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Abstract 9 

This study presents an inerter-based nonlinear vibration isolator with geometrical nonlinearity created 10 

by configuring an inerter in a diamond-shaped linkage mechanism. The isolation performance of the 11 

proposed nonlinear isolator subjected to force or base-motion excitations is investigated. Analytical and 12 

alternating frequency-time harmonic balance methods as well as numerical integration method are used 13 

to obtain the dynamic response. Beneficial performance of the nonlinear isolator is demonstrated by 14 

various performance indices including the force and displacement transmissibility as well as power flow 15 

variables. It is found that the use of the nonlinear inerter in the isolator can shift and bend the peaks of 16 

the transmissibility and time-averaged power flow to the low-frequency range, creating a larger 17 

frequency band of effective vibration isolation. It is also shown that the inertance-to-mass ratio and the 18 

initial distance of the nonlinear inerter can be effectively tailored to achieve reduced transmissibility 19 

and power transmission at interested frequencies. Anti-resonant peaks appear at specific frequency, 20 

creating near zero energy transmission and significantly reducing vibration transmission to a base 21 

structure on which the proposed isolator is mounted.  22 

Keywords: nonlinear inerter; geometric nonlinearity; nonlinear vibration isolator; vibration power 23 

flow; transmissibility 24 

1. Introduction 25 

The inerter is a recently proposed passive mechanical element, which has the property that the 26 

applied force across the two terminals is proportional to the relative acceleration between the terminals 27 

[1]. The ratio of the output force of the inerter to the relative acceleration is called inertance and is 28 

measured in kilograms. There have been a variety of practical designs and physical realisation of the 29 

inerter device. The structure of the originally proposed physical inerter composed of a rotating flywheel 30 

through a rack, pinion, and gears, which is also known as rack-pinion inerter [1]. The corresponding 31 

inertance is related to the mass and the radius of gyration of the flywheel as well as the radii of the rack 32 
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pinion, gear wheel and flywheel pinion. Inerters can also be constructed through a ball-screw 33 

mechanism consisting of a screw, nut and flywheel [2]. The relative motion of the terminals is 34 

transformed into the flywheel rotation in the device. In a recent study, inerters can also be built using 35 

fluid-based mechanisms, which is achieved incorporating fluid flowing in a hydraulic track [3]. With a 36 

proper design, the inertance (i.e., apparent mass) of an inerter can be much larger than its physical 37 

weight. The use of the inerter in an integrated structure can provide inertial coupling between 38 

subsystems. In this way, the dynamic property (e.g., the mass matrix) of vibration systems can be 39 

tailored such that the amount and the dominant of path vibration transmission in a system can be 40 

optimized for desirable performance.  41 

There have been a number of studies investigating the dynamics of inerter-based suppression 42 

systems and demonstrating performance benefits. Wang et al. [4] studied the vibration mitigation 43 

behaviour of a full-train model incorporating inerter-based mechatronic suspensions. It was found that 44 

the parallel inerter configuration improves the dynamic performance of the train and passage comfort. 45 

Lazar et al. [5] used the tuned inerter damper for cable vibration suppression. Li et al. [6] studied the 46 

potential benefits of the shimmy-suppression devices using inerter for aircraft landing gear. It was 47 

shown that the optimized inerter-based configurations have better suppression performance than the 48 

conventional spring-damper device. Zhang et al. [7] examined the dynamic behaviour of a multi-storey 49 

building structure with the use of inerter-spring-damper. Inerter-based linear vibration isolators with 50 

different configurations have also been studied and have shown better dynamic performance in 51 

vibration attenuation compared to the traditional isolators [8]. In recent studies, inerters have also been 52 

applied to the laminated composite plates [9] and metamaterial beams [10] for vibration suppression. 53 

Potential applications of the nonlinear inerter have also been studied for possible performance 54 

benefits. De Haro Moras et al. [11] used a pair of horizontal inerters to replace the springs used in 55 

conventional quasi-zero-stiffness (QZS) isolators, which shows the dynamical benefits compared with 56 

the traditional spring-damper and spring-damper-inerter isolators in vertical arrangement. Yang et al. 57 

[12] investigated the performance of an inerter-based vibration isolator and inerter-based nonlinear joint 58 

in vibration suppression. Wang et al. [13] studied the dynamic behaviour of a vibration isolator with 59 

inerter-based geometrical nonlinearity, and the corresponding isolation performance is compared to the 60 

parallel and series-connected configurations. Dong et al. [14] examined the suppression of vibration 61 

transmission in coupled systems by using an inerter-based joint exploiting geometric nonlinearity. Apart 62 

from the nonlinear isolators, the mechanical inerter can be used in nonlinear energy sink (NES) devices. 63 

Zhang et al. [15] employed a combined vibration control technique using a QZS system with an inerter-64 

based NES to achieve better nonlinear isolation and absorption effects. In a recent study, Wagg [16] 65 

conducted a comprehensive review for different types of mechanical and fluid-based inerters in linear 66 

and nonlinear applications.  67 

There have been a lot of recent research interest in developing high-performance nonlinear 68 

vibration isolators [17]. Kovacic et al. [18] studied the dynamic performance of a nonlinear vibration 69 
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isolator using a QZS mechanism to achieve low dynamic stiffness for low natural frequency while 70 

retaining high static supporting stiffness for low static deflection. It was found that the periodic doubling 71 

bifurcation and chaotic motion may occur under asymmetric excitation of the nonlinear isolator. 72 

Carrella et al. [19] investigated the displacement and force transmissibility characteristics of a nonlinear 73 

isolator incorporating high-static-low-dynamic stiffness. The previous research has also clearly 74 

demonstrated the potential benefits of exploiting inerters in nonlinear vibration isolators for enhanced 75 

performance [16]. There, new designs of inerter-based nonlinear vibration isolators are sought. It is 76 

noted that for performance evaluation of nonlinear vibration isolators, including inerter-based ones, the 77 

force and / or displacement transmissibility is often used as the performance indicator. The vibration 78 

energy power flow is widely accepted as an index to assess the effectiveness of vibration isolation. 79 

Vibration power flow analysis (PFA) combines force and velocity amplitudes as well as the phase 80 

difference into one quantity and provides a better indication of dynamic performance from the energy 81 

viewpoint [20]. For instance, Royston and Singh [21] studied the vibratory power transmission from a 82 

vibrating engine source to a flexible receiver through a nonlinear path. Xiong et al. [22] investigated 83 

the interactional dynamic behaviour with respect to the power flow between a vibrating equipment, a 84 

nonlinear isolator, and a flexible ship excited by waves. The nonlinearities were characterised by a 85 

general p-th power damping and q-th power stiffness. In recent years, PFA has been applied to study 86 

different nonlinear vibration systems. Yang et al. revealed the power flow behaviour of the Duffing 87 

oscillator [23] and a nonlinear isolator mounted on a nonlinear base [24]. Shi et al. [25] studied the 88 

vibration energy transmission and power flow performance in coupled systems with a bilinear stiffness 89 

interface. Dai et al. [26] proposed the use of linear and nonlinear constraints to reveal the energy 90 

transmission mechanisms in impact oscillators.  91 

This study presents a nonlinear inerter-based vibration isolator and investigates the dynamics for 92 

performance evaluation. The nonlinear inerter is created by a linear inerter embedded in a four-bar 93 

linkage mechanism. The application of the nonlinear isolator in a single-DOF (SDOF) system subjected 94 

to force or base motion excitations and in a two-DOF (2DOF) forced system with a flexible foundation 95 

is considered. Different performance indices, including the force and displacement transmissibility, and 96 

vibration power flow and energy-based variables are used to evaluate the vibration isolation 97 

performance. The first-order harmonic balance (HB) method and the HB with alternating frequency 98 

time (AFT) are used to obtain the steady-state responses and the performance indices. The analytical 99 

results are validated and compared with the numerical time-marching Runge-Kutta method. The rest of 100 

the paper is organised as follows. In Section 2, the physical and mathematical model of the nonlinear 101 

inerter and its use in single-DOF isolator and 2DOF systems with the isolator mounted on a flexible 102 

base are presented. In Section 3, the dynamic analysis of the isolation systems and performance indices 103 

for the evaluation of the proposed isolators are introduced. In Section 4, the performance of the proposed 104 

nonlinear D-inerter vibration isolator used in SDOF and 2DOF systems is examined. Conclusions are 105 

provided at the end of the paper. 106 
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2. Nonlinear inerter based on four-bar linkage mechanism 107 

2.1 The nonlinear inerter  108 

Figure 1(a) shows the proposed nonlinear inerter configuration based on a four-bar diamond-shaped 109 

linkage mechanism. The nonlinear inerter (hereafter referred to as the D-inerter) is created by 110 

embedding a linear horizontal inerter in a linkage created by four rigid massless bars AC, AD, BC and 111 

BD with equal length 𝑙0 and pin-joined at points A, B, C and D. An ideal linear inerter with inertance 112 

𝑏 is configured to the mechanism with its two terminals joined to points C and D. Angle 𝜃, measured 113 

from the horizontal direction CD, is used to denote the orientation of bar AC. The distances of AB and 114 

CD are denoted by 𝑦 and 𝑧CD, respectively. Point A is subjected to a vertical force 𝑓a while point B is 115 

pinned to the ground. As the system is symmetric, point A only moves along the vertical direction. Fig. 116 

1(b) shows an ideal massless inerter for which the applied force 𝑓b  is proportional to the relative 117 

accelerations of the two terminals [1], i.e., 𝑓b = 𝑏(𝑧̈D − 𝑧̈C) = 𝑏𝑧̈CD , where 𝑧̈D  and 𝑧̈C  are the 118 

acceleration while 𝑧̈CD denote the relative acceleration. 119 
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Fig. 1. (a) Nonlinear inerter model and (b) a linear inerter. 121 

