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Abstract. This study investigates the vibration transmission and power dissipa-

tion behaviour of a mass-spring-damper system mounted on a conveyor belt. Cou-

lomb friction exists between the mass and the belt moving at a constant velocity 

and acts as the external force for the mass. The steady-state power flow charac-

teristics and system limit cycles are obtained based on numerical integrations. The 

vibration energy dissipation at the contact interface and by the viscous damper is 

evaluated and quantified. The vibration transmission is measured by force trans-

missibility. For the system without the viscous damper, the instantaneous friction 

power can be positive or negative, depending on the motion characteristics of the 

mass. For the system with the viscous damper, in the steady-state motion, the vi-

bration energy input caused by the friction can be dissipated by the viscous 

damper and also by the friction. Furthermore, effects of the magnitude of con-

veyor belt speed, damping ratio and friction force on the dynamic behaviour of 

systems are examined, and the power dissipation ratio of the system is analyzed. 

The results are expected to provide insights into the vibration transmission and 

suppression design of systems with friction. 

Keywords: Vibration Transmission, Power Dissipation, Damped System, Dry 

friction. 

1 Introduction 

Friction is a very complex phenomenon and occurs at the interface contacting bodies. It 

is usually inevitable and plays a significant role in various engineering fields, such as 

seismology, mechanical engineering and civil engineering. A great number of published 

studies have revealed rich dynamic behavior of frictional systems [1, 2]. Popp et al. [3,4] 

studied discrete and continuous models with stick-slip phenomena and observed abun-

dant bifurcation and chaotic behaviors. Kruse et al. [5] studied the influence of joints on 

the stability and bifurcation behavior of a friction-induced flutter system. In Ref. [6], 

both the numerical simulation on low-degree-of-freedom models and the experimental 
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validation on the real test rigs concerning the friction-induced vibration of systems were 

implemented. 

For a system of a mass placed on conveyor belt, the dry friction has a significant 

effect on its dynamics. The analysis of the non-linear dynamics for the mass-on-belt 

system is a fundamental problem for many engineering. Many researchers carried out a 

number of investigations on the frictional non-linear dynamics [7-9]. However, few 

studies have considered the energy transmission and dissipation of such system [10]. 

The vibrational power flow analysis approach is a valuable tool to characterize the dy-

namic behaviour of complex systems [11]. Royston and Singh [12] examined the energy 

flow in a hydraulic engine mount system and showed that significant amount of vibra-

tion energy can be transmitted through a nonlinear path to a flexible base. Vakakis et al. 

[13] observed the phenomenon of energy transfer and noted that nonlinear attachment 

can be used to channel and dissipate the vibration energy of a main structure. Yang et 

al. [14, 15] developed power flow analysis (PFA) method for nonlinear dynamical sys-

tems, which reexamines typical nonlinear systems from a power flow perspective. Re-

cently, the application of PFA to vibration control and vibration energy collection sys-

tems are investigated [16-21].  

In this paper, the vibration energy flow transmission and dissipation characteristics 

of nonlinear non-smooth conveyor belt systems are investigated. The Runge-Kutta 

method is employed to investigate the vibration force transmission and power flow be-

haviour of systems with dry friction nonlinearity. Effects of the feeding speed, damping 

ratio and friction force on results are studied. 

2 Single-degree of freedom (DOF) Coulomb friction models 

Fig. 1(a) shows the mass-on-belt frictional dynamic model, in which a mass block 

𝑚 is placed on the moving belt with a constant speed 𝑣𝑏. The mass is connected to a 

fixed wall through a viscous damper with damping coefficient 𝑐 and a linear spring with 

stiffness coefficient 𝑘, connected in parallel. The Coulomb friction exists at the interface 

between the block and the belt. Fig. 1(b) depicts the Karnopp model [22, 23] used to 

represent Coulomb friction.  

