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Abstract: This study investigates the use of a spring-bar mechanism (SBM) in a vibration suppression
system to improve its performance. The SBM, comprising bars and springs, is configured with
a conventional linear spring-damper isolator unit. The dynamic response, force transmissibility,
and vibration energy flow behaviour are studied to evaluate the vibration suppression performance
of the integrated system. It is found that the SBM can introduce hardening, softening stiffness,
or double-well potential characteristics to the system. By tuning the SBM parameters, constant
negative stiffness is achieved so that the natural frequency of the overall system is reduced for
enhanced low-frequency vibration isolation. It is also found that the proposed design yields a wider
effective isolation range compared to the conventional spring-damper isolator and a previously
proposed isolator with a negative stiffness mechanism. The frequency response relation of the force-
excited system is derived using the averaging method and elliptical functions. It is also found that the
system can exhibit chaotic motions, for which the associated time-averaged power is found to tend
to an asymptotic value as the averaging time increases. It is shown that the time-averaged power
flow variables can be used as uniform performance indices of nonlinear vibration isolators exhibiting
periodic or chaotic motions. It is shown that the SBM can assist in reducing force transmission and
input power, thereby expanding the frequency range of vibration attenuations.

Keywords: spring-bar mechanism; vibration isolation; chaotic motion; power flow analysis;
nonlinear stiffness; quasi-zero stiffness

1. Introduction

Scientists and engineers are often confronted with the tasks of preventing the trans-
mission of excessive vibrations from a vibrating source to its surrounding environment [1].
To deal with them, a common approach is to insert a vibration isolator between the source
and the receiving structure. For the effective attenuations of the transmitted force (or
displacement), the linear vibration isolation theory suggests that the natural frequency
of a linear isolator Ωn has to be much lower than the excitation frequency Ω [2]. As a
result, problems can arise when linear isolators are used in harsh environments, such as in
cars, ships, aircrafts, and earthquake vibration isolation units, which are subject to shock,
impact, or ground motion excitations containing low-frequency components. In these
circumstances, successful vibration isolation requires an ultra-low supporting stiffness for
a low natural frequency. This, in turn, results in a large static deflection. However, in many
practical devices, the maximum allowable deflection is confined, and the use of low static
stiffness becomes infeasible. In view of this, many methods have been proposed to improve
vibration isolation performance in the low-frequency range without compromising static
deflection. One possible approach is to create anti-resonances in the frequency–response
curves so that successful isolation is achieved in a relatively narrow band of excitation fre-
quencies [3]. Alternatively, active control units may be introduced to modify the dynamic
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characteristics of the isolation system in the low-frequency range, but this approach leads
to extra energy costs [4].

Recently, there has been a great deal of interest in configuring passive elements with
a linear isolator to achieve low-frequency vibration isolations. These elements, usually
referred to as Quasi-Zero-Stiffness (QZS) mechanisms [5] or Negative Stiffness Mecha-
nisms (NSM) [6], can generate a negative restoring force or negative stiffness so that low
dynamic stiffness of the overall system is achieved while keeping its static stiffness high
and the static deflection small. Such mechanisms are often created by springs [7–10],
magnets [11,12], bars [13,14], circular rings [15], or composite plates [16]. By transforming
a linear system into a nonlinear system with NSMs, it has been shown that the natural
frequency of the linearized system can be reduced. Based on linear vibration theories, the
functioning frequency range of these isolation systems will be enlarged, and hence better
vibration performance can be expected. Apart from the nonlinear stiffness application in
the isolation systems, some researchers have also studied the nonlinear isolation by using
electromagnetic shunt damping [17,18]. In recent years, NSMs have also been studied in
practical engineering applications and in experimental tests, including drilling systems [19],
robots [20], Stewart platforms [21], and vehicle seats [22].