Based on the geometry of the D-inerter, we have 122 

𝑦 = 2𝑙0 sin 𝜃,      𝑧CD = 2𝑙0 cos 𝜃 = √4𝑙0
2 − 𝑦2,                            (1) 123 

where 𝑦 and 𝑧CD represent the distances of AB and CD, respectively, and for practical applications we 124 

have 0 < 𝜃 < 𝜋/2. From Eq. (1), the expressions of the velocity and acceleration are obtained by taking 125 

the first and second derivatives:  126 

𝑦̇ = 2𝑙0𝜃̇ cos 𝜃 ,    𝑦̈ = 2𝑙0(𝜃̈ cos𝜃 − 𝜃̇
2 sin 𝜃),                                (2)     127 

respectively. The relative velocity and acceleration of terminals C and D are denoted by 𝑧̇CD and 𝑧̈CD, 128 

respectively, and are expressed as 129 

𝑧̇CD = −2𝑙0𝜃̇ sin 𝜃,     𝑧̈CD = −2𝑙0(𝜃̈ sin𝜃 + 𝜃̇
2 cos 𝜃).                      (3) 130 

According to the property of the inerter, the inertance force 𝑓b applied by the linkage to the inerter is 131 

along the direction of CD and expressed by  132 

𝑓𝑏 = 𝑏𝑧̈CD = −2𝑏𝑙0(𝜃̈ sin 𝜃 + 𝜃̇
2 cos 𝜃).                                         (4) 133 
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Based on the force equilibrium condition of the linkage structure, the relationship between applied force 134 

at point A and the inertance force applied to the horizontal inerter is 135 

𝑓a(𝜃) = −𝑓b
sin𝜃

cos𝜃
= 2𝑏𝑙0(𝜃̈ sin 𝜃 + 𝜃̇

2 cos 𝜃)
sin𝜃

cos𝜃
.                                     (5) 136 

By using Eq. (2) to replace 𝜃 with 𝑦, we have a relationship between the applied force to terminal 137 

A of the nonlinear inerter to the corresponding response at the terminal 138 

𝑓a(𝑦, 𝑦̇, 𝑦̈ ) = 𝑏 (
𝑦̈𝑦2

4𝑙0
2−𝑦2

+
4𝑙0
2𝑦𝑦̇2

(4𝑙0
2−𝑦2)

2) = 2𝑏𝑙0 (
𝑌̈𝑌2

1−𝑌2
+

𝑌𝑌̇2

(1−𝑌2)2
) = 𝑓a1(𝑌, 𝑌̈) + 𝑓a2(𝑌, 𝑌̇),      (6) 139 

where 𝑌 = 𝑦/(2𝑙0) denotes the non-dimensional distance between the two terminals of the nonlinear 140 

inerter, 𝑓a1(𝑌, 𝑌̈) = 2𝑏𝑙0𝑌̈𝑌
2/(1 − 𝑌2) and 𝑓a2(𝑌, 𝑌̇ ) = 2𝑏𝑙0𝑌𝑌̇

2/(1 − 𝑌2)2. Eq. (6) shows that the 141 

nonlinear inertance force depends on the distance 𝑌, relative velocity 𝑌̇ and relative acceleration 𝑌̈ 142 

characteristics between the terminals. Note that for the distance 𝑦 between the two terminals, we have 143 

𝑦 > 0 all the time. Fig. 2(a) shows the variations of 𝑓a1(𝑌, 𝑌̈ ) against 𝑌 and 𝑌̈. It shows that when Y 144 

is large, 𝑓a1(𝑌, 𝑌̈) has an approximately linear relationship with 𝑌̈. Fig. 2(b) shows the changes of 145 

𝑓a2(𝑌, 𝑌̇ ) with respect to the distance 𝑌 and velocity 𝑌̇ of the terminals. It shows that the inertance 146 

force 𝑓a2(𝑌, 𝑌̇ ) of the nonlinear inerter is sensitive to the relative velocity of the two terminals when 147 

the initial distance 𝑌 is large.  148 

 149 

Fig. 2. Nonlinear inertance force of the nonlinear D-inerter (𝑏 = 1 kg, 𝑙0 = 0.1 m). 150 

2.2 Nonlinear D-inerter vibration isolator models  151 

Figure 3(a) and (b) shows a single-DOF isolator system with the proposed D-inerter for force 152 

excitation and base-motion excitation, respectively. The system model comprises a mass subjected to a 153 

harmonic force excitation with amplitude 𝑓0  or a base-motion excitation with amplitude 𝑞0  and 154 

frequency 𝜔. To suppress the vibration transmission to the base, a nonlinear vibration isolator is inserted 155 

between the mass and the base. The isolator consists of a nonlinear D-inerter device, configured in 156 

parallel with a linear spring with stiffness coefficient 𝑘1 and a viscous damper with damping coefficient 157 

𝑐1. Fig. 3(c) presents the application of the D-inerter to vibration isolation of a force excited machine 158 

mounting on a flexible base. It shows that the model comprises a single-DOF system representing the 159 

dominant mode of vibration of a flexible base structure on which a machine with mass 𝑚1 is mounted 160 
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via the proposed nonlinear D-inerter vibration isolator. The single-DOF base structure has mass 𝑚2, a 161 

spring with stiffness coefficient 𝑘2 and a damper with damping coefficient 𝑐2. In Fig. 3, the static 162 

equilibrium position of the masses, where the spring is at a length of 𝑦0 is used as the reference with 163 

𝑥1 = 𝑥2 = 0. Correspondingly, the initial angle parameter of the linkage is denoted by 𝜃0 at the static 164 

equilibrium position.  165 
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 166 

Fig. 3. Application scenarios of nonlinear inerter-based vibration isolators. (a) SDOF force excitation 167 

(configuration C1), (b) SDOF base-motion excitation (configuration C2), and (c) nonlinear isolator mounted on a 168 

flexible base (configuration C3). 169 

2.2.1. Force excited SDOF system 170 

The governing equation of motion of the mass shown in Fig. 3(a) is 171 

𝑚1𝑥̈1 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + 𝑓nl(𝑥1, 𝑥̇1, 𝑥̈1) = 𝑓0e
i𝜔𝑡,                                             (7) 172 

where the expression of the nonlinear inertial force is  173 

𝑓nl(𝑥1, 𝑥̇1, 𝑥̈1) = 𝑓a(𝑦, 𝑦̇, 𝑦̈) =
𝑏(𝑦0+𝑥1)

2𝑥̈1

4𝑙0
2−(𝑦0+𝑥1)

2 +
4𝑏𝑙0

2(𝑦0+𝑥1)𝑥̇1
2

(4𝑙0
2−(𝑦0+𝑥1)

2)
2 ,                              (8) 174 

with 𝑦 = 𝑦0 + 𝑥1. For clearer presentation, the following parameters are introduced 175 

𝜔1 = √
𝑘1

𝑚1
,      𝜁1 =

𝑐1

2𝑚1𝜔1
,     𝜆 =

𝑏 

𝑚1
,    𝑋1 =

𝑥1

2𝑙0 
, 176 

𝐷0 =
𝑦0

2𝑙0 
= sin𝜃0,    𝐹0 =

𝑓0

2𝑘1𝑙0
,    𝛺 =

𝜔

𝜔1
,    𝜏 = 𝜔1𝑡,                                (9) 177 

where 𝜔1  is the undamped natural frequency of the system without the nonlinear inerter, 𝜁1  is the 178 

damping ratio, 𝜆  is the inertance-to-mass ratio, 𝐷0  and 𝜃0  represent the original distance of the 179 

terminals for the D-inerter and original orientation of the bars for the nonlinear inerter when the mass 180 

is at the static equilibrium position, respectively, 𝐹0  and 𝛺  are the dimensionless amplitude and 181 

excitation frequency, respectively, and 𝜏 is the dimensionless time.  182 
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Using these variables and parameters, Eq. (7) is transformed into a dimensionless form as 183 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝜆 (
𝑋1
′′(𝑋1+𝐷0)

2

1−(𝑋1+𝐷0)
2 +

𝑋1
′2(𝑋1+𝐷0)

(1−(𝑋1+𝐷0)
2)2
) = 𝐹0e

i𝛺𝜏.                              (10) 184 

2.2.2. Base-motion excited SDOF system 185 

For the base-excitation case shown in Fig. 3(b), the equation of motion of the mass is written as 186 

𝑚1𝑥̈1 + 𝑐1(𝑥̇1 − 𝑞̇) + 𝑘1(𝑥1 − 𝑞) + 𝑏 (
𝑦̈𝑦2

4𝑙0
2−𝑦2

+
4𝑙0
2𝑦𝑦̇2

(4𝑙0
2−𝑦2)

2) = 0,                               (11) 187 

where 𝑞(𝑡) = 𝑞0e
i𝜔𝑡 and 𝑦 = 𝑦0 + 𝑥1 − 𝑞, Eq. (6) has been used for the force from the nonlinear D-188 

inerter. By introducing 𝑧 = 𝑥1 − 𝑞, Eq. (11) becomes 189 

𝑚1𝑧̈ + 𝑐1𝑧̇ + 𝑘1𝑧 + 𝑏 (
𝑦̈𝑦2

4𝑙0
2−𝑦2

+
4𝑙0
2𝑦𝑦̇2

(4𝑙0
2−𝑦2)

2) = −𝑚1𝑞̈ = 𝑚1𝑞0𝜔
2ei𝜔𝑡 .                      (12) 190 

Here 𝑍(𝑡) = 𝑧(𝑡)/(2𝑙0) and  𝑄0 = 𝑞0/(2𝑙0) are introduced as the non-dimensional amplitude of 191 

the relative displacement between the two terminals of the D-inerter and that of the base motion 192 

excitation, respectively. Using these two variables as well as the parameters and variables defined in 193 

Eq. (9), we have a non-dimensional governing equation of the mass for the base-excitation case 194 

𝑍′′ + 2𝜁1𝑍
′ + 𝑍 + 𝜆 (

𝑍′′(𝑍+𝐷0)
2

1−(𝑍+𝐷0)
2 +

𝑍′2(𝑍+𝐷0)

(1−(𝑍+𝐷0)
2)2
) = 𝑄0𝛺

2ei𝛺𝜏 ,                       (13) 195 

2.2.3. 2DOF system with flexible foundation 196 

The governing equations of the 2DOF system in Fig. 3(c) can be expressed as 197 

𝑚1𝑥̈1 + 𝑐1(𝑥̇1 − 𝑥̇2) + 𝑘1(𝑥1 − 𝑥2) + 𝑓nl(𝑦, 𝑦̇, 𝑦̈) = 𝑓0e
i𝜔𝑡,                         (14a) 198 

