second peak value, which is 699 

beneficial for attenuation of vibration transmission. At a prescribed high-frequency range, it shows that 700 

Case four leads to the lowest amount of the time-averaged input power and transmitted power.  Fig. 16 701 
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shows that the first peak of 𝑃̅in and 𝑃̅t bends to the lower frequencies in Case two. With the value of 𝜆1 702 

increases to 2 as in Case three, there is less bending of the first peak. These characteristics suggest that 703 

the inclusion of the inerter-based nonlinear joint is desirable in vibration suppression performance by 704 

the reduction of 𝑃̅in  and 𝑃̅t  over a wide frequency band, both at high frequencies and within the 705 

frequency range between two peaks. 706 

 707 

Fig. 16. Effects of the inerter-based nonlinear joint on (a) the time-averaged input power 𝑃̅in, and (b) the time-708 
averaged transmitted power 𝑃̅t  when the inerter-based joint is added at 𝑄  (𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =709 
0.01, 𝐹0 = 0.05). 710 

Figure 17 presents the effects of adding inerter-based joint at position Q on the force transmissibility 711 

TR and the power transmission ratio 𝑅𝑡. Fig. 17(a) shows only one peak in the curve TR for Case one. 712 

The use of an inerter-based nonlinear joint with 𝜆0 = 1, 𝜆1 = 2 in Case two shifts this peak to the lower 713 

frequency and reduces the peak value, compared with Case one. Another peak corresponding to the in-714 

phase mode of the coupled system is introduced at Ω ≈ 0.64 in Case two. It is noted that this first peak 715 

is bent towards left due to the nonlinear effect introduced by the inerter-based joint. There is an anti-716 

peak found at Ω ≈ 1 between the two peaks. The value of force transmissibility at the anti-peak reduces 717 

with the inertance 𝜆0 of the axial inerter, shown by a comparison of Cases two, three and four. The 718 

second peak value reduces with the increase of 𝜆0 and the first one slightly increases with 𝜆0. The figure 719 

shows that the use of the joint device in Case four can lead to much lower value of TR, compared with 720 

that of Case one for the original system. These characteristics show the benefits of inerter-based joint 721 

in vibration suppression at high frequencies as well as in the vicinity of Ω ≈ 1. Fig. 17(b) shows that 722 

over the examined range of excitation frequency the power transmission ratio for the four cases tend to 723 

merge. In other words, the relative of portion in the total input power that gets transmitted to subsystem 724 

two is not sensitive to changes in the inertance 𝜆0 and 𝜆1. 725 
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 726 

Fig. 17. Effects of the inerter-based nonlinear joint on (a) the force transmissibility 𝑇𝑅, and (b) the time-averaged 727 
power transmission ratio 𝑅𝑡  when the inerter-based joint is added at 𝑄  ( 𝜇 = 1, 𝛾 = 1, 𝜘 = 10, 𝜁1 = 𝜁2 =728 
0.01, 𝐹0 = 0.05). 729 

6. Conclusions 730 

This study proposed the use of an inerter-based nonlinear joint in a coupled system for the 731 

attenuation of vibration transmission between the subsystems. The nonlinear inertance force of the joint 732 

device is shown to be dependent on the relative displacement, velocity, and accelerations of its two 733 

terminals. The influence of placing the joint device at the interface of the subsystems or within the 734 

force-excited subsystem on vibration transmission has been investigated using analytical 735 

approximations and numerical integrations. The force transmissibility and time-averaged power flow 736 

behaviour were used to access the performance of the inerter-based nonlinear joint. When the inerter-737 

based joint is added to the interface of the subsystems, it was shown that the joint device can 738 

significantly reduce the response amplitudes associated with the out-of-phase mode of the system. It 739 

was also shown that by the addition of the joint device, the response peaks can be shifted and bent to 740 

the low-frequency range for desirable dynamic characteristics. The force transmissibility and power 741 

transmission through the interface between the subsystems can be substantially reduced within a 742 

prescribed frequency range. It was also demonstrated that inertances of the embed inerters in the joint 743 

can lead to the presence of an anti-peak in the curves of force transmissibility, time-averaged transmitted 744 

power, and power transmission ratio, and the anti-peak can be placed at interested frequencies to 745 

suppress vibration transmission. When the inerter-based nonlinear joint is added to the force-excited 746 

subsystem, it was shown that the inclusion of the joint device has large influence on the first peak of 747 

the response amplitude corresponding to the in-phase mode, and the extent of the bending increases 748 

with the inertance of the lateral inerters. An anti-peak can be found in the curve of force transmissibility, 749 

suggesting that the inerter-based nonlinear joint reduces the force transmission at prescribed frequencies. 750 

