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Abstract 8 

This study proposes the use of a novel nonlinear inerter-based device in vibration suppression of the 9 

ship propulsion shafting system and evaluates its performance. The device consists of an axial inerter 10 

and a pair of lateral inerters to create geometric nonlinearity. The system response subjected to propeller 11 

forces is determined by using the harmonic balance method with alternating-frequency-time technique 12 

and a numerical time-marching method. The force transmissibility and energy flow variables are 13 

employed to assess the performance of the device. The results show that the proposed device can reduce 14 

the peak force and energy transmission to the foundation while increase the energy dissipation within 15 

the device. Its use can lead to an improved vibration attenuation effect than the traditional mass-spring-16 

damper device for low-frequency vibration. The configurations of the nonlinear inerter-based device 17 

can be adjusted to obtain an anti-peak at a resonance frequency of the original system, providing 18 

superior vibration suppression performance. 19 

 20 
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1 Introduction  24 

The propellers of ships and submarines can generate undesired fluctuating force in an unsteady 25 

non-uniform wake field caused by the protrusions of control surfaces or asymmetry of the hull (Zhu 26 

and Xie et al., 2021). The fluctuated thrust will be transmitted through the propulsion shafting system 27 

to the supporting foundation and excites the hull. It can result in structural vibrations and structure-28 

borne noise, hence affecting crew comfort (Zhang et al., 2021). Moreover, such vibrations can lead to 29 

a high level of underwater acoustic radiation which is harmful to the ocean environment as well as the 30 

acoustic performance of vessels (Xie et al., 2021).  31 

Some past research has shown that the axial component of the fluctuating force transmitted in a 32 

longitudinal direction along the shafting is the major vibration transmission path (Huang et al., 2018). 33 

To control the transmission of vibration, the use of active vibration suppression devices such as active 34 
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vibration absorbers and magnetic actuators has been studied (Xie et al., 2021; Merz et al., 2013). The 35 

passive vibration suppression devices also attracted much research interest due to their advantages of 36 

simpler and reliable structure as well as not relying on external power. Among the past research, the so-37 

called hydraulic resonance changer, which operates like a dynamic vibration absorber, has been 38 

extensively investigated (Dylejko et al., 2007; Zhang et al., 2012). Other designs such as anti-resonant 39 

vibration isolator (Liu and Li et al., 2017), periodically layered isolators (Song et al., 2014) and dynamic 40 

absorber with negative stiffness (Huang et al., 2018) were also proposed. Most of the relevant work 41 

assumed linearity of the passive devices. However, in the operation of the propulsion shafting, there is 42 

a limitation on the axial displacement of the system. Therefore, the stiffness of vibration suppression 43 

device cannot be set too low and the natural frequency of the integrated system is relatively high. 44 

Considering that the low-frequency components are dominant in the spectrum of the axial fluctuated 45 

thrust (Liu and Li et al., 2017), those linear devices may not be able to provide effective mitigation for 46 

the low or ultra-low frequency of vibration transmission (Mofidian and Bardaweel, 2018).  47 

Much research has been reported on exploiting nonlinearities to enhance the low-frequency 48 

mitigation performance of systems such as vehicle suspension systems (Wang and Jing, 2019) and 49 

shock absorbers (Yan et al., 2018). However, there are very few works exploiting nonlinear passive 50 

devices or the novel inerter device for the suppression of longitudinal vibration of the ship shafting 51 

system (Zhao et al., 2020). The inerter is a recently proposed passive device having the property that its 52 

applied force 𝐹b is proportional to the relative accelerations across its two terminals, i.e., 𝐹b = 𝑏(𝑉1̇ −53 

𝑉2̇), where 𝑏 is the inertance and 𝑉1̇ and 𝑉2̇ are the terminal accelerations (Smith and Wang, 2004). 54 

Such device can be constructed based on rack-pinion flywheel, ball-screw mechanism or fluid following 55 

in an inertial track (Swift et al., 2013). Past studies have shown a good vibration suppression 56 

performance of linear inerter-based vibration suppression device for engineering structures (Li et al., 57 

2016; Zhu and Yang et al., 2021). Recent studies have demonstrated that the nonlinear inerter-based 58 

mechanism can further improve the attenuation performance of vibration isolators (Wang et al., 2021; 59 