𝑚2𝑥̈2 − 𝑐1(𝑥̇1 − 𝑥̇2) − 𝑘1(𝑥1 − 𝑥2) + 𝑘2𝑥2 + 𝑐2𝑥̇2 = 0,                              (14b) 199 

where 𝑓nl(𝑦, 𝑦̇, 𝑦̈) is the expression of the nonlinear force according to Eq. (6), 𝑦 = 𝑦0 + 𝑧 and 𝑧 =200 

𝑥1 − 𝑥2 . In order to facilitate later derivations, the following non-dimensional parameters are 201 

introduced  202 

   𝜔2 = √
𝑘2

𝑚2
 ,    𝜇 =

𝑚2

𝑚1
,     𝛾 =

𝜔2

𝜔1
,    203 

 𝜁2 =
𝑐2

2𝑚2𝜔2
,     𝜂 =

𝑘2

𝑘1
 ,     𝑋2 =

𝑥2

2𝑙0 
,   𝑍 = 𝑋1 − 𝑋2,                         (15) 204 

where 𝜔2 represents the undamped natural frequency of base structure, 𝜇 is the mass ratio, 𝛾 is the 205 

frequency ratio between the natural frequencies, 𝜁2 is the damping ratio, 𝜂 is the stiffness ratio, 𝑋1, 𝑋2, 206 

and 𝑍  are the dimensionless displacements of two masses and their non-dimensional relative 207 

displacement, respectively. Note that other dimensionless parameters in 2DOF system have been 208 

defined in Eq. (9). By using these parameters and variables, Eq. (14) can be transferred into its 209 

dimensionless form as 210 

𝑋1
′′ + 2𝜁1(𝑋1

′ − 𝑋2
′) + 𝑋1 − 𝑋2 + 𝜆 (

𝑍′′(𝑍+𝐷0)
2

1−(𝑍+𝐷0)
2 +

𝑍′2(𝑍+𝐷0)

(1−(𝑍+𝐷0)
2)2
) = 𝐹0e

i𝛺𝜏,                             211 

𝜇𝑋2
′′ − 2𝜁1𝑋1

′ + (2𝜇𝛾𝜁
2
+ 2𝜁

1
)𝑋2

′ − 𝑋1 + (𝜂 + 1)𝑋2 = 0,                         (16) 212 
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Note that the dimensionless governing equations of the SDOF isolation system with forced 213 

excitation, base-motion excitation and the 2DOF system are presented by Eqs. (10), (13) and (16), 214 

respectively. These equations can be further written into a set of first-order ordinary differential 215 

equations and can be solved by using a numerical time-marching method such as the fourth-order 216 

Runge-Kutta (RK) scheme with variable time steps to obtain the steady-state response of masses. 217 

3. Dynamic analysis and performance evaluation 218 

In this section, the dynamic analysis of the D-inerter isolators are presented. A general analysis 219 

procedure using the alternating frequency-time with harmonic balance (HB-AFT) method is introduced 220 

to obtain the steady-state response. Analytical derivations of the frequency-response relationship of the 221 

SDOF vibration isolator models using the first-order HB approximations are also presented. Various 222 

performance indices such as force transmissibility, displacement transmissibility, time-averaged power 223 

flow and energy transmission variables of vibration isolators are defined and formulated.   224 

3.1 Harmonic balance with alternating frequency-time 225 

For a general Q-DOF dynamical system, the governing equation can be written in a matrix form as 226 

𝐌𝐗′′ + 𝐂𝐗′ + 𝐊𝐗′ + 𝐅𝐧𝐥(𝐗, 𝐗
′, 𝜏) = 𝐅𝐞(𝜏),                                      (17) 227 

where 𝐗, 𝐗′  and 𝐗′′  are the displacement, velocity and acceleration response vectors, respectively;  228 

𝐅𝐧𝐥(𝐗, 𝐗
′, 𝜏)  is the nonlinear force vector due to the D-inerter; 𝐅𝐞(τ)  is the external force vector, 229 

𝐅𝐞(𝜏) = {… , 𝐹0e
i𝛺𝜏, … }

T
 for the force excitation applied to j-th DOF (1 ≤ 𝑗 ≤ 𝑄) of the system and 230 

𝐅𝐞(𝜏) = {… , 𝑄0𝛺
2ei𝛺𝜏, … }

T
 for the base-motion excitation; 𝐌, 𝐂, and 𝐊 are the mass, stiffness and 231 

damping matrices, respectively. For the single-DOF vibration isolator models shown in Fig. 3(a) and 232 

(b), we have 𝐌 = 1, 𝐂 = 2ζ1 and 𝐊 = 1. As for the case of the nonlinear isolator mounted on a flexible 233 

base shown in Fig. 3(c), relevant matrices become 234 

  𝐌 = [
1 0
0 𝜇

] , 𝐂 = [
2𝜁

1
−2𝜁

1

−2𝜁
1

2𝜇𝛾𝜁
2
+ 2𝜁

1

] , 𝐊 = [
1 −1
−1 𝜂 + 1

],                              (18) 235 

The steady-state displacement solutions of Eq. (17) can be calculated by the harmonic balance 236 

method with alternating frequency-time (HB-AFT) scheme [27]. This technique is mainly based on 237 

numerical determination of the Fourier coefficients for the nonlinear force terms in the governing 238 

equation and it has been used to study both smooth and non-smooth nonlinear dynamical systems. When 239 

using the HB-AFT scheme, the steady-state dimensionless displacement responses 𝐗 and the nonlinear 240 

force 𝐅𝐧𝐥(𝐗, 𝐗
′, 𝜏) can be approximated by an N-th order truncated Fourier series 241 

𝐗 = {∑ 𝑅̃1,𝑛
𝑁
𝑛=0 ei𝑛𝛺𝜏, ∑ 𝑅̃2,𝑛

𝑁
𝑛=0 ei𝑛𝛺𝜏, … , ∑ 𝑅̃𝑄,𝑛

𝑁
𝑛=0 ei𝑛𝛺𝜏 }

T
,                               (19)     242 

𝐅𝐧𝐥(𝐗, 𝐗
′, 𝜏) = {∑ 𝐻̃1,𝑛

𝑁
𝑛=0 ei𝑛𝛺𝜏, ∑ 𝐻̃2,𝑛

𝑁
𝑛=0 ei𝑛𝛺𝜏, … , ∑ 𝐻̃𝑄,𝑛

𝑁
𝑛=0 ei𝑛𝛺𝜏 }

T
,              (20) 243 

where 𝑅̃1,𝑛, 𝑅̃2,𝑛 and 𝑅̃𝑄,𝑛 are the complex Fourier coefficients of the n-th order approximations of the 244 

first, second and Q-th subsystems, respectively, 𝐻̃𝑄,𝑛  is the complex Fourier coefficient of Q-th 245 
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subsystem for the nonlinear force at the n-th order. The velocity and acceleration expressions can be 246 

further obtained using the first the second derivatives of Eq. (19). By inserting all these related terms 247 

into Eq. (17) and balancing the corresponding harmonic terms of n-th (0 ≤ 𝑛 ≤ 𝑁) order, we obtain 248 

(−(𝑛𝛺)2𝐌+ i𝑛𝛺 𝐂 + 𝐊)

{
 
 

 
 𝑅̃1,𝑛

𝑅̃2,𝑛
⋮

𝑅̃𝑄,𝑛}
 
 

 
 

= 𝐒𝒏 −

{
 
 

 
 𝐻̃1,𝑛

𝐻̃2,𝑛
⋮

𝐻̃𝑄,𝑛}
 
 

 
 

,                                        (21) 249 

where 𝐒𝒏 = {… , 𝐹0, … }
T for the for the force excitation and 𝐒𝒏 = {… ,𝑄0𝛺

2, … }T for the base motion 250 

excitation. For a Q-DOF system with N-th order HB approximations, there are in total number of 251 

𝑄(2𝑁 + 1) real nonlinear algebraic equations, which can be solved by the Newton-Raphson based 252 

numerical continuation technique [28]. 253 

3.2 Analytical investigation of the responses 254 

3.2.1 Free vibration behaviour of SDOF systems 255 

Here the free vibration behaviour of the SDOF system is firstly considered by setting the excitation 256 

amplitude zero, i.e.,  𝐹0 = 0 in Eq. (10) and 𝑄0 = 0 in Eq. (13), which leads to  257 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝜆 (
𝑋1
′′(𝑋1+𝐷0)

2

1−(𝑋1+𝐷0)
2 +

𝑋1
′2(𝑋1+𝐷0)

(1−(𝑋1+𝐷0)
2)2
) = 0,                            (22) 258 

𝑍′′ + 2𝜁1𝑍
′ + 𝑍 + 𝜆 (

𝑍′′(𝑍+𝐷0)
2

1−(𝑍+𝐷0)
2 +

𝑍′2(𝑍+𝐷0)

(1−(𝑍+𝐷0)
2)2
) = 0.                             (23) 259 

Note that these two equations are mathematically equivalent by replacing 𝑋1  with 𝑍  in Eq. (22). 260 

Therefore, only free vibration behaviour of the mass for the system governed by Eq. (22) is analysed 261 

here, which can then be easily extended to the system described by Eq. (23). It is also noted that for 262 

practical designs, we need 0 < 𝑋1 + 𝐷0 < 1. Therefore, the range of the non-dimensional displacement 263 

𝑋1 of the mass is  264 

−𝐷0 < 𝑋1 < 1 − 𝐷0,                                                            (24) 265 

which provides  266 

𝑋low = −𝐷0 = −sin 𝜃0 ，𝑋up = 1 − 𝐷0 = 1 − sin 𝜃0，                 (25) 267 

denoting the lower and the upper limits for the dimensionless displacement 𝑋1. For a periodic response 268 

around the static equilibrium point, the maximum value of the allowed amplitude: 269 

|𝑋1|max = min (𝐷0, 1 − 𝐷0).                                            (26) 270 

By using a second-order Taylor’s expansion for the nonlinear term in Eq. (22), we have 271 

𝐺(𝑋) =
(𝑋1+𝐷0)

2

1−(𝑋1+𝐷0)
2 ≈

𝐷0
2

1−𝐷0
2 +

2𝐷0

(1−𝐷0
2)
2 𝑋1 +

1+3𝐷0
2

(1−𝐷0
2)
3 𝑋1

2 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2,          (27) 272 

𝐻(𝑋) =
(𝑋1+𝐷0)