Many previous investigations focused on the displacement response of isolation
systems, while the vibration power flow and energy transmission characteristics were often
ignored. The vibrational power flow analysis (PFA) combines the effects of both force and
velocity responses with a single quantity and can better reflect the transmission of vibration
energy within a dynamical system [23]. The power flow analysis approach has been
developed into a widely accepted tool to assess vibration transmission in linear/nonlinear
dynamical systems [24–27]. Xiong et al. [28] used power flow analysis to investigate the
interactional dynamic performance of a system with a vibrating equipment, a nonlinear
isolator, and a flexible ship excited by sea waves. Yang et al. studied the power flow
behaviour and energy transmission characteristics of the Duffing oscillator [29], a nonlinear
absorber [30], and a nonlinear isolator [31]. In recent years, the PFA has also been applied
to the coupled oscillators with different nonlinear joints [32–34], with clearance [35,36], or
with nonlinear inerter mechanisms [37].

In our previous study [14], a nonlinear isolation system with a NSM created by a pair
of bars under constant compression forces was investigated. It was successfully shown
that the NSM can reduce the natural frequency of the linearized system and significantly
lower the force and power transmission in the low-frequency range. However, it was also
found that the NSM is nonlinear and that it can possibly lead to sub-harmonic resonances
resulting in a larger response as well as a higher level of power flows at high excitation
frequencies. In addition, the NSM introduced softening nonlinearity into the system,
thus limiting the maximum allowable deflection to avoid static instability. Therefore, it
is necessary to obtain improved NSM design, which can not only assist in low-frequency
vibration isolation but can also avoid undesirable nonlinear effects.

To address these issues, this paper develops the previous NSM design by replacing the
compression forces with adjustable spring forces dependent on the spring stiffness and the
initial deflection. This new configuration based on the spring-bar mechanism (SBM) can
better control the stiffness/restoring force characteristics so that effective isolation can be
achieved without compromising isolation performance due to nonlinearity. The dynamics
and power flow behaviour of the integrated vibration isolation system is investigated
thoroughly over the design parameter space so as to make better use of the SBM without
introducing undesirable nonlinear effects. In the following content, the SBM and the
integrated vibration isolation system model is described. Then, the mathematical model,
the stiffness and restoring force characteristics, and bifurcation analysis are presented. The
response of the integrated system subject to a harmonic excitation is studied using both
analytical approximations based on the averaging method and numerical integrations.
Both force transmissibility and power flow characteristics are studied to assess the vibration
isolation performance of the system with periodic responses. Moreover, the power flow
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characteristics of the system exhibiting possible bifurcations and chaotic responses are
examined. Some conclusions are provided at the end of the paper.

2. Mathematical Modelling
2.1. Model Description

As shown in Figure 1a, the current vibration isolation system is developed from a
nonlinear isolator model from our previous study, shown in Figure 1b [14]. In both systems,
a vibrating mass m is subjected to a harmonic excitation with amplitude fe and frequency ω.
To isolate its vibration from transmitting to base point D, a usual approach is to insert a
linear isolator, which comprises a linear vertical spring of stiffness k1 and a viscous damper
with a damping coefficient c. In order to improve vibration isolation performance at low
frequencies, a spring-bar mechanism (SBM) can be configured with the linear isolator. Here,
the new isolator includes two rigid bars of a fixed length l, with one end pinned together
at point E with the mass. Compared to our previous design with a pair of compressed
bars [14], there are now horizontal springs with stiffness k2 connected to the bars so as
to enlarge the design space for the stiffness characteristics. The joints A and B can move
freely in fixed frictionless horizontal channels. The motion of the system is constrained to
the plane of the paper. The static equilibrium position of the mass, at which the bars are
horizontal, is taken as the reference position of x = 0. Due to the symmetry of the system,
the mass m can only have a vertical displacement. In real-world applications, the mass of
a force-excited machine is usually much heavier than that of the spring-bar mechanism;
therefore, the latter is considered negligible in the current study. It is straightforward to
construct the vibration isolator shown in Figure 1a by joining the side walls with the ground
wall. In other words, the spring-bar mechanism as well as the vertical mass-spring-damper
are configured in a frame. In this way, the experimental prototype of the proposed isolator
can be made, and the proposed isolator can be inserted between an applied force and
the mounted point, applicable to most engineering scenarios in which vibration isolators
are used. Compared to the previous vibration isolator design shown in Figure 1b, which
requires the generation of constant compressive force P, the current design in Figure 1a
comprising the SBM only requires widely available physical springs and bars and can be
realized conveniently in practice.