Yang et al., 2019) and a passive structural joint (Dong et al., 2021). It is of interest to employ a nonlinear 60 

vibration suppression device in the propulsion shafting system for a possible better reduction of 61 

longitudinal vibration transmission.  62 

In the performance evaluation of the vibration suppression devices in the ship shafting system, the 63 

response amplitude and force transmissibility have usually been employed as indicators. The time-64 

averaged vibration power flow combines the velocity, force and their relative phase angle in a single 65 

quantity, and hence can provide a more comprehensive quantification on the vibration transmission 66 

from the energy perspective (Goyder and White, 1980). The power flow indices have been widely 67 

accepted in the vibration transmission evaluation of linear systems (Xiong et al., 2003). Recent years 68 

have seen a development of power flow analysis (PFA) for the investigation of nonlinear systems (Dai 69 

et al., 2020, 2021), including nonlinear absorbers and nonlinear isolators (Yang et al., 2015, 2016). 70 
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In this research, a nonlinear tuned mass damper inerter (TMDI) created by a geometric nonlinearity 71 

is proposed and embedded in the longitudinal vibration transmission path of a typical propulsion 72 

shafting system. The effectiveness of the TMDI is assessed by the force transmissibility and time-73 

averaged power flow variables. The effects of the parameters of inerters and the nonlinear 74 

configurations on the performance of TMDI are examined. The paper is organized as follows. In Section 75 

2, the modelling of the ship shafting system with the TMDI is carried out. In Section 3, the dynamic 76 

analysis of the system and definitions of the performance indicators are presented. The influence of 77 

design parameters of the TMDI on the attenuation of longitudinal vibration transmission is investigated 78 

in Section 4, which is then followed by conclusions. 79 

    80 

2 Modelling of the shafting system with the inerter-based device 81 

Figure 1 outlines a generic propeller-shaft system with the shaft supported by the stern, 82 

intermediate and thrust bearings. The thrust bearing is connected to the foundation via the base structure. 83 

The main longitudinal vibration transmission path is along with the shaft through the thrust bearing and 84 

to the foundation structure, which can then excite the ship hull and generate undesired vibration and 85 

noise. The stern bearing and intermediate bearing only provide radial stiffness and damping, both 86 

bearings are not contributing to the longitudinal vibration transmission (Zou et al., 2019). To suppress 87 

the excessive vibration transmission, an TMDI is embedded in the thrust bearing base.  88 
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Figure. 1. Schematic representation of the propeller-shaft-bearing system considering an TMDI. 90 

In accordance with the longitudinal vibration transmission path, the model of the ship shafting 91 

system can be simplified and presented as shown in Fig. 2(a). The fluctuating force applied on the 92 

propeller is assumed to be a harmonic excitation force 𝑓0 exp(i𝜔𝑡). The mass of the propeller is 𝑚p. 93 

The shaft is a uniform beam with Young’s modulus 𝐸, cross-sectional area 𝑎s and length 𝑙s. Here it is 94 

modelled as a massless elastic spring in the longitudinal vibration analysis (Liu and Lai et al., 2017). 95 

The equivalent stiffness 𝑘s of the shaft can be calculated by 𝐸𝑎s/𝑙s. The thrust bearing with mass 𝑚t, 96 

stiffness 𝑘t and damping 𝑐t is installed on the bearing base of mass 𝑚b. The bearing base is supported 97 



4 

 

by the foundation with stiffness 𝑘b and damping 𝑐b. For comparison purposes, a tuned mass damper 98 

(TMD) comprising an elastic spring 𝑘1, a viscous damper 𝑐1 and a mass 𝑚1 is mounted at terminal A 99 

within the frame of the bearing base, as shown in Fig. 2(a). The displacement responses of the propeller, 100 

the thrust bearing, the TMD mass and the base are represented by 𝑥p, 𝑥t 𝑥1 and 𝑥b, respectively. The 101 

parameter values of the shafting system are presented in Table 1. The scale of parameter is consistent 102 

with those in the past research (Dylejko et al., 2007; Merz et al., 2013; Huang et al., 2018), and the 103 

typical values are selected for demonstrating the use of TMDI.  104 
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Figure. 2. Schematic of (a) the longitudinal vibration model of ship shafting system using the TMD, (b) the 106 
proposed TMDI in static-state and (c) the TMDI in deformed state. 107 

Table 1. Parameters of the ship-shafting system 108 

Name Physical parameters 

Propeller 
Mass 𝑚p: Forcing amplitude: 

1.5e4 kg 10e5 kN 

Shaft 
Young’s Modulus 𝐸: Cross-sectional area 𝑎s: Length 𝑙s: 

200 GPa 0.7 m2 14 m 

Thrust bearing 
Mass 𝑚t: Stiffness 𝑘t : Damping 𝑐t: 

5e2 kg 10e10 N/m 2.24e4 Ns/m 

TMD 
Mass 𝑚1: Stiffness 𝑘1: Damping 𝑐1: 

2.5e3 kg 10e10 N/m 2.24e4 Ns/m 

Bearing Base 
Mass 𝑚b: 

5e3 kg 

Stiffness 𝑘b: 

10e10 N/m 

Length 𝑙: 

1 m 

Damping 𝑐b:  

1.12e3 Ns/m 

 109 

As shown in Fig. 2(b), the proposed TMDI is attached to the bearing base at its left terminal A. 110 

Compared with the TMD, an axial inerter and a pair of lateral inerters are inserted to form the TMDI. 111 