(1−(𝑋1+𝐷0)
2)2
≈

𝐷0

(1−𝐷0
2)
2 +

1+3𝐷0
2

(1−𝐷0
2)
3𝑋1 +

6𝐷0(1+𝐷0
2)

(1−𝐷0
2)
4 𝑋1

2 = 𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋1
2,       (28) 273 

where the coefficients are expressed by 274 

𝛽0 =
𝐷0
2

1−𝐷0
2,         𝛽1 =

2𝐷0

(1−𝐷0
2)
2 ,     𝛽2 =

1+3𝐷0
2

(1−𝐷0
2)
3,                                 (29) 275 
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 𝛾0 =
𝐷0

(1−𝐷0
2)
2,       𝛾1 =

1+3𝐷0
2

(1−𝐷0
2)
3 ,      𝛾2 =

6𝐷0(1+𝐷0
2)

(1−𝐷0
2)
4 ,                           (30) 276 

depending on the original distance 𝐷0 between the two terminals of the nonlinear D-inerter.  277 

The total dimensionless nonlinear force by the nonlinear inerter is then approximated by 278 

𝐹nl = 𝜆 (
𝑋1
′′(𝑋1+𝐷0)

2

1−(𝑋1+𝐷0)
2 +

𝑋1
′2(𝑋1+𝐷0)

(1−(𝑋1+𝐷0)
2)2
) ≈ 𝜆 (𝑋1

′′(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2) + 𝑋1

′2(𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋1
2)).    279 

(31) 280 

By inserting the approximate expression in Eq. (31) into Eq. (22), we have  281 

𝑋1
′′ + 2𝜁1𝑋1

′ + 𝑋1 + 𝜆 (𝑋1
′′(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1

2) + 𝑋1
′2(𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋1

2)) = 0.          (32) 282 

From Eq. (32), the linearized natural frequency of the system is 283 

𝛺nN = √
1

1+𝜆𝛽0
.                                                                 (33)  284 

This equation shows that the linearized natural frequency of the system reduces with the increase of the 285 

inertance-to-mass ratio 𝜆. Note that for the corresponding linear inerter-based vibration isolator, the 286 

natural frequency is expressed as  287 

𝛺nL = √
1

1+𝜆
.                                                                   (34) 288 

A comparison of Eqs. (33) and (34) shows that the use of the nonlinear linkage mechanism can lead to 289 

a lower linearized natural frequency of the isolator when 𝛽0 > 1. The requirement is equivalent to: 290 

𝐷0 >
√2

2
,    i.e.,  𝜃0 >

𝜋

4
.                                                     (35)    291 

3.2.2 Analytical frequency response relationship 292 

Here, the analytical results based on the first-order HB method are given. The HB-AFT method and 293 

numerical RK scheme can yield accurate results but with relatively high computational cost.  Compared 294 

with these two methods, the analytical approximation can provide steady-state solutions with relatively 295 

low cost. In addition, the analytical solutions show better insights into nonlinear dynamics and vibration 296 

transmission mechanisms with each system parameter. 297 

For the SDOF oscillator with force excitation (configuration C1), the steady-state response, the 298 

displacement, velocity, and acceleration of the mass can be approximated as  299 

𝑋1 = 𝑅1 cos(𝛺𝜏 − 𝜙),    𝑋1
′ = −𝛺𝑅1 sin(𝛺𝜏 − 𝜙),   𝑋1

′′ = −𝛺2𝑅1 cos(𝛺𝜏 − 𝜙),     (36) 300 

respectively. By inserting Eqs. (27), (28) and (36) into Eq. (10) and retaining only the terms at the 301 

fundamental oscillation frequency 𝛺, we have 302 

{1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑅1

2(3𝛽2 − 𝛾1))𝛺
2} 𝑅1 cos(𝛺𝜏 − 𝜙) − 2𝜁1𝛺𝑅1 sin(𝛺𝜏 − 𝜙) = 𝐹0 cos𝛺𝜏.   (37) 303 

By balancing the coefficients of the harmonic terms with cos(𝛺𝜏 − 𝜙) and sin(𝛺𝜏 − 𝜙) for Eq. 304 

(37), we have 305 

{1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑅1

2(3𝛽2 − 𝛾1))𝛺
2} 𝑅1 = 𝐹0 cos𝜙 ,                         (38) 306 
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2𝜁1𝛺𝑅1 = 𝐹0 sin𝜙 .                                                     (39) 307 

By cancelling out the trigonometric terms in Eqs. (38) and (39), it follows that 308 

(1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑅1

2(3𝛽2 − 𝛾1))𝛺
2)
2
𝑅1
2 + 4𝜁1

2𝛺2𝑅1
2 = 𝐹0

2.                         (40) 309 

Eq. (40) provides a nonlinear algebraic equation for the frequency-response relationship of the mass. It 310 

can be solved by a bisection method to obtain 𝑅1. Subsequently, the phase angle 𝜙 can be determined 311 

allowing the steady-state response of the mass to be obtained.  312 

The backbone curves are widely used to characterise the inherent dynamic properties of the 313 

nonlinear systems. It corresponds to the frequency-response characteristic of unforced and undamped 314 

system, i.e., when 𝐹0 = 𝜁1 = 0, Eq. (40) becomes 315 

1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑅1

2(3𝛽2 − 𝛾1))𝛺
2 = 0.                                               (41) 316 

For the configuration C2, the analytical first-order HB expressions of the steady-state relative 317 

displacement, velocity, and acceleration are 318 

𝑍 = 𝑆1 cos(Ω𝜏 − 𝜃),    𝑍
′ = −𝛺𝑆1 sin(Ω𝜏 − 𝜃),   𝑍

′′ = −𝛺2𝑆1 cos(Ω𝜏 − 𝜃),       (42) 319 

respectively, where 𝑍 = 𝑋1 − 𝑄0 cos𝛺𝜏 is the relative displacement between the mass and the base 320 

motion as defined in Eq. (13),  𝑆1 is the amplitude and 𝜃 denotes the phase difference between the 321 

response and the excitation. Note that the nonlinear force term in Eq. (13) that arises from the nonlinear 322 

D-inerter can be approximated by replacing 𝑋 with 𝑍 in Eqs. (27) and (28). Following the procedure as 323 

shown by Eqs. (36), (37), (38), (39) and (40), the frequency-response relations of the system subjected 324 

to base-motion excitation can be found. It is found that the resultant mathematical expressions of the 325 

frequency response relations for the force and base motion excitation cases are similar. For clarity, the 326 

detailed derivation process is provided in the Appendix. 327 

3.3 Performance indices 328 

To assess the isolation performance of the proposed D-inerter in SDOF and 2DOF systems, different 329 

evaluation indices are used, including force transmissibility, displacement transmissibility, time-330 

averaged power flow variables and kinetic energy of the mass.  331 

3.3.1 Force transmissibility 332 

The force transmissibility is widely used to evaluate the performance of nonlinear vibration isolators. 333 

The non-dimensional transmitted force from the machine mass through the nonlinear isolator to the 334 

ground (i.e., configuration C1) or to the flexible base structure (i.e., configuration C3) is expressed by 335 

𝐹T = 2𝜁1𝑍
′ + 𝑍 + 𝜆 (

𝑍′′(𝑍+𝐷0)
2

1−(𝑍+𝐷0)
2 +

𝑍′2(𝑍+𝐷0)

(1−(𝑍+𝐷0)
2)2
) = 𝐹0e

i𝛺𝜏 − 𝑋1
′′,                          (43) 336 

where 𝑍 = 𝑋1 for C1 and 𝑍 = 𝑋1 − 𝑋2 for configuration C2. Therefore, the force transmissibility from 337 

the machine to the base or the ground can be expressed as 338 

𝑇𝑅 =
|𝐹T|max 

𝐹0
.                                                                    (44) 339 



12 

 

where |𝐹T|max is the maximum value of the transmitted force in the steady-state.   340 

For the configuration C1, the analytical expressions of the transmitted force and the force 341 

transmissibility using the first-order approximations can be written as 342 

𝐹T ≈ 𝐹0 cos𝛺𝜏 + 𝛺
2𝑅1 cos(𝛺𝜏 − 𝜙),                                            (45) 343 

𝑇𝑅 ≈
√(𝐹0+𝛺

2𝑅1 cos𝜙)
2+(𝛺2𝑅1 sin𝜙)

2

𝐹0
,                                           (46) 344 

where Eq. (36) is used for acceleration approximation. Note that to achieve effective isolation of force 345 

transmission, we need 𝑇𝑅 < 1, i.e.,  346 

𝛺4𝑅1
2 + 2𝛺2𝑅1

2 {1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑅1

2(3𝛽2 − 𝛾1))𝛺
2} < 0,                      (47) 347 

where Eq. (38) is used for derivation. Therefore, the effective isolation of force transmission requires 348 

𝛺iso = √
2

1+2𝜆(𝛽0+
1

4
𝑅1
2(3𝛽2−𝛾1))

< √2.                                             (48) 349 

It is noted that the expression 2𝜆 (𝛽0 +
1

4
𝑅1
2(3𝛽2 − 𝛾1)) is positive according to Eqs. (29) and (30). 350 

For a conventional linear spring-damper isolator, the isolation of force transmission is only effective 351 

only when 𝛺  is larger than √2 . Eq. (48) shows that the use of the D-inerter in the isolator can 352 

successfully enlarge the frequency of effective isolation. The response amplitude 𝑅1 in Eq. (48) takes 353 

the critical value with the corresponding force transmissibility TR of one.     354 

Note that at high excitation frequencies, using Eqs. (38), (40) and (46), we have 355 

𝑇𝑅∞ = lim
𝛺→∞

𝑇𝑅 =
𝜆𝛽0

1+𝜆𝛽0
=

1

1/𝐷0
2 −1

𝜆
+1
< 1.                                              (49)              356 

Eq. (49) shows that in the high-frequency range, the force transmissibility 𝑇𝑅 has an asymptotic value, 357 

i.e., 𝜆𝛽0/(1 + 𝜆𝛽0). This asymptotic value is smaller than one, indicating that the use of the nonlinear 358 

isolator leads to a lower amplitude of the transmitted force, compared to that of the external excitation. 359 