Figure 1. Schematics of the vibration isolation systems with (a) the SBM and (b) an NSM [14].

Here, we investigate the behaviour of the current SBM alone before studying the
dynamics of the integrated system. As shown in Figure 2a, compared to the original
length of the horizontal springs, there is an initial deflection of δ0 when the bars are
horizontal. Here, δ0 is positive when the springs are under tension and negative when
under compression. When the bar joint E is subject to a vertical displacement of x, as
shown in Figure 2a, the length of each spring increases by δ = l(1− cos θ), where θ denotes
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the angle between the bar A′E′ and the horizontal line A′B′. Correspondingly, the spring
force becomes

fp = k2(δ0 + δ). (1)

Figure 2. A schematic representation of the SBM system with (a) the geometrical deflection and (b) a
free-body diagram of the bars.

Based on the geometrical relations, we have

sin θ =
x
l

, cosθ =

√
l2 − x2

l
, tan θ =

x√
l2 − x2

, (2)

where x 6= l. As the springs and bars are considered to be rigid with negligible mass, the
total resultant force applied on the joint E in the vertical direction is

fr = 2 fn = 2 fp tan θ, (3)

which is also the restoring force of the SBM, as shown in Figure 2b. Using Equations (1)
and (3) and replacing the trigonometric terms, we have

fr = 2k2

(
δ0 + l −

√
l2 − x2

) x√
l2 − x2

(4)

If δ0 = −l, i.e., the initial compression of the horizontal spring is the same as the
length of the bars when x = 0, the restoring force of the SBM will be

fr = −2k2x. (5)

This equation suggests that the SBM can provide a linear negative restoring force
and consequently a constant negative stiffness. By configuring this linear SBM with the
vertical spring-damper unit, the dynamic stiffness of the system can be reduced without
introducing stiffness nonlinearity.

2.2. Governing Equation

With reference to Equation (4), the governing equation of motion of the vibration
isolation system can be written as

m
..
x + c

.
x + k1x + 2k2

(
δ0 + l −

√
l2 − x2

) x√
l2 − x2

= fecos ωt, |x| < l. (6)

To assist analysis, non-dimensional parameters and variables are introduced as

ω0 =

√
k1

m
, ξ =

c
2mω0

, X =
x
l

, F0 =
fe

k1l
, Ω =

ω

ω0
, τ = ω0t, α =

δ0

l
, β =

2k2

k1
, (7)

where ω0 is the natural frequency of the linear system without adding the SBM; ξ is
non-dimensional damping ratio; X, F, Ω and τ represent the non-dimensional displace-
ment, excitation amplitude, excitation frequency, and time, respectively; α denotes non-
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dimensional deflection of the horizontal springs when the bars are in the horizontal direc-
tion. Non-dimensional parameter β characterizes the relative stiffness of the horizontal
springs against the vertical one and thus can only be positive. Using these parameters and
variables, Equation (6) is written into a dimensionless form

X′′ + 2ξX′ + (1− β)X + β(1 + α)
X√

1− X2
= F0 cos Ωτ, |X| < 1 (8)

where the primes denote differentiations with respect to the non-dimensional time τ.
Equation (8) shows that the SBM introduces a linear term –βX in the system and also a
possible nonlinear one β(1 + α)X/

√
1− X2 when α 6= −1. This nonlinearity is affected by

different combinations of design parameters α and β. Consequently, for a better application