The axial inerter with inertance of 𝑏1 connects the mass 𝑚1 to the bearing base at terminal B in the 112 



5 

 

horizontal direction. The pair of lateral inerters with the same inertance of 𝑏2 connects mass 𝑚1 to the 113 

bearing base at terminals C and D, respectively. The static vertical distance between the mass 𝑚1 and 114 

the upper or the lower base connection points C or D is set as 𝑙.  115 

Figures 2(c) shows the system with relative displacement 𝑟 between the base and the TMDI mass 116 

defined as 𝑟 = 𝑥1 − 𝑥b. Fig. 2(d) depicts the force directions of inerters. The angle between CO and 117 

CD is 𝜃 (sin𝜃 = 𝑟/√𝑙2 + 𝑟2). Noting that the terminal O is attached to mass 𝑚1 and the terminals B, 118 

C and D are attached to base 𝑚b , the force of the axial inerter 𝑓h  is the function of the relative 119 

acceleration �̈� between two masses as 𝑓h = 𝑏1�̈�. The relative velocity between point O and point C 120 

along the axis of the lateral inerter is 𝑣 = �̇� sin 𝜃. Then the inerter force 𝑓v applied along the CO is 121 

obtained as  122 

𝑓v = 𝑏2
d(𝑣)

d𝑡
= 𝑏2 (�̈�sin𝜃 +

𝑙2�̇�2

(𝑙2+𝑟2)√𝑙2+𝑟2
) .                                     (1) 123 

According to the symmetricity of the TMDI, the total nonlinear inerter force applied on the mass 124 

𝑚1 is  125 

 𝑓tmdi(𝑟, �̇�, �̈�, 𝑙, 𝑏1, 𝑏2) = 𝑓h + 2𝑓vsin𝜃 = 𝑏1�̈� + 2𝑏2(
𝑟2�̈�

𝑙2+𝑟2
+

𝑙2𝑟�̇�2

(𝑙2+𝑟2)2
) .                (2) 126 

It shows that the nonlinear force depends on the relative displacement, velocity, and acceleration (Yang 127 

et al., 2019). 128 

Based on the free body diagram of the mass 𝑚1, the equation of motion is obtained: 129 

𝑚1�̈�1 + 𝑘1𝑟 + 𝑐1�̇� + 𝑓tmdi(𝑟, �̇�, �̈�, 𝑙, 𝑏1, 𝑏2) = 0.                                 (3) 130 

The equations of motion of the system with the proposed TMDI are written in a matrix form as 131 

[

𝑚p 0 0 0

0 𝑚t 0 0
0 0 𝑚1 0
0 0 0 𝑚b

] {

�̈�p
�̈�t
�̈�1
�̈�b

} + [

0 0 0 0
0 𝑐t 0 −𝑐t
0 0 𝑐1 −𝑐1
0 −𝑐t −𝑐1 𝑐1 + 𝑐t + 𝑐b

] {

�̇�p
�̇�t
�̇�1
�̇�b

} +132 

[

𝑘s −𝑘s 0 0
−𝑘s 𝑘s + 𝑘t 0 −𝑘t
0 0 𝑘1 −𝑘1
0 −𝑘t −𝑘1 𝑘1 + 𝑘t + 𝑘b

]{

𝑥p
𝑥t
𝑥1
𝑥b

} + {

0
0

𝑓tmdi(𝑟, �̇�, �̈�, 𝑙, 𝑏1, 𝑏2)
−𝑓tmdi(𝑟, �̇�, �̈�, 𝑙, 𝑏1, 𝑏2)

} = {

𝑓0 exp(i𝜔𝑡)
0
0
0

}, (4) 133 

where 𝑟 = 𝑥1 − 𝑥b , �̇� = �̇�1 − �̇�b,  �̈� = �̈�1 − �̈�b . To facilitate later parametric study, the following 134 

variables and dimensionless parameters are introduced:   135 

𝜔t = √
𝑘t

𝑚t
, 𝜁t =

𝑐t

2𝑚t𝜔t
, 𝜁1 =

𝑐1

2𝑚t𝜔t
, 𝜁b =

𝑐b

2𝑚t𝜔t
 𝑋p =

𝑥p

𝑙
, 𝑋t =

𝑥t

𝑙
, 𝑋1 =

𝑥1

𝑙
, 𝑋b =

𝑥b

𝑙
, 𝑅 =

𝑟

𝑙
, 𝜇p =

𝑚p

𝑚t
, 136 

𝜇1 =
𝑚1

𝑚t
, 𝜇b =

𝑚b

𝑚t
 , 𝜆1 =

𝑏1

𝑚t
 , 𝜆2 =

𝑏2

𝑚t
, 𝜅s =

𝑘s

𝑘t
, 𝜅1 =

𝑘1

𝑘t
 , 𝜅b =

𝑘b

𝑘t
, 𝐹0 =

𝑓0

𝑙𝑘t
, Ω =

𝜔

𝜔t
, 𝜏 = 𝜔t𝑡, (5a-5t) 137 

where 𝜔t  and 𝜁t  are the undamped natural frequency and damping ratio of the thrust bearing, 138 

respectively. 𝜁1 and 𝜁b are the damping ratios of the TMDI and foundation structure, respectively. 𝑋p, 139 