The power transmission ratio from the force-excited subsystem to the other subsystem is not sensitive 751 

to the variations in the inertances of the joint. It was also shown that the insertion of the joint device in 752 
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the system can substantially reduce response amplitude and power transmission, compared to the 753 

original system without adding the joint device.  754 
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Appendix. Detailed representations of power transmission ratio 𝑅𝑡 759 

When the inerter-based joint is added at position Q, the power transmission ratio 𝑅𝑡 from subsystems 760 

S1 to S2 is not sensitive to changes in the inertance 𝜆0 and 𝜆1 as shown in Figs. 14(b) and 17(b). Here 761 

the reasons are demonstrated with mathematical derivations for the case when the inerter-based joint is 762 

added at position Q, and the lateral inerters are with 𝜆1 = 0. Note that Eq. (6) can be rearranged as: 763 

 −Ω2𝑋̃1 + 2𝜁1iΩ𝑋̃1 + 𝑋̃1 + 𝜅𝛥̃ − Ω2𝜆0𝑋̃1 = 𝐹0 exp(i𝜙), (39a) 764 

 −Ω2𝜇(𝑋̃1 − 𝛥̃) + 2𝜁2iΩ𝜇(𝑋̃1 − 𝛥̃) + 𝛾(𝑋̃1 − 𝛥̃) − 𝜅𝛥̃ = 0, (39b) 765 

where, 𝑋̃1 and 𝛥̃ denotes the complex amplitude of the response of mass 𝑚1 and that of the relative 766 

displacement amplitude. According to Eq. (39a) and (39b), the expression of response amplitude can 767 

be derived as: 768 

 𝑋̃1 =
𝐹0 exp(i𝜙)(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾+𝜅)

(−Ω2+2𝜁1iΩ+1−Ω2𝜆0)(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾+𝜅)+𝜅(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾)
, (40a) 769 

 𝛥̃ =
𝐹0 exp(i𝜙)(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾)

(−Ω2+2𝜁1iΩ+1−Ω2𝜆0)(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾+𝜅)+𝜅(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾)
, (40b) 770 

 𝑋̃2 = 𝑋̃1 − 𝛥̃ =
𝐹0 exp(i𝜙)𝜅

(−Ω2+2𝜁1iΩ+1−Ω2𝜆0)(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾+𝜅)+𝜅(−Ω2𝜇+2𝜁2iΩ𝜇+𝛾)
. (40c) 771 

The transmitted force to subsystem S2 can be expressed by: 772 

 𝐹𝑡̃ = 𝜅𝛥̃. (41) 773 

The time-averaged input power and transmitted power over a period of oscillation are: 774 

 𝑃̅in =
1

𝑇
∫ Re{𝑝𝑖𝑛}

𝑡0+𝑇

𝑡0
d𝑡 =

1

2
Re{(𝐹0 exp(i𝜙))∗𝑋1iΩ}, (42a) 775 

 𝑃̅t =
1

𝑇
∫ Re{𝑝𝑡}

𝑡0+𝑇

𝑡0
d𝑡 =

1

2
Re{𝐹𝑡̃

∗
𝑋2iΩ}, (42b) 776 

where ∗ denotes the complex conjugate. The power transmission ratio from subsystem one to subsystem 777 

two is defined as: 778 

 𝑅𝑡 =
𝑃̅t

𝑃̅in
. (43) 779 

Based on Eqs. (40)-(43), the power transmission ratio 𝑅𝑡 can be calculated: 780 

 𝑅𝑡 =
𝑃̅t

𝑃̅in
=

𝜅22𝜁2Ω𝜇

(−Ω2𝜇+𝛾+𝜅)(−Ω2𝜇+𝛾+𝜅)2𝜁1Ω+2𝜅𝜁2Ω𝜇𝜅
, (44) 781 

where 𝜆0 is eliminated suggesting that the change in 𝜆0 will not affect the power transmission ratio 782 

from subsystem S1 to subsystem S2. 783 

 784 
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