 

Fig. 1 (a) The spring–mass-damper system on the moving belt, and (b) the Karnopp model with mag-

nitude of the dynamic friction force 𝑓𝑑  and maximum static friction force 𝑓𝑚𝑠 . In (b), 𝑣𝑑 is the limit-

ing velocity of the assumed zeros velocity interval [−𝑣𝑑 , 𝑣𝑑] for Karnopp model. 
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The mass block is subjected to the combined action of the friction, the spring and 

the damping forces. According to the Newton’s second law, the equation of motion of 

the mass can be expressed as follows: 

𝑚𝑥̈ + 2𝑐𝑥̇ + 𝑘𝑥 = 𝑓𝑒𝑥 = 𝑓𝑐 (1) 

where 𝑓𝑒𝑥 is the external force and 𝑓𝑐 is the nonlinear dry friction force acting as the 

excitation force to the mass. The friction 𝑓𝑐 is described by the Karnopp model, written 

as:  

𝑓𝑐 = {

𝑓𝑑sgn(𝑣𝑟),                             if |𝑣𝑟| > 𝑣𝑑 ,

𝑓𝑚𝑠sgn(𝑓𝑒), if |𝑣𝑟| ≤ 𝑣𝑑  and |𝑓𝑒| ≥ 𝑓𝑚𝑠,

𝑓𝑒,                  if |𝑣𝑟| ≤ 𝑣𝑑  and |𝑓𝑒| < 𝑓𝑚𝑠.

(2) 

where 𝑓𝑑, 𝑓𝑚𝑠 and 𝑓𝑒 are the dynamic friction force, the maximum static friction force 

and the resultant external force in tangential direction, respectively; 𝑣𝑑 is the boundary 

velocity of the dead zone for Karnopp model. In this paper, it is assumed that 𝑓𝑑=𝑓𝑚𝑠 

[24]. When the Karnopp model is used, we have 𝑣𝑟 = 𝑣𝑏 − 𝑥̇ and 𝑓𝑒 = 𝑘𝑥 in Eq. (2). 

Following non-dimensional parameters are defined for parametric studies: 

 

𝜔0 = √
𝑘

𝑚
, 𝜁 =

𝑐

2𝑚𝜔0

, 𝑋 =
𝑥

𝑙0

, 𝐹𝑑 =
𝑓𝑑

𝑘𝑙0

, 𝑉𝑏 =
𝑣𝑏

𝜔0𝑙0

,

 𝑉𝑑 =
𝑣𝑑

𝜔0𝑙0

, 𝑉𝑟 = 𝑉𝑏 − 𝑋′, 𝜏 = 𝜔0𝑡 (3)

 

where 𝜔0 and 𝜁 are the undamped natural frequency and the damping ratio of the sys-

tem without considering the friction, 𝑙0 and 𝑋 are the undeformed length of the linear 

spring and the dimensionless displacement of the mass, 𝐹𝑑 is the non-dimensional mag-

nitude of the dynamic dry friction force named magnitude of friction hereafter, 𝑉𝑏,  𝑉𝑑 

and 𝑉𝑟  are the dimensionless velocity of the belt, limiting velocity of the assumed zeros 

velocity interval in the Karnopp model and relative velocity between the block and the 

mass, respectively, and 𝜏 is the dimensionless time. By using those parameters in Eq. 

(3), Eq. (1) can be transformed into its non-dimensional form: 

𝑋′′ + 2𝜁𝑋′ + 𝑋 = 𝐹𝑐  (4) 

where 𝐹𝑐 is the non-dimensional friction force, and is expressed by 

𝐹𝑐 = {

𝐹𝑑sgn(𝑉𝑟),                           if |𝑉𝑟| > 𝑉𝑑 ,

𝐹𝑑sgn(𝐹𝑒), if |𝑉𝑟| ≤ 𝑉𝑑  and |𝐹𝑒| ≥ 𝐹𝑑,

𝐹𝑒 ,                if |𝑉𝑟| ≤ 𝑉𝑑  and |𝐹𝑒| < 𝐹𝑑.

 (5) 

where 𝐹𝑒 = 𝑋 is the non-dimensional resultant force applied to the contacting interface 

in the tangential direction.  

Two cases are considered in this paper: Case I considers the absence of the viscous 

damper (i.e., damping coefficient is set to zero), while Case II considers the presence of 
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the viscous damper. The fourth-order Runge-Kutta method is used for the dynamic anal-

ysis to obtain the response and power flow variables.  

3 Energy flow and force transmissibility 

3.1 Force transmissibility 

To evaluate the level of vibration transmission between subsystems of an integrated 

linear or nonlinear structure, the force transmissibility has been widely employed as 

indicator [25]. For the current SDOF system with friction, the force transmissibility 𝑇𝑅𝐵 

can be defined as the ratio between the maximum magnitude of the transmitted force to 

the wall and the amplitude of the external force: 

𝑇𝑅𝐵 =
max(|ℜ(𝐹𝑡𝐵)|)

𝐹𝑒𝑥

(6) 

where 𝐹𝑡𝐵  represents the non-dimensional transmitted force from mass to the wall. 