𝑋t , 𝑋1  and 𝑋b  are the dimensionless displacement responses, while 𝑅  is the dimensionless relative 140 

displacement. 𝜇p, 𝜇1 and 𝜇b are mass ratios, 𝜆1 and 𝜆2 are the inertance to mass ratios of the axial and 141 
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lateral inerter, respectively. 𝜅s , 𝜅1  and 𝜅b  are the stiffness ratios. 𝐹0  and Ω are the non-dimensional 142 

forcing amplitude and frequency of the harmonic fluctuation force applied on the propeller, respectively. 143 

𝜏 is the dimensionless time. The non-dimensional equations of motion are then expressed as: 144 

[

𝜇p 0 0 0

0 1 0 0
0 0 𝜇1 0
0 0 0 𝜇b

]

{
 
 

 
 𝑋p

′′

𝑋t
′′

𝑋1
′′

𝑋b
′′
}
 
 

 
 

+ [

0 0 0 0
0 2𝜁t 0 −2𝜁t
0 0 2𝜁1 −2𝜁1
0 −2𝜁t −2𝜁1 2(𝜁1 + 𝜁b + 𝜁t)

]

{
 
 

 
 𝑋p

′

𝑋t
′

𝑋1
′

𝑋b
′
}
 
 

 
 

+145 

[

𝜅s −𝜅s 0 0
−𝜅s 𝜅s + 1 0 −1
0 0 𝜅1 −𝜅1
0 −1 −𝜅1 𝜅1 + 𝜅b + 1

]{

𝑋p
𝑋t
𝑋1
𝑋b

} + {

0
0

𝐹TMDI(𝑅, 𝑅
′, 𝑅′′, 𝜆1, 𝜆2)

−𝐹TMDI(𝑅, 𝑅
′, 𝑅′′, 𝜆1, 𝜆2)

} = {

𝐹0 exp(iΩ𝜏)
0
0
0

}, (6) 146 

where 147 

 𝐹TMDI(𝑅, 𝑅
′, 𝑅′′, 𝜆1, 𝜆2) = 𝜆1𝑅

′′ + 2𝜆2(
𝑅2𝑅′′

1+𝑅2
+

𝑅𝑅′
2

(1+𝑅2)2
).                             (7) 148 

3 Dynamics and performance indicators of vibration suppression  149 

3.1 Response analysis of the system 150 

To evaluate the performance of the proposed TMDI, the governing equations of the ship shafting 151 

system in Eq. (6) need to be solved first. In this study, the semi-analytical harmonic balance method 152 

with alternating-frequency-time technique (HB-AFT) is employed (Von Groll and Ewins, 2001). A 153 

numerical time-marching method (i.e., adaptive Runge-Kutta method) is also used for comparison. In 154 

the HB-AFT scheme, the corresponding steady-state responses of each mass are firstly approximated 155 

by a N-th order Fourier series expressed as 156 

𝑋p = ∑ �̃�(p,𝑛)
𝑁
𝑛=0 exp(i𝑛Ω𝜏),                   𝑋t = ∑ �̃�(t,𝑛)

𝑁
𝑛=0 exp(i𝑛Ω𝜏),          (8a, 8b) 157 

    𝑋1 = ∑ �̃�(1,𝑛)
𝑁
𝑛=0 exp(i𝑛Ω𝜏),                   𝑋b = ∑ �̃�(b,𝑛)

𝑁
𝑛=0 exp(i𝑛Ω𝜏),         (8c, 8d) 158 

where 1 ≤ 𝑛 ≤ 𝑁 , �̃�(𝑛)  is the complex Fourier coefficients for the 𝑛-th order approximation. The 159 

nonlinear inertance force generated by the proposed TMDI can be approximated by 160 

 𝐹TMDI = ∑ �̃�𝑛
𝑁
𝑛=0 exp(i𝑛Ω𝜏),                                                (9)  161 

where 𝐹TMDI has been defined by Eq. (7) and �̃�𝑛 is the 𝑛-th complex Fourier coefficients. To determine 162 

�̃�𝑛, the AFT scheme is applied here by substituting displacement, velocity and acceleration responses 163 

(obtained from the differentiation of Eq. (8)) into Eq. (9). Then the time history of the nonlinear force  164 

𝐹TMDI(𝜏) can be obtained and Fourier transformed to find the coefficient �̃�𝑛.    165 

The Fourier approximations of responses expressed in Eq. (8) and nonlinear force generated by the 166 

inerters in Eq. (9) can be substituted into the dimensionless governing equation Eq. (6). The HB method 167 

is then used by balancing the complex coefficients of the corresponding harmonics with the same order. 168 