It also shows that the asymptotic value in the high-frequency range of the force transmissibility is 360 

proportional to the initial distance 𝐷0 and the inertance-to-mass ratio 𝜆. 361 

3.3.2 Displacement transmissibility 362 

The displacement transmissibility is used here to evaluate the performance of the configuration C2. 363 

It is defined as the ratio between the displacement amplitude of the mass and that of the base: 364 

𝑇𝑅d =
|𝑋1| 

𝑄0
≈

𝑅1

𝑄0
.                                                              (50) 365 

where the expression of 𝑅1 is given by Eq. (68) in Appendix. For the effective isolation, we need 𝑇𝑅d <366 

1, that is 367 

√(𝑆1 cos 𝜃 + 𝑄0)
2 + 𝑆1

2 sin2 𝜃 < 𝑄0,                                           (51) 368 

where Eqs. (61) and (68) in Appendix are used. Therefore, the isolation of base motion is achieved 369 

when the excitation frequency satisfies  370 

𝛺iso = √
2

1+2𝜆𝛽0+
1

2
𝜆𝑆1

2(3𝛽2−𝛾1)
< √2   ,                                             (52) 371 
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where 𝛺iso is used to denote the lower limit of the excitation frequency for effective isolation of base 372 

motions. It shows that the use of the D-inerter in the isolator can lead to a wider effective isolation 373 

frequency band compared to the conventional linear spring-damper isolator.  374 

As the relative displacement amplitude 𝑆1  has a limiting value at high frequencies, so will the 375 

displacement amplitude of the mass. When 𝛺 tends to infinity, the asymptotic value of the displacement 376 

transmissibility is 377 

         𝑇𝑅d,∞ = lim
𝛺→∞

(
𝑅1

𝑄0
) = lim

𝛺→∞
√
𝑆1
2

𝑄0
2 + 1 +

2𝑆1
2

𝑄0
2𝛺2

{1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑆1

2(3𝛽2 − 𝛾1))𝛺
2} =

|𝑄0−𝑆1,∞|

𝑄0
.       (53) 378 

3.3.3 Vibration power flow and energy 379 

Vibration power flow and energy transmission variables are important performance indices to assess 380 

the isolation performance. According to the universal law of energy conservation, over one cycle of a 381 

periodic response in the steady state, the mechanical energy of the system remains unchanged and all 382 

the input energy by the excitation must be dissipated by the viscous damping within the system. Thus, 383 

the time-averaged input power 𝑃̅in from the excitation equals the time-averaged dissipated power 𝑃̅d 384 

by the viscous damper: 385 

𝑃̅in = 𝑃̅d =
1

𝜏𝑠
∫ 𝑃d1 + 𝑃d2
𝜏0+𝜏𝑠
𝜏0

d𝜏,                                          (54) 386 

where 𝜏0 is the starting time for averaging and 𝜏𝑠 is averaging time span, which is set as one excitation 387 

cycle, i.e., 𝜏𝑠 = 2𝜋/𝛺; 𝑃d1 and 𝑃d2 are the instantaneous dissipated power by the viscous damper 𝑐1 388 

and 𝑐2, respectively. For configuration C1, 𝑃d1 = 2𝜁1𝑋1
′2 and 𝑃d2 = 0; For configurations C2, 𝑃d1 =389 

2𝜁1(𝑋1
′ − 𝑄′)2 and 𝑃d2 = 0; For configuration C3, 𝑃d1 = 2𝜁1(𝑋1

′ − 𝑋2
′)2 and 𝑃d2 = 2𝜇𝛾𝜁

2
𝑋2
′ 2. 390 

The analytical expression of the time-averaged input power for configuration C1 is 391 

𝑃̅in ≈ 𝜁1𝛺
2𝑅1 

2 .                                                          (55) 392 

where Eq. (36) is used for the approximation. As for the configuration C2, based on Eq. (54), the 393 

analytical results of 𝑃̅in can be easily obtained by replacing 𝑅1 with 𝑆1 in Eq. (55), and the value of 𝑆1 394 

is calculated by Eq. (63) in Appendix. 395 

The non-dimensional maximum kinetic energy of the mass excited at a specific excitation frequency 396 

is expressed by 397 

𝐾max =
1

2
(|𝑋1

′ |max)
2.                                                       (56) 398 

where |𝑋1
′ |max is the maximum magnitude of the velocity of the machine mass 𝑚1 in the steady state. 399 

The analytical expression of the maximum kinetic energy of configurations C1 and C2 is  400 

 𝐾max ≈
1

2
𝛺2𝑅1

2.                                                          (57) 401 

where the first-order approximation of the velocity shown by Eq. (36) is used. Eqs. (55) and (57) show 402 

that at a fixed value of the damping ratio 𝜁1, the time-averaged input power is proportional to the 403 

maximum kinetic energy of the mass for configuration C1. 404 
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For configuration C3, the power transmitted from mass 𝑚1 to the flexible base is also an important 405 

index to evaluate the vibration transmission behaviour. According to the law of energy conservation, 406 

the time-averaged transmitted power to the base is entirely dissipated by the viscous damping 𝑐2 at the 407 

bottom. Therefore, we have 408 

𝑃̅t = 𝑃̅d2 =
1

𝜏𝑠
∫ 2𝜇𝛾𝜁

2
𝑋2
′ 2𝜏0+𝜏𝑠

𝜏0
d𝜏.                                              (58) 409 

In addition, the power transmission ratio 𝑅T  is defined as the ratio between the time-averaged 410 

transmitted power 𝑃̅t and the time-averaged input power 𝑃̅in: 411 

𝑅T =
𝑃̅t

𝑃̅in
.                                                                  (59) 412 

A smaller value of 𝑅T is beneficial to achieve effective vibration isolation. 413 

4. Results and Discussion 414 

4.1. Free vibration and result validations 415 

Validations of results obtained by the HB-AFT method, the analytical HB and numerical RK method 416 

are firstly considered and presented herein. Fig. 4 shows the influence of the inertance-to-mass ratio 𝜆 417 

and the initial orientation of the bar 𝜃0  on the linearized natural frequency 𝛺nN  of the nonlinear 418 

vibration isolator. The lines represent the analytical linearized natural frequency obtained by Eq. (33). 419 

The symbols are numerical results of Eq. (22) using RK method for free vibration, where the initial 420 

displacement is set as 0.001 and the initial velocity is zero. In Fig. 4(a), when 𝜃0 = 45
°, we have 𝛽0 =421 

1 and 𝛺nN = 1/√1 + 𝜆 = 𝛺nL, i.e., the corresponding curve of the linearized natural frequency will 422 

coincide with the curve for a linear inerter-based vibration isolator. The figure shows that for a given 423 

value of 𝜃0, the increase in the inertance of D-inerter isolator leads to reductions in the linearized natural 424 

frequency, which can assist vibration isolation. Fig. 4(b) shows that at a given value of 𝜆, a larger value 425 

of the initial angle 𝜃0 can yield a smaller value of 𝛺nL, which can also assist vibration isolation.  426 

Figure 5 shows the steady-state response amplitude of the SDOF isolators using the different 427 

methods. The solid lines represent the fifth-order HB-AFT results and dashed lines are the first-order 428 

HB approximations. The symbols are the numerical integration results using the time marching method. 429 

It is found that the results obtained by each method are almost the same. The resonant peak is slightly 430 

bent to the low-frequency range due to the geometric nonlinearity in the D-inerter isolator. It illustrates 431 

that for both force excitation and base-motion excitation, the first-order analytical HB approximations 432 

are sufficient to predict the dynamic response. To have a balance between the computational efficiency 433 

and accuracy, the first-order HB approximations are used for the SDOF nonlinear isolators (i.e., 434 

configuration C1 and C2). However, due to the complexity of analytical derivation, the fifth-order HB-435 

AFT scheme is applied to obtain the dynamic response of the 2-DOF isolator system (i.e., configuration 436 

C3). 437 
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 438 

Fig. 4. Linearized natural frequency of the D-inerter isolator with different (a) initial orientation and (b) inertance-439 

to-mass ratios. In (a), the dotted, dashed and dash-dotted lines denote analytical linearized natural frequency for 440 

𝜃0 = 30°, 45° and 60°, respectively. In (b), the dashed, dotted and dash-dotted lines are analytical results for 𝜆 =441 

5, 10 and 15, respectively. The symbols represent the corresponding numerical results.   442 

 443 

Fig. 5. Validation and comparison of the response amplitude of the SDOF system with (a) force excitation 444 

(configuration C1) and (b) base-motion excitation (configuration C2) using different methods. Solid lines: HB-445 

AFT 5-th order approximation; Dashed lines: first-order HB analytical method; symbols: numerical Runge-Kutta 446 

method. Parameter values: 𝜁1 = 0.01, 𝜆 = 10, 𝐷0 = 0.5, 𝐹0 = 0.002, 𝑄0 = 0.01. 447 

4.2 Performance evaluations of the isolator in force-excited SDOF system 448 

In Figs. 6, 7 and 8, the effects of design parameters of the nonlinear D-inerter isolator on the dynamic 449 

response of the mass, the force transmissibility and the kinetic energy of the mass are investigated, 450 

respectively. Figs. 6(a), 7(a) and 8(a) show the influence of the inertance-to-mass ratio 𝜆 by setting four 451 

possible values of 0, 5, 10 and 20 while the initial distance of terminals 𝐷0 is fixed as 𝐷0 = 0.5. The 452 

dashed, dotted and dash-dotted lines represent the case of 𝜆 = 5, 10 and 20, respectively, and the linear 453 

case 𝜆 = 0 corresponding to the system without D-inerter is denoted by the solid line. Figs. 6(b), 7(b) 454 

and 8(b) present the effects of the initial distance 𝐷0 between the terminals of the D-inerter by changing 455 
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its value from 0.4, to 0.5 and then 0.6, denoted by the dashed, dotted and dash-dotted lines, respectively, 456 

while fixing 𝜆  at 10. The other parameters are set as 𝐹0 = 0.002 and 𝜁1 = 0.01 . The analytical 457 

approximations results obtained by the solutions of Eq. (40) are denoted by different types of lines. For 458 

cross-verification and comparison, numerical results are also obtained from the fourth-order Runge-459 