𝐹𝑡𝐵 = 𝑋 is for the system without dampers (Case I), while 𝐹𝑡𝐵 = 𝑋 + 2𝜁𝑋′ is for the 

system with a damper (Case II). For the frictional system without external force excita-

tion, the friction can be treated as the input force of the mass-spring-damper system, so 

that the 𝐹𝑒𝑥 in Eq. (6) can be replaced by 𝐹𝑑. 

 

3.2 Time-averaged power flow variables 

Pre-multiplying the governing equation (4) by the velocity 𝑋′, the equation of power 

balance of the system is obtained: 

𝑋′𝑋′′ + 2𝜁𝑋′𝑋′ + 𝑋′𝑋 = 𝑋′𝐹𝑐(𝛥(𝑋′)) (7) 

Alternatively, it can be written in the following form: 

𝐾̇ + 𝑝𝑑𝑣 + 𝑈̇ = 𝑃𝑓 (8) 

where 𝐾̇ = 𝑋′𝑋′′ and 𝑈̇ = 𝑋′𝑋 are the non-dimensional rates of change of system ki-

netic and potential energies. 𝑃𝑑𝑣 = 𝑋′𝑋′ and 𝑃𝑓 = 𝑋′𝐹𝑐(𝛥(𝑋′)) are dimensionless in-

stantaneous dissipated power and friction related power. In this paper, time-averaged 

behaviour of power flows is considered. Using an averaging time span of 𝜏𝑝: 

𝑃̅𝑑𝑣 =
1

𝜏𝑝

∫ 𝑃𝑑𝑣d𝜏 =
𝜏𝑖+𝜏𝑝

𝜏𝑖

1

𝜏𝑝

∫ 2𝜁𝑋′𝑋′d𝜏,
𝜏𝑖+𝜏𝑝

𝜏𝑖

(9a) 

𝑃̅𝑑𝑓 =
1

𝜏𝑝

∫ H(−𝑃𝑓)d𝜏 =
𝜏𝑖+𝜏𝑝

𝜏𝑖

1

𝜏𝑝

∫ H(−𝑋′𝐹𝑐(𝛥(𝑋′))) d𝜏
𝜏𝑖+𝜏𝑝

𝜏𝑖

(9b) 

𝑃̅𝑓_𝑖𝑛 =
1

𝜏𝑝

∫ H(𝑃𝑓)d𝜏 =
𝜏𝑖+𝜏𝑝

𝜏𝑖

1

𝜏𝑝

∫ H(𝑋′𝐹𝑐(𝛥(𝑋′))) d𝜏
𝜏𝑖+𝜏𝑝

𝜏𝑖

(9c) 
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where H() denotes the Heaviside step function, and 𝜏𝑖 is the starting time for averaging. 

𝑃̅𝑑𝑣 denotes the time-averaged dissipated power by the damper, 𝑃̅𝑑𝑓  is the power dissi-

pated by the friction that is converted into heat, and 𝑃̅𝑓_𝑖𝑛 is the input power by friction. 

For a periodic response, we have 𝑃̅𝑑𝑣 + 𝑃̅𝑑𝑓 = 𝑃̅𝑓_𝑖𝑛 with the averaging time set as one 

periodic cycle. 𝑅𝑐 =
𝑃̅𝑑𝑣

𝑃̅𝑓_𝑖𝑛
 and 𝑅𝑓 =

𝑃̅𝑑𝑓

𝑃̅𝑓_𝑖𝑛
 are time-averaged power dissipation ratio by 

the damping and the friction. 

4 Results and discussions 

This study focuses on the power flow characteristics of system with dry friction con-

tact at the interface. It is assumed that initially at 𝑡 = 0, the mass is placed on the belt 

such that their velocities are the same. The friction points to the right and forces the 

block to slide to the right, while the spring and the damping force act against the motion. 

The non-smoothness of the friction force is reflected by the conditional statement in the 

algorithm for numerical integrations of the governing equation. Another system param-

eter is fixed as 𝑉𝑑 = 10−3. The steady-state responses and the vibration dynamics of the 

system are of interest here and initial conditions can be set as 𝑋(0) = 𝐹𝑑, 𝑋’(0) = 𝑉𝑏. 