The 𝑛-th order harmonic balanced equation is expressed as  169 
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(−(𝑛Ω)2 [

𝜇p 0 0 0

0 1 0 0
0 0 𝜇1 0
0 0 0 𝜇b

] + i(𝑛Ω) [

0 0 0 0
0 2𝜁t 0 −2𝜁t
0 0 2𝜁1 −2𝜁1
0 −2𝜁t −2𝜁1 2(𝜁1 + 𝜁b + 𝜁t)

] +170 

[

𝜅s −𝜅s 0 0
−𝜅s 𝜅s + 1 0 −1
0 0 𝜅1 −𝜅1
0 −1 −𝜅1 𝜅1 + 𝜅b + 1

])

{
 
 

 
 
�̃�(p,𝑛)

�̃�(t,𝑛)

�̃�(1,𝑛)

�̃�(b,𝑛)}
 
 

 
 

= {

𝐹0
0
0
0

} + {

0
0
−�̃�𝑛
�̃�𝑛

}. (10) 171 

Recalling the range of order 𝑛 is 1 ≤ 𝑛 ≤ 𝑁, a number of 4(2𝑁 + 1) algebraic equations are obtained, 172 

which are then solved by the Newton-Rapson method. Noting that a higher order 𝑁 of the HB method 173 

can provide a more accurate approximation to the nonlinear force as well as the steady-state response 174 

of the system, but will significantly increase the computational burden. To strike a balance of accuracy 175 

and efficiency, the HB order 𝑁 in this research is set as 7 based on the convergence study. In the 176 

meantime, to trace the solution branches, the pseudo-arclength continuation method is applied together 177 

with HB to determine the responses (Seydel, 2010).  178 

For the special case of TMDI system without the lateral inerters (with 𝜆2 = 0), the governing 179 

equation can be directly solved. By substituting Eq. (8) with 𝑁 = 1 into Eq. (6), the equation of motion 180 

can then be written as 181 

[
 
 
 
 
−Ω2𝜇p + 𝜅s −𝜅s 0 0

−𝜅s 𝐴 0 −2iΩ𝜁t − 1

0 0 𝐵 −𝜅1 − 2iΩ𝜁1 + 𝜆1Ω
2

0 −2iΩ𝜁t − 1 −𝜅1 − 2iΩ𝜁1 + 𝜆1Ω
2 𝐶 ]

 
 
 
 

{
 
 

 
 
�̃�(p,1)

�̃�(t,1)

�̃�(1,1)

�̃�(b,1)}
 
 

 
 

= {

𝐹0
0
0
0

}, (11) 182 

where 𝐴 = −Ω2 + 𝜅s + 2iΩ𝜁t + 1 , 𝐵 = −Ω2(𝜇1 + 𝜆1) + 2iΩ𝜁1 + 𝜅1  and 𝐶 = 𝜅1 + 𝜅b + 2iΩ(𝜁1 +183 

𝜁b + 𝜁t) − Ω
2(𝜇b + 𝜆1) + 1. Then the complex coefficients of the response �̃�(p,1), �̃�(t,1), �̃�(1,1) and 184 

�̃�(b,1) can be determined following standard matrix operations. 185 

 186 

3.2 Force transmissibility and energy indices 187 

To evaluate the effectiveness of the TMDI on the suppression of vibration transmission to the 188 

foundation, the force transmission, kinetic energy, and power indices including the time-averaged input, 189 

dissipated and transmitted power are selected as performance indicators. The force transmissibility 𝑇𝑅 190 

to the foundation is defined as 191 

𝑇𝑅 =
|𝐹T|max 

𝐹0
,                                                                  (12) 192 

where 𝐹T is the transmitted force to the foundation with 𝐹T = 𝜅b𝑋b + 2𝜁b𝑋b
′ . 193 

The maximum kinetic energy of the bearing base 𝐸b can be used to assess the vibration level of 194 

the bearing base and also the performance of the TMDI, which is defined as 195 

𝐸b =
1

2
{(𝑋b

′ )max}
2.                                                           (13) 196 



8 

 

The time-averaged input power 𝑃in into the shafting system during the time span of [𝜏0, 𝜏0 + 𝜏p] is 197 

obtained by  198 

𝑃in =
1

𝜏p
∫ 𝑃in
𝜏0+𝜏p
𝜏0

d𝜏 =
1

𝜏p
ℜ∫ {𝐹0e

iΩ𝜏}ℜ{𝑋p
′ }

𝜏0+𝜏p
𝜏0

d𝜏 =
1

2
𝐹0ℜ{(iΩ�̃�(p,1))