Kutta method and are represented by different types of symbols.  460 

Figure 6(a) shows that as the inertance-to-mass ratio 𝜆 increases from 0 to 5, to 10, and to 20, the 461 

resonant peak of the response curve 𝑅1 shifts to lower frequencies, in accordance with the results shown 462 

previously on the linearized natural frequencies. The backbone curves are obtained using Eq. (41) and 463 

are denoted using dash-dot-dot lines. At a prescribed value of 𝛺  in the high-frequency range, the 464 

dynamic response level decreases as the 𝜆 increases. Compared with the corresponding linear isolator 465 

case (i.e., 𝜆 = 0), a larger value of 𝜆 for the nonlinear D-inerter isolator can broaden the bandwidth of 466 

the isolation range and is beneficial for vibration suppression. Fig. 6(a) also shows that the peak in each 467 

response curve of the D-inerter isolator case bends to the low-frequency range, similar to that of the 468 

softening stiffness Duffing oscillator. The reason for the bending is that the mass is having a relatively 469 

large displacement near resonance such that the D-inerter can generate a large inertial force. The effects 470 

of having the inertial force to increase with the displacement are similar to those of having the stiffness 471 

to reduce with the displacement, leading to a left-bending response curve. Fig. 6(b) shows that as the 472 

initial distance 𝐷0 of the D-inerter increases from 0.4 to 0.5 and then to 0.6, the resonant peak of 𝑅1 473 

shifts to the low-frequency range with larger peak values. This behaviour is associated with the fact that 474 

the linearized natural frequency decreases when 𝐷0 increases. Fig. 6(b) shows when the excitation 475 

frequency is large, the response amplitude 𝑅1 can be reduced by having a larger value of 𝐷0. In contrast, 476 

Fig. 6 shows that the influence of the inertance-to-mass ratio 𝜆 and initial distance 𝐷0 on the response 477 

amplitude becomes small when the excitation frequency tends to zero.   478 

In Fig. 7, the effects of the design parameters of the D-inerter on the force transmissibility 𝑇𝑅 of the 479 

nonlinear isolator are investigated. It shows that compared with the conventional linear spring-damper 480 

isolator (i.e., 𝜆 = 0), the use of the D-inerter introduces an anti-peak in the curve of 𝑇𝑅.  As the value 481 

of 𝜆 increases, the inertial force due to the D-inerter also increases, leading to the shift of both the peak 482 

and the anti-peak in each curve of 𝑇𝑅 to the low-frequency range. This is due to the stronger inertial 483 

force by the D-inerter with the increasing 𝜆. Fig. 7(b) shows the influence of the initial distance 𝐷0 484 

between the terminals of the D-inerter on the force transmission behaviour. As the value of 𝐷0 increases 485 

from 0.4 to 0.5 and then to 0.6, both the resonant and anti-resonant peaks move to lower frequencies 486 

when 𝐷0 increases. When the excitation frequency is greater than 𝛺iso, the force transmissibility first 487 

decreases to the local minimum and then increases with the excitation frequency approaching an 488 

asymptotic value in the high-frequency range.  In Fig. 7(a), when 𝜆 is 5, 10 and 20, the left bound of 489 

the effective isolation frequency ranges start from nearly 0.37, 0.51 and 0.68 using Eq. (48) and the 490 

asymptotic values are approximately 0.63, 0.77 and 0.87 (obtained by 𝑇𝑅∞ in Eq. (49)), respectively. 491 
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In Fig. 7(b), the starting frequency 𝛺iso of effective isolation is about 0.40, 0.51 and 0.64 and the 492 

asymptotic values of 𝑇𝑅 are approximately 0.66, 0.77 and 0.85 corresponding to an initial distance 𝐷0 493 

of 0.4, 0.5 and 0.6, respectively. The figure confirms that the asymptotic value of TR increases with 𝜆 494 

and 𝐷0 values but less than 1. Fig. 7 shows that with larger values of inertance 𝜆 or the initial distance 495 

𝐷0 between the terminals of the D-inerter, the resonant peak of TR twists further to the left due to a 496 

larger induced nonlinear inertial force. Fig. 7 demonstrates that the inclusion of the nonlinear D-inerter 497 

to the isolator can improve the isolation performance by creating a wider frequency band where force 498 

transmissibility is less than 1 at high frequencies.   499 

 500 

Fig. 6. Effects of (a) the inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and (b) the initial distance 𝐷0 between the 501 

terminals of the D-inerter (with 𝜆 = 10) on the response amplitude 𝑅1 of the mass.  502 

Figure 8(a) and (b) shows the effects of the inertance-to-mass ratio 𝜆 and the initial distance 𝐷0 503 

between the terminals of the D-inerter on the maximum kinetic energy 𝐾max, respectively. As shown 504 

in Eqs. (55) and (57), at a prescribed damping coefficient, the time-averaged input power 𝑃̅in has a 505 

linear relationship with the maximum kinetic energy 𝐾max. Therefore, the curves of 𝑃̅in would have the 506 

same patterns as those of 𝐾max. Compared with the curves of TR, Fig. 8 shows that only one peak can 507 

be found in each curve of 𝐾max . As the value of 𝜆 increases from 0 to 20 or the value of 𝐷0 increases 508 

from 0.4 to 0.6, the peak shifts to the left and bends further to lower frequencies, but the peak value 509 

changes little. As the excitation frequency 𝛺 reduces in the low-frequency range, the curves tend to 510 

merge and the variations in the values of 𝜆 and 𝐷0 can only result in small changes in the curves of 511 

𝐾max. At a prescribed frequency in the high-frequency range, larger values of 𝜆 or 𝐷0 will lead to a 512 

lower level of the maximum kinetic energy of the primary mass. Fig. 8 shows that compared with the 513 

linear spring-damper isolator (i.e., 𝜆 = 0), the use of D-inerter can assist vibration suppression by 514 

resulting in a lower level of the power input as well as the maximum kinetic energy of the mass in a 515 

wide frequency band.  516 
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 517 

Fig. 7. Effects of (a) the inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and (b) the initial distance 𝐷0 between the 518 

terminals of the D-inerter (with 𝜆 = 10) on the force transmissibility 𝑇𝑅.  519 

 520 

Fig. 8.  Effects of (a) the inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and (b) the initial distance 𝐷0 between the 521 

terminals of the D-inerter (with 𝜆 = 10) on the maximum kinetic energy 𝐾max of the mass.   522 

4.3 Performance evaluations of the isolator in motion-excited SDOF system 523 

In Figs. 9, 10 and 11, the effects of design parameters of the D-inerter isolator on the displacement 524 

transmissibility 𝑇𝑅d, the time-averaged input power 𝑃̅in and the maximum kinetic energy 𝐾max of the 525 

mass for the system subjected to base-motion excitation are investigated, respectively. Figs. 9(a), 10(a) 526 

and 11(a) present the influence of the inertance-to-mass ratio 𝜆 by changing its value from 0, to 5, 10 527 

and finally to 20, while fixing 𝐷0 at 0.5. Figs. 9(b), 10(b) and 11(b) show the effects of the initial 528 

distance 𝐷0 between the terminals of the D-inerter by selecting three possible values of 0.5, 0.6 and 0.7 529 

while setting the inertance-to-mass ratio 𝜆 = 10. The other parameters are set as 𝑄0 = 0.01 and 𝜁1 =530 

0.01. These different lines are obtained by the first-order analytical HB approximation, see in Appendix. 531 

Numerical results based on the use of the Runge-Kutta method are also presented by different types of 532 

symbols.  533 
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Figure 9(a) and (b) shows the influence of the inertance-to-mass ratio 𝜆 and the initial distance 𝐷0 534 

on the displacement transmissibility 𝑇𝑅d, respectively. The solid line represents the linear conventional 535 

isolator case with 𝜆 = 0. It shows that with the use of the D-inerter, the peak of each curve of 𝑇𝑅d 536 

bends toward to low frequencies. There is also an anti-resonant peak in each curve of 𝑇𝑅d for the 537 

nonlinear isolator cases. As the value of 𝐷0 or 𝜆 increases, both the peak and the anti-peak of 𝑇𝑅d curve 538 

move further to the low-frequency range. Fig. 9(a) shows that nonlinear isolators with D-inerter have 539 

lower peak frequencies of 𝑇𝑅d , compared with that of the linear case. As the inertance-to-mass ratio 𝜆 540 

increases from 5 to 10 and then to 20, the starting frequency of the effective isolation frequency band 541 

reduces from approximately 0.68 to 0.51 and then to 0.37, in accordance with Eq. (52). The 542 

corresponding asymptotic values 𝑇𝑅d,∞ based on Eq. (53) are approximately 6.3 × 10−3, 7.7 × 10−3 543 

and 8.7 × 10−3, respectively. At high excitation frequencies, a larger value of 𝜆 of the D-inerter leads 544 

to a higher level of displacement transmissibility. In the effective isolation frequency band where 545 

𝑇𝑅d < 1 , the displacement transmissibility firstly decreases to a local minimum at the anti-peak 546 

frequency and then increases to approach the asymptotic value in the high-frequency range. In the low-547 

frequency range, each curve of 𝑇𝑅d tends to merge. Fig. 9(b) shows that when the initial distance 𝐷0 548 

increases from 0.5 to 0.6 and then to 0.7, the starting frequency 𝛺iso of the effective isolation frequency 549 

band decreases from approximately 0.51 to 0.40 and then to 0.31. Fig. 9(b) also shows that when the 550 

excitation frequency 𝛺  increases, there exist asymptotic values of 𝑇𝑅d  being approximately 551 

7.7 × 10−3, 8.5 × 10−3, and 9.1 × 10−3 when 𝐷0 = 0.5, 0.6, and 0.7, respectively. It shows that the 552 

asymptotic value of 𝑇𝑅d increases with the initial distance 𝐷0. At a prescribed frequency in the high-553 

frequency range, a smaller value of 𝐷0 results in a lower value of the displacement transmissibility. Fig. 554 

9 shows that larger values of 𝐷0 or 𝜆 of the D-inerter in the nonlinear isolator can benefit the vibration 555 

isolation performance by creating a wider frequency band of effective isolation.   556 