Figure 2 shows time histories of power dissipation by the friction for Case I without 

the presence of the viscous damper. Based on the given initial conditions, it shows that 

the steady-state instantaneous total power of the friction can be positive or negative de-

pending on the direction of friction and velocity. When the feeding speed 𝑉𝑏  is not 

greater than the limiting velocity 𝑉𝑑 for the Karnopp friction model, the stick phenom-

enon will occur. When the speed of the conveyor belt is larger, the system exhibits pe-

riodic self-excited vibrations. Compared with the classical mass-spring-damper system 

without conveyor belt, the friction force in case I is the energy source when the mass 

slides on the conveyor, and it provides energy input into this system. Over a cycle of 

periodic oscillation, the total energy input by the friction equals to the energy dissipated 

by the friction, indicating that the work done by sliding friction on the block in case I is 

dissipated by itself. 

Figure 3 shows the steady-state limit oscillations of the system with consideration 

of the viscous damper. Fig. 3(a) presents effects of different damping ratios on limit 

cycles, suggesting that a larger damping ratio correspond to a smaller limit cycle. It also 

shows that the conveyor belt speed has little influence on the magnitude of the limit 

cycle. It demonstrates that case II system is stable and has self-excited periodic vibra-

tions in the steady state. 

Figure 4 presents the instantaneous power flow of the system considered in case II 

with the viscous damper. As depicted in Fig. 4(a) and (d), when the magnitude of friction 

𝐹𝑑 increases from 0.02 to 0.04, the power dissipation by the viscous damping is not 

affected while the amplitude of the friction power flow increases. As shown in Fig. 4(b) 

and (e), by changing the value of the conveyor belt speed 𝑉𝑏 from 0.01 to 0.1, the figure 

shows only phase changes in the damping dissipated energy and the frictional power 

flows. From Fig. 4(c) and (f), as the damping ratio 𝜁 increases from 0.01 to 0.03, ampli-

tudes of the power flow magnitude of the viscous damper and the friction are further 
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reduced. By a comparison of case I, the friction force also provides power input into the 

system but the positive part of the frictional power flow is slightly larger than the nega-

tive part through calculation. The reason is that the value of power dissipation by the 

viscous damper is small being smaller than 10−11. In contrast, the order of magnitude 

of frictional power flow is larger, 10−6 in Fig. 4(d), (e) and (f). 

 

Fig. 2. Time histories of instantaneous power dissipation by the friction for case I in the steady state. In 

(a), the blue, red and green lines are the quantities for 𝑉𝑏 = 0.001, 0.01 and 0.1 with a consistent  𝐹𝑑 =

0.02, respectively. In (b), the blue and red lines are the characteristic for 𝐹𝑑 = 0.02 and 0.04 with a 

consistent 𝑉𝑏 = 0.01, respectively. Initial conditions: X(0)=𝐹𝑑 , X’(0)=𝑉𝑏. 

 

Fig. 3. Limit cycles on steady-state response for case II (the effect of the damper is considered). In (a), 

the blue and red lines are characteristics for 𝜁 = 0.01 and 0.03 with consistent parameters of  𝐹𝑑 =

0.02, 𝑉𝑏 = 0.01. In (b), the blue and red lines are the characteristic for 𝑉𝑏 = 0.01 and 0.1 with con-

sistent parameters of 𝐹𝑑 = 0.02, 𝜁 = 0.01. Initial conditions: X(0)=𝐹𝑑 , X’(0)=𝑉𝑏.  
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Fig. 4. Instantaneous power flow quantities of system on steady-state motion for case II (the effect of 

the viscous damper is considered). In (a) and (d), the black and red lines are characteristics for 𝐹𝑑 =

0.02 and 0.04 with consistent parameters of 𝜁 = 0.01 and 𝑉𝑏 = 0.01. In (b) and (e), the black and blue 

lines are characteristics for 𝑉𝑏 = 0.01 and 0.1 with consistent parameters of 𝐹𝑑 = 0.02 and 𝜁 = 0.01. 

In (c) and (f), the blue and red lines are characteristics for 𝜁 = 0.01 and 0.03 with consistent parameters 

of 𝐹𝑑 = 0.02 and 𝑉𝑏 = 0.01. (a), (b) and (c) are the instantaneous power dissipation characteristics by 

the viscous damping. (d), (e) and (f) are power flow quantities of the friction force. Initial conditions: 

X(0)=𝐹𝑑 , X’(0)=𝑉𝑏.  