∗
},       (14) 199 

where 𝜏p is set as one period of harmonic cycle in steady state as 𝜏p = 2𝜋 Ω⁄ . ℜ{} and ()* denote the 200 

operations of taking real part and complex conjugate of the variable in the bracket, respectively. Note 201 

that smaller possible values of kinetic energy 𝐸b and time-averaged input power 𝑃in are desirable in the 202 

suppression of longitudinal vibration transmission. 203 

The time-averaged power dissipation 𝑃d1 of the damper 𝑐1 is also employed to evaluate the energy 204 

absorption performance of the TMDI. A larger amount of energy dissipation 𝑃d1 in TMDI suggests less 205 

vibrational energy transmitted to the ship hull. It is defined as  206 

𝑃d1 =
1

𝜏p
∫ 2𝜁1{ℜ{𝑋1

′ − 𝑋b
′ }}

2𝜏0+𝜏p
𝜏0

d𝜏 =
1

2
ℜ{[∑ i𝑛Ω(�̃�(1,𝑛) − �̃�(b,𝑛)

𝑁
𝑛=0 )]∗[2𝜁1∑ i𝑛Ω(�̃�(1,𝑛)

𝑁
𝑛=0 −207 

�̃�(b,𝑛))]} = 𝜁1|∑ i𝑛Ω𝑁
𝑛=0 (�̃�(1,𝑛) − �̃�(b,𝑛))|

2
.  (15) 208 

According to the energy conservation law, the time-averaged vibrational power transmission to the 209 

foundation is obtained as: 210 

𝑃t =
1

𝜏p
∫ 𝑃t
𝜏0+𝜏p
𝜏0

d𝜏 =
1

𝜏p
∫ 2𝜁b{ℜ{𝑋b

′ }}
2𝜏0+𝜏p

𝜏0
d𝜏 =211 

1

2
ℜ{[∑ i𝑛Ω(�̃�(b,𝑛)

𝑁
𝑛=0 )]∗[2𝜁b∑ i𝑛Ω(�̃�(b,𝑛)

𝑁
𝑛=0 )]} = 𝜁b|∑ i𝑛Ω𝑁

𝑛=0 (�̃�(b,𝑛))|
2
.   (16) 212 

 213 

4 Results and discussion 214 

In this part, the effectiveness of the proposed TMDI for the suppression of the longitudinal 215 

vibration transmission of the ship shafting is evaluated using the afore-defined performance indicators. 216 

The effects of the inertance of the axial inerter and the pair lateral inerters are investigated. The values 217 

of the physical parameters have been provided in Table 1. The dimensionless system parameters are 218 

obtained as 𝑢p = 30 , 𝑢b = 10 , 𝑢1 = 5.  𝜅s = 𝜅1 = 𝜅b = 𝜅t = 1 , 𝜁t = 𝜁1 = 0.01 , 𝜁b = 0.005  and  219 

𝐹0 = 0.01. 220 

The effectiveness of the TMDI without using the lateral inerters (𝜆2 = 0) is firstly examined. Figs. 221 

3 and 4 present the variations of the performance indicators against the excitation frequency. The results 222 

are obtained by HB method and validated by the adaptive Runge-Kutta (RK) method. Three different 223 

cases are selected with the inertance-to-mass ratio 𝜆1 changing from 0 to 2 and to 10, denoted by solid 224 

lines. Note that the case with 𝜆1 = 0 corresponds to the system using TMD without inerters, as shown 225 

in Fig. 2(a). Moreover, a reference case denoting the system without TMD is considered with the results 226 

marked by a dashed line for comparison.  227 

 228 
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 229 

Figure. 3. Effect of the TMDI with different configurations on the (a) force transmissibility 𝑇𝑅 and (b) transmitted 230 
power �̅�t. The dashed line represents the original system without TMD. The red line denotes the system employing 231 
a TMD (𝜆1 = 0). The blue and pink lines mark the system using the TMDI with 𝜆1  = 2 and 10, respectively. 232 
Symbols: RK results 233 

Figures 3(a) and (b) show the force transmissibility 𝑇𝑅 to the foundation and the time-averaged 234 

transmitted power �̅�t to the foundation, respectively. Comparing to the original system shown by the 235 

dashed curve, the addition of the TMD will introduce an additional DOF such that there is another 236 

resonance peak in each curve of 𝑇𝑅 or �̅�t. It is demonstrated that the first peak of the 𝑇𝑅 and �̅�t near 237 

Ω = 0.1 is slightly decreased by using TMD. By conducting modal analysis on the system in the case 238 

with 𝜆2 = 2, it is shown that the TMD mass and the base mass are moving in the out-of-phase mode at 239 

the frequency of Ω ≈ 0.39 while two masses are moving nearly in-phase at the frequency of Ω ≈ 1.44. 240 

As a result, the TMD will largely influence the response and the vibration transmission indices at the 241 

second original peak frequency of Ω ≈ 0.39  while shows little effect at the third original peak 242 

frequency of Ω ≈ 1.44. Since the dominant frequency of the external excitation on the propeller is 243 

usually low, the TMDI with a non-zero value of the inertance-to-mass ratio 𝜆1 exhibits a better vibration 244 

suppression performance than the TMD by shifting two peaks and the anti-peak of 𝑇𝑅 or �̅�t near Ω =245 