 557 

Fig. 9. Effects of the (a) inertance-to-mass ratio 𝜆  (with 𝐷0 = 0.5) and (b) initial distance 𝐷0  between the 558 

terminals of the D-inerter (with 𝜆 = 10) on the displacement transmissibility 𝑇𝑅d.  559 
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Figure 10(a) and (b) shows the influence of the inertance-to-mass ratio 𝜆 and the initial distance 𝐷0 560 

on the time-averaged input power 𝑃̅in, respectively. The figure shows that there is only one left-bending 561 

resonant peak in each curve of 𝑃̅in. As the initial distance 𝐷0 between the terminals or inertance of the 562 

nonlinear isolator 𝜆 increases, the resonant peak of 𝑃̅in shifts to the low-frequency range and the peak 563 

value decreases. At a prescribed excitation frequency in the high-frequency range, the time-averaged 564 

input power decreases as 𝐷0  or 𝜆 increases. In contrast, the values of displacement amplitude and 565 

displacement transmissibility 𝑇𝑅d increase with parameters 𝐷0 and 𝜆 when 𝛺 is high, as shown in Fig. 566 

10. The figure demonstrates that the design parameters affect 𝑇𝑅d and 𝑃̅in differently. Compared to the 567 

variations of 𝑇𝑅d with respect to the excitation frequency, there is no asymptotic line or anti-peak found 568 

in each power flow curve. In the high-frequency range, the time-averaged input power 𝑃̅in increases 569 

with the excitation frequency. In comparison, for the force excitation case shown in Fig. 8, 𝑃̅in decreases 570 

with the increase of 𝛺 at high frequencies. It shows that force excitation and base-motion excitation 571 

affect the time-averaged input power in a different way. In the low-frequency range, the time-averaged 572 

input power increases with the excitation frequency. As 𝛺 approaches low frequencies towards 0.1, the 573 

curves for different cases tend to merge and the effects of the changes in 𝐷0 and 𝜆 on 𝑃̅in become 574 

insignificant. Larger values of 𝐷0 and 𝜆 can enhance vibration isolation by resulting in a smaller amount 575 

of input power at high excitation frequencies.  576 

 577 

Fig. 10. Effects of the (a) inertance-to-mass ratio 𝜆  (with 𝐷0 = 0.5) and (b) initial distance 𝐷0  between the 578 

terminals of the D-inerter (with 𝜆 = 10) on the time-averaged input power 𝑃̅in.  579 

Figure 11(a) and (b) examines the influence of the inertance-to-mass ratio 𝜆 and the initial distance 580 

𝐷0 between the D-inerter terminals on the maximum kinetic energy 𝐾max of the mass, respectively. One 581 

left-bending peak and one anti-resonant peak are presented in each curve of 𝐾max for the nonlinear 582 

isolator with the D-inerter.  When the inertance-to-mass ratio 𝜆 or the initial distance 𝐷0 increases, both 583 

the peak and the anti-resonant peak move to lower frequencies. When the excitation frequency is in the 584 

high- or low- frequency ranges away from the resonances, the value of 𝐾max  increases with the 585 

excitation frequency following approximately straight lines. As the excitation frequency 𝛺 reduces in 586 
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the low-frequency range, the design parameters 𝐷0 and 𝜆 of the D-inerter have little effect on 𝐾max as 587 

the curves for different cases tend to merge. At a prescribed excitation frequency in the high-frequency 588 

range, smaller values of 𝐷0 or 𝜆 can lead to a lower level of the kinetic energy. This behaviour is of 589 

direct contrast to the effect of 𝐷0 or 𝜆 on 𝑃̅in . Figs. 10 and 11 show that for the nonlinear isolator 590 

subject to base-motion excitation, the parameters 𝐷0 and 𝜆 of the embedded D-inerter affect the time-591 

averaged power flow and kinetic energy in a different way. 592 

 593 

Fig. 11. Effects of the (a) inertance-to-mass ratio 𝜆  (with 𝐷0 = 0.5) and (b) initial distance 𝐷0  between the 594 

terminals of the D-inerter (with 𝜆 = 10) on the maximum kinetic energy 𝐾max of the mass.  595 

4.4 Performance evaluations of the isolator in 2DOF system with a flexible base 596 

In Figs. 12, 13, 14, 15 and 16, the effects of the design parameters of the nonlinear isolator on the 597 

dynamic response amplitude |𝑋1|, the force transmissibility TR, the time-averaged input power 𝑃̅in, the 598 

time-averaged transmitted power 𝑃̅t  and the maximum kinetic energy 𝐾max , as well as the power 599 

transmission ratio 𝑅T are investigated. The lines are obtained by the fifth-order HB-AFT results with a 600 

balanced consideration of both the accuracy and efficiency. The symbols are the numerical integration 601 

results based on the fourth-order Runge-Kutta method. In Figs. 12(a)-16(a), the dashed, dotted and 602 

dash-dotted lines represent cases with the inertance-to-mass ratio 𝜆 being 5, 8 and 10, respectively. In 603 

Figs. 12(b)-16(b), the dashed, dotted and dash-dotted lines represent cases with the initial distance 𝐷0 604 

between the terminals of the D-inerter being 0.4, 0.5 and 0.6, respectively. The linear spring-damper 605 

case (i.e., 𝜆 = 0) is also added as the solid lines for comparison. Other system parameters are set as  606 

𝐹0 = 0.005, 𝛾 = 𝜂 = 𝜇 = 1, 𝜁1 = 𝜁2 = 0.01. 607 

Figure 12(a) and (b) shows the effects of the inertance-to-mass ratio 𝜆 and the initial distance 𝐷0 608 

between the terminals of the D-inerter on the maximum displacement |𝑋1| of the machine mass 𝑚1. 609 

The solid line in Fig. 12(a) represents the case of a conventional linear isolator without the D-inerter. 610 

In this curve of linear isolator case, there are two resonant peaks and one anti-resonant peak. With the 611 

addition of the D-inerter, the first peak of |𝑋1| twists to the low-frequency range. In contrast, the second 612 

resonant peak remains nearly unbent. As the inertance-to-mass ratio 𝜆 increases, the peaks and also the 613 
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anti-resonant shift to lower frequencies. Fig. 12 also shows that as the initial distance 𝐷0 or the inertance 614 

value 𝜆 increases, the values of |𝑋1| at the first peak and at the anti-resonant peak decrease. However, 615 

the second resonant peak increases with 𝐷0 and 𝜆. In the high-frequency range, the curves of different 616 

cases almost coincide, it demonstrates that the values of 𝐷0 and 𝜆 only have weak influence on the 617 

response amplitude. It is also noted that comparing with a linear conventional isolator case with 𝜆 = 0, 618 

the use of a nonlinear isolator incorporating the D-inerter can lead to a smaller peak response amplitude 619 

of the mass, suggesting the suppression effect of the nonlinear isolator on the response. As the excitation 620 

frequency reduces in the low-frequency range, the curves tend to merge and the initial distance 𝐷0 and 621 

inertance 𝜆 have weaker effect on the displacement amplitude of mass 𝑚1.  622 

 623 

Fig. 12 Effects of the (a) inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and (b) initial distance 𝐷0 (with 𝜆 = 8) in the 624 

2-DOF isolation system on the response amplitude.  625 

In Fig. 13, the performance of the nonlinear isolator is examined in terms of the force transmissibility 626 

𝑇𝑅. Fig. 13 shows that there are two peaks and two anti-peaks in each curve of force transmissibility 627 

TR. The first resonant peak twists to the left because the nonlinear inertial force by the D-inerter 628 

increases with the response amplitude, leading to a stronger transmitted force to the base. As the 629 

inertance 𝜆 increases from 5 to 10 or the initial distance 𝐷0 increases from 0.4 to 0.6, the two peaks and 630 

the first anti-peak move to lower frequencies and the maximum force transmissibility decreases. This 631 

behaviour is beneficial for vibration isolation. The figure shows that regardless of the variations of 𝐷0 632 

and 𝜆, the frequency corresponding to the second anti-peak remains to be approximately one. When the 633 

excitation frequency is larger than one, the force transmissibility associated with each D-inerter isolator 634 

case increases with the excitation frequency 𝛺  and approaches an asymptotic value in the high-635 

frequency range. This asymptotic value increases with the initial distance 𝐷0 and the inertance-to-mass 636 

𝜆, but remains smaller than 1. In the low-frequency range, curves for different cases merge. Compared 637 

with the conventional linear isolator case (i.e., 𝜆 = 0), the nonlinear isolator has an extra anti-peak 638 

between the two resonant peaks and can lead to a lower level of force transmissibility in the regions. It 639 
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can also provide a large frequency band in which the force transmissibility is smaller than unity, which 640 

is desirable for vibration isolation. 641 

 642 

Fig. 13 Effects of the (a) inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and (b) initial distance 𝐷0 (with 𝜆 = 8) in the 643 

2-DOF isolation system on the force transmissibility TR.  644 

Figure 14 shows the effects of the inertance-to-mass ratio 𝜆 and the initial distance 𝐷0 on the time-645 

averaged input power 𝑃̅in and the maximum kinetic energy 𝐾max of mass 𝑚1. Fig. 14(a) and (b) shows 646 

two peaks exist in each curve of 𝑃̅in, but no anti-peak is observed. The first resonant peak of 𝑃̅in curve 647 

bends to lower frequencies due to the nonlinear effect introduced by the nonlinear D-inerter in the 648 

vibration isolator. It also shows that as the inertance-to-mass ratio 𝜆 or initial distance 𝐷0 increases, the 649 

two peaks move to lower frequencies. When the excitation frequency is in the low- or high- frequency 650 

ranges, the influence of the changes in 𝐷0 and 𝜆 on the power input becomes negligible since different 651 

curves almost coincide. As the excitation frequency increases, the time-averaged input power 𝑃̅in 652 

increases at low frequencies and decreases at high frequencies. Compared with the linear isolator case 653 

with 𝜆 = 0, the use of the nonlinear isolator can yield a significant reduction of the total input power 654 

into the system at a prescribed frequency in the high frequency range, which benefits vibration isolation. 655 

Fig. 14(c) and (d) shows that one anti-peak appears between the two peaks in each curve of 𝐾max. The 656 

peaks and the anti-peak move to lower frequencies as the inertance-to-mass ratio 𝜆 or the initial distance 657 