The energy dissipation is further investigated to reveal dynamics of the system. Fig. 

5(a) and (b) shows the effects of frictional contact on the power flow behavior of the 

system in the steady-state motion. In Fig. 5(a), the power dissipation ratio by the viscous 

damper 𝑅𝑐, decreases significantly with the increase of the magnitude of the friction 

from 0.02 to 0.04, and increases slightly with the damping ratio from 0.01 to 0.03. When 

the feeding speed from the belt increases to 0.1, the figure shows little change in power 

flow quantities. In comparison, it is also found that most of the power is dissipated by 

the friction, about 99.99%. Which is consist with findings in Fig. 4 that the magnitude 

of the power dissipation by the damper is much smaller than the frictional dissipated 

power.  

In Fig. 6, as the damping ratio 𝜁 of the viscous damper equals zero (i.e., case I), 

effects of the magnitude of dry friction 𝐹𝑑 and conveyer belt speed 𝑉𝑏 on the force trans-

missibility 𝑇𝑅𝐵 are obtained. It can be found that 𝑇𝑅𝐵 decreases with friction force in-

crease from 0.02 to 0.04 due to frictional resistance. On the other hand, 𝑇𝑅𝐵 increases 

as the belt speed 𝑉𝑏  increases from 0.01 to 0.1. For case II considering the viscous 

damper, changes of the magnitude of friction force, damping ratio and feeding velocity 

can hardly affect the value of 𝑇𝑅𝐵 because of small change of the transmitted force 𝐹𝑡𝐵. 

Fig. 6 also shows that the force transmission to the wall has a downward trend with the 

increase of the damping ratio, resulting from smaller limit cycles in Fig. 3(a). Compared 
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with the effects of the belt speed, variations in the level of dry friction and damping have 

a relatively large effect on the force transmissibility. 

 

Fig. 5. Effects of the magnitude of friction 𝐹𝑑, damping coefficient 𝜁 and conveyor belt speed 𝑉𝑏 on the 

time-averaged power dissipation ratio (a) by the damper 𝑅𝑐 of the system and (b) by the friction 𝑅𝑓. 

The blue and green lines are characteristics of 𝑉𝑏 = 0.01, 𝐹𝑑 = 0.02 and 0.04. The solid lines show the 

time-averaged power dissipation ratio of 𝜁 = 0.01 and the dash lines are for 𝜁 = 0.03. The red symbol 

indicates the case for 𝑉𝑏 = 0.1 of  𝜁 = 0.01 and 𝐹𝑑 = 0.02. Initial conditions: X(0)=𝐹𝑑 , X’(0)=𝑉𝑏. 

 

Fig. 6. Force transmissibility of system versus damping ratio 𝜁 in steady-state motion. The black and 

blue lines are the characteristics of 𝑉𝑏 = 0.01 for 𝐹𝑑 = 0.02 and 0.04. The red and green lines are the 

characteristics of 𝑉𝑏 = 0.1 for 𝐹𝑑 = 0.02 and 0.04. Initial conditions: X(0)=𝐹𝑑 , X’(0)=𝑉𝑏. 

5 Conclusions 

This study investigated the power flow characteristic of a mass-spring-damper with a 

mass placed on a belt moving with constant velocity. Coulomb friction with Karnopp 

model is considered at the mass-belt interface. Time histories of the power flow quanti-

ties are obtained for two different cases with and without considering the viscous 

damper. The net power flow is zero when the viscous damping is ignored, that is, the 
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work done by friction is dissipated by itself. When the damping is considered, the power 

flow magnitude of the friction is suppressed with the increase of the damping ratio 𝜁 

(which is the relative value between damping force and critical damping force). The 

magnitude of the friction has significant influence on frictional power flow but little 

effect on the damper’s power flow. It is also found that the feeding speed of the system 

influences the phase of the steady-state response. By analyzing the time-averaged power 

dissipation ratio of the system, it is found that most of the power is dissipated by the 

friction not by the viscous damper.  It is also shown that the force transmissibility of the 

system is mainly affected by the friction force and damping coefficient. These findings 

improve the understanding of the vibration transmission and suppression design of fric-

tional systems. 
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