0.4 to the low-frequency range. As the value of 𝜆1  increases, the second peak of both 𝑇𝑅  and �̅�t 246 

becomes smaller and the corresponding frequency is further reduced, which will benefit the attenuation 247 

of low-frequency vibration transmission to the foundation. Combining the 𝑇𝑅  and �̅�t  curves, it is 248 

interesting to see the frequency of the anti-peak in the TMDI case with 𝜆1 = 2 is Ω ≈ 0.38, matching 249 

approximately with the second peak frequency of the original system without TMD. This phenomenon 250 

indicates that the property of the axial inerter can be tuned to achieve a desirable effective vibration 251 

suppression band without the need to trade off the spring stiffness of the TMDI. The resonance 252 

behaviour of the coupled system can be modified by adjusting inertance and the excessive vibration 253 

transmission in the original system can then be substantially attenuated. 254 
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 255 

Figure. 4. Effect of the TMDI with different configurations on the (a) kinetic energy 𝐸b and (b) dissipated power 256 
�̅�d1. The dashed line represents the original system without TMD. In (a), the red line denotes the system employing 257 
a TMD (𝜆1 = 0). The blue and pink lines mark the system using the TMDI with 𝜆1  = 2 and 10, respectively. In 258 
(b), the red, blue and pink lines mark the system using the TMDI with 𝜆1  = 2, 4 and 10, respectively. Symbols: 259 
RK results 260 

Figure 4(a) shows the effects of TMDI on the maximum kinetic energy 𝐸b of the bearing base. As 261 

a comparison to the referenced original system case without TMD, it is found that the TMD can lower 262 

the first peak of the kinetic energy. The second original peak of the reference case (dashed line) is split 263 

into two individual peaks with smaller values. With the proposed TMDI employing axial inerter (𝜆1 ≠264 

0), the second and third peaks move to the left comparing to the TMD case (𝜆1 = 0). In addition, the 265 

second peak value is further reduced, showing a good vibration suppression performance of the TMDI 266 

at low frequencies. In Fig. 4(b), three cases considering TMDI are presented with 𝜆1 changing from 2 267 

to 4 and to 10. Comparing to the TMD (𝜆1 = 0) case, the use of axial inerter can increase the amount 268 

of energy that is dissipated by the viscous damper of the TMDI in the frequency band between 0.1 <269 

Ω < 0.4, away from peaks. Moreover, the addition of the axial inerter with a larger inertance 𝜆1 can 270 

increase substantially the first and third peak value of �̅�d1. Those phenomena indicate that the proposed 271 

TMDI with the use of axial inerter can assist the reduction of longitudinal vibration by providing a 272 

stronger energy dissipation effect at low frequencies.  273 

In Figs. 5 and 6, the effectiveness of the TMDI with both the axial and lateral inerters is investigated. 274 

The results are obtained by the combined use of the semi-analytical HB-AFT method and numerical 275 

continuation method. The adaptive Runge-Kutta (RK) method is also employed for comparison. The 276 

stability of the system is determined by the Floquet theory and confirmed by the RK method. The 277 

unstable range of the system is marked by dash-dotted line, as shown in the zoom-in subfigure in Figs. 278 

5 and 6. Three different cases are selected with the lateral inertance-to-mass ratio 𝜆2 varying from 0 to 279 

50, to 75, and to 100, while the axial inertance-to-mass ratio 𝜆1 is fixed as 1. A reference original system 280 

case without using TMDI is shown by a dashed curve for comparison. 281 
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  282 

Figure. 5. Effect of TMDI with different configurations on the (a) force transmissibility 𝑇𝑅 and (b) transmitted 283 
power �̅�t. The dashed line represents the original system without TMDI. The red, blue and pink lines mark the 284 
system using the TMDI with 𝜆2  =50, 75 and 100, respectively. Symbols: RK results 285 

Figures 5(a), 5(b), 6(a) and 6(b) present the force transmissibility 𝑇𝑅 to the bearing base, the 286 

steady-state time-averaged energy transmission to the foundation �̅�t, the time-averaged input power �̅�in 287 

and the maximum kinetic energy 𝐸b of the bearing base, respectively. Comparing to the reference case 288 

of the original system. There is a slight left-movement of the first peak in each curve of Figs. 5 and 6 289 

by the use of the TMDI. The first three peaks in the force transmissibility, power dissipation, kinetic 290 

energy and input power curves are extended to the left with lower peak values, demonstrating an 291 

enhanced suppression performance for low-frequency vibration transmission. With the increase of the 292 

lateral inertance 𝜆2 from 50 to 100, the first three peaks in each curve of those indices bend further to 293 

the low frequencies and the peak values become smaller. However, there is little change in 294 

corresponding peak frequencies of those performance indicators regardless of the variations of the 295 

lateral inertance 𝜆2. This is of contrast to the effect of the axial inerter, the addition of which can change 296 

substantially the peak frequency of those indices, as shown in Figs. 3 and 4.  297 