𝐷0 increases. It shows that the inertance-to-mass ratio 𝜆 and initial distance 𝐷0 have large effects on the 658 

dynamic performance and power transmission where the excitation frequency locates between the two 659 

peak frequencies. Fig. 14(c) shows that at a prescribed excitation frequency in the high-frequency range, 660 

the values of 𝐾max of the D-inerter isolator cases are much smaller than that of the linear isolator case. 661 

This behaviour demonstrates the benefits of introducing the D-inerter in vibration isolation. Fig. 14 662 

demonstrates that with an appropriate design of the parameters of the D-inerter in the nonlinear isolator, 663 

a tailored isolation performance can be achieved with low energy input or low level of kinetic energy 664 

of the mass. 665 



24 

 

 666 

Fig. 14 Effects of the inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and the initial distance 𝐷0 (with 𝜆 = 8) in the 2-667 

DOF isolation system on the time-averaged input power 𝑃̅in in (a) and(b); and the maximum kinetic energy 𝐾max 668 

of mass 𝑚1 in (c) and (d).  669 

The effects of the inertance-to-mass ratio 𝜆  and the initial distance 𝐷0  on the time-averaged 670 

transmitted power 𝑃̅t are investigated and shown in Fig. 15(a) and (b), respectively. Fig. 15(a) shows 671 

that with the addition of the D-inerter, one anti-peak can be created in the curve of the time-averaged 672 

transmitted power, leading to significantly reduction in vibration energy transmission to the base 673 

structure. At a prescribed frequency in the high frequency range, compared with that of the linear 674 

isolator case, the use of the D-inerter isolator can lead to larger amount of energy transmission to the 675 

base structure. As the inertance-to-mass ratio 𝜆 increases from 5 to 8 and then to 10, two peaks and the 676 

anti-peak in each curve of 𝑃̅t shift to lower frequencies. Fig. 15(b) shows that as the initial distance 𝐷0 677 

increases from 0.4 to 0.5 and then to 0.6, the frequencies associated with the peaks and the anti-peak 678 

reduce. In the high-frequency range, a smaller value of the initial distance 𝐷0 causes a lower level of 679 

the transmitted power to the base structure. When the excitation frequency locates in the low-frequency 680 

range, the curves for different cases tend to merge and the initial distance 𝐷0 and the inertance-to-mass 681 

ratio 𝜆 have negligible influence on the time-averaged transmitted power 𝑃̅t .  682 
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 683 

Fig. 15. Effects of the (a) the initial distance 𝐷0 (with 𝜆 = 8) and the inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) 684 

on the time-averaged transmitted power 𝑃̅t.  685 

Figure 16(a) and (b) shows the effects of the inertance-to-mass ratio 𝜆 and the initial distance 𝐷0 on 686 

the power transmission ratio 𝑅T, respectively. The power transmission ratio 𝑅T is the ratio between the 687 

time-averaged transmitted power and the time-averaged input power, representing the proportion of 688 

total energy transferred to the base structure through the D-inerter. Therefore, it provides a relative 689 

measure of vibration transmission. The solid line in Fig. 16(a) is associated with the linear isolator case 690 

with 𝜆 = 0, it has the maximum 𝑅T value at approximately 𝛺 = 1 and has nearly zero values in the 691 

high-frequency range. With the inclusion of the D-inerter, the power transmission ratio 𝑅T is reduced 692 

in the low-frequency range, and its value decreases as the increase of 𝜆 or 𝐷0. Fig. 16 also presents the 693 

super-harmonic behaviour with the frequency component 𝛺r = 2𝛺 due to the use of the nonlinear 694 

inerter at approximately 𝛺 =0.21. As the inertance-to-mass ratio 𝜆 increases from 5 to 8 and then to 10, 695 

the corresponding super-harmonics are found at excitation frequencies equal to 0.39, 0.40 and 0.44, 696 

respectively. When the initial distance 𝐷0 changes from 0.4 to 0.5 and then to 0.6, the super-harmonic 697 

responses appear at approximately 0.38, 0.40 and 0.45, respectively. There is also an anti-resonance in 698 

each curve of 𝑅T, where the transmitted power from mass one through the nonlinear D-inerter is almost 699 

equal to zero compared with the total input power.  The power transmission ratio curves merge at the 700 

unity excitation frequency with peak value of one. When the excitation frequency is larger than 1, the 701 

power transmission ratio decreases with the increase of the excitation frequency. At a prescribed value 702 

of 𝛺 in the high-frequency range, the increase in the value of 𝜆 or 𝐷0 leads to larger values of the power 703 

transmission ratio 𝑅T. At a particular excitation frequency, the value of 𝑅T becomes approximately zero, 704 

indicating that only a negligible portion of the input energy is transmitted to the base. This characteristic 705 

is desirable in terms of vibration isolation. As the value of 𝜆 or 𝐷0 increases, this frequency associated 706 

with quasi-zero value of 𝑅T reduces.  707 
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 708 

Fig. 16. Effects of the (a) inertance-to-mass ratio 𝜆 (with 𝐷0 = 0.5) and (b) initial distance 𝐷0 (with 𝜆 = 8) on the 709 

power transmission ratio 𝑅T.  710 

5. Conclusions 711 

This study proposed nonlinear vibration isolators with a nonlinear inerter created by embedding a 712 

linear inerter in a diamond-shaped linkage. The performance of the proposed isolators in an SDOF 713 

system subjected to force and base-motion excitations and in a two-DOF system with a flexible 714 

foundation were considered. The analytical HB approximation and high-order HB-AFT as well as the 715 

numerical RK method are used to obtain the steady-state response. Force and displacement 716 

transmissibility as well as time-averaged power flow variables were used as performance indices. It was 717 

shown that both the single-DOF and 2-DOF isolators with the D-inerter have a wider range of effective 718 

isolation frequency compared with the linear conventional isolators, and therefore are beneficial for the 719 

attenuation of force and power transmission. For the SDOF nonlinear inerter-based vibration isolator 720 

under force excitation or base-motion excitation, the benefits of using the D-inerter in the vibration 721 

isolator are demonstrated by (1) bending of the response curve to the low frequencies and significant 722 

reduction in the response over a wide frequency range alone with the introduced anti-resonance; (2) a 723 

larger band of effective isolation as the transmissibility peak shifts to lower frequencies; (3) much 724 

reduced amount of time-averaged input power and lower kinetic energy of the mass in a large frequency 725 

band. For the D-inerter isolator mounted on a flexible base, the results obtained in this investigation 726 

indicate that (1) by adding the nonlinear inerter, one anti-resonant peak may appear between the two 727 

peaks, leading to a significantly lower level of the dynamic response, force transmissibility or power 728 

transmission; (2) the D-inerter will cause near zero power transmission ratio at a particular excitation 729 

to the base structure, demonstrating superior vibration isolation performance. 730 
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Appendix 734 

Using Eqs. (27), (28) and (42), the governing Eq. (13) of the single-DOF oscillator with base-motion 735 

excitation becomes 736 

{1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑆1

2(3𝛽2 − 𝛾1))𝛺
2} 𝑆1 cos(𝛺𝜏 − 𝜃) − 2𝜁1𝛺𝑆1 sin(𝛺𝜏 − 𝜃) = 𝑄0𝛺

2 cos𝛺𝜏.    737 

(60) 738 

The coefficients of the corresponding harmonic terms in Eq. (60) can be balanced, leading to 739 

{1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑆1

2(3𝛽2 − 𝛾1))𝛺
2} 𝑆1 = 𝑄0𝛺

2 cos 𝜃 ,                              (61) 740 

−2𝜁1𝛺𝑆1 = −𝑄0𝛺
2 sin𝜃 .                                                 (62) 741 

By using the identity of cos2𝜙 + sin2𝜙 = 1, Eqs. (61) and (62) can be transformed into 742 

 {1 − (1 + 𝜆𝛽0 +
1

4
𝜆𝑆1

2(3𝛽2 − 𝛾1))𝛺
2}
2

𝑆1
2 + (2𝜁1𝛺𝑆1)

2 = 𝑄0
2𝛺4,                       (63) 743 

𝑆1

𝑄0
=

𝛺2

√{1−(1+𝜆𝛽0+
1

4
𝜆𝑆1

2(3𝛽2−𝛾1))𝛺
2}
2

+(2𝜁1𝛺)
2

.                                      (64) 744 

Note that Eq. (64) is obtained by rewriting Eq. (63), which can be solved by using a bisection method 745 

to obtain the amplitude 𝑆1 of the relative displacement. The phase angle 𝜃 can then be determined by 746 

using Eqs. (61) and (62). When the excitation frequency 𝛺 approaching infinity, Eq. (64) becomes 747 

lim
𝛺→∞

(
𝑆1

𝑄0
) =

1

1+𝜆𝛽0+
1

4
𝜆𝑆1

2(3𝛽2−𝛾1)
  ,                                            (65) 748 

in which, by denoting the corresponding value of 𝑆1 as 𝑆1,∞, we have 749 

(1 + 𝜆𝛽0 +
1

4
𝜆𝑆1,∞

2 (3𝛽2 − 𝛾1)) 𝑆1,∞ = 𝑄0,                                    (66) 750 

which is a nonlinear algebraic equation which can be solved by a standard bisection method.  It shows 751 

that the relative displacement amplitude 𝑆1,∞ is only related to the design parameters of 𝜆, 𝐷0 and 𝑄0 of 752 

the isolator.  753 

It is also noted that the non-dimensional displacement response 𝑋1(𝜏) of the mass is expressed by 754 

𝑋1(𝜏) = 𝑍(𝜏) + 𝑄0 cos𝛺𝜏 ≈ 𝑆1 cos(𝛺𝜏 − 𝜃) + 𝑄0 cos𝛺𝜏.                         (67) 755 

Therefore, the displacement amplitude 𝑅1 of the mass can be obtained as 756 

𝑅1 = √(𝑆1 cos𝜃 + 𝑄0)
2 + 𝑆1

2 sin2 𝜃 = √𝑆1
2 + 𝑄0

2 + 2𝑆1
2 {

1

𝛺2
− (1 + 𝜆𝛽0 +

1

4
𝜆𝑆1

2(3𝛽2 − 𝛾1))},  (68) 757 

where Eq. (61) has been used for the simplification. 758 
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