  298 
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Figure. 6. Effect of TMDI with different configurations on the (a) input power �̅�in and (b) kinetic energy 𝐸b. The 299 
dashed line represents the original system without TMDI. The red, blue and pink lines mark the system using the 300 
TMDI with the 𝜆2  =50, 75 and 100, respectively. Symbols: RK results 301 

The main reason for the major differences in the effects of the axial and the lateral inerters is that 302 

the lateral inerters only take the effect when there is relatively large deformation in the geometry of the 303 

TMDI, i.e., a relatively large axial relative displacement between the TMDI mass 𝑚1 and the bearing 304 

base 𝑚b . When the frequency of the fluctuating force on the propeller is away from the resonant 305 

frequencies, the deformation of the TMDI is small and the nonlinear force term generated by the 306 

geometric nonlinearity of the lateral inerters will be small, leading to an insignificant contribution to 307 

the vibration transmission of the system. However, near the resonance, the lateral inerters can suppress 308 

considerably the system response and vibration transmission. Figs. 7(a) and (b) further demonstrates 309 

the effects of different inertance combinations of TMDI on the power input and power transmission, 310 

respectively. Four cases with different values of 𝜆1 and 𝜆2 are compared. The other parameters are set 311 

the same to the system in Figure 6. It can be summarized that the inertance of axial and lateral inerters 312 

can be carefully selected to tailor the characteristic of the device, providing a good vibration suppression 313 

performance at targeted frequency band. 314 

 315 

Figure. 7. Effect of TMDI with different inertance combinations on the (a) input power �̅�in  and (b) power 316 
transmission �̅�t. The black, red, blue and pink lines mark the system using the TMDI with the 𝜆1 = 1, 𝜆2 = 0; 317 
𝜆1 = 2, 𝜆2 = 50; 𝜆1 = 4, 𝜆2 = 75; 𝜆1 = 8, 𝜆2 = 100, respectively. Symbols: RK results. 318 

Figure 8 depicts the time histories of the vibration transmission indicators in the steady state at the 319 

first resonant frequency of the original system without TMDI (Ω = 0.1026) in Figs. 8(a), (b) and (c), 320 

and at the second resonant frequency of the original system (Ω = 0.39) in Figs. 8(d), (e) and (f). The 321 

red line and blue line mark the case with TMDI (𝜆1 = 1, 𝜆2 = 50) and the case without TMDI, 322 

respectively. The results demonstrate that the use of TMDI can largely reduce the amplitude of the 323 

instantaneous power input, transmitted force and instantaneous power transmission to the foundation at 324 

original peak frequencies. Moreover, from Figs. 8(a), (c), (d) and (f), it is found that the proposed TMDI 325 

can reduce substantially the positive part of the instantaneous power input and power transmission at 326 
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the first original peak frequency, leading to a much smaller amount of energy input into the system as 327 

well as less vibrational energy transmitted to the foundation. 328 

 329 
Figure. 8. Time histories of instantaneous vibration transmission indices at the first original resonant peak 330 
frequency of Ω = 0.1026 in (a-c), and the second original resonant peak frequency of Ω = 0.39 in (d-f). In (a) 331 
and (d): the input power 𝑃in; in (b) and (e): the transmitted force 𝐹T, in (b) and (e): the transmitted power 𝑃t. The 332 
red and blue lines denote the cases with TMDI and without TMDI, respectively. 333 
 334 

5 Conclusions 335 

This study proposed the use of a nonlinear inerter-based vibration suppression device for enhanced 336 

attenuation of the longitudinal vibration transmission in the ship propulsion shafting system. The 337 

nonlinear device comprises a mass-spring-damper system, an axial inerter and a pair of lateral inerters 338 

creating geometric nonlinearity. The force transmissibility and power flow variables were employed to 339 

assess the performance of the device under variations of design parameters and configurations. It was 340 

found that the use of axial inerters can lower the peak force and power transmission from the bearing 341 

supporting base to the foundation. The resonant peaks in the kinetic energy, force transmission and 342 

power transmission curves were shifted to the low-frequency range. The lateral inerters can bend the 343 

main resonant peaks in the curves of force transmissibility, power input, power transmission and kinetic 344 

energy to the low frequencies with lower peak heights. The inertance of inerters can be adjusted to 345 

provide an anti-resonant frequency band so as to significantly attenuate the vibration transmission. With 346 

a comparison to the traditional mass-spring-damper device, the use of the proposed nonlinear inerter-347 

based device demonstrates enhanced vibration mitigation performance, particularly for the low-348 

frequency components of vibration transmission in the propulsion shafting system.  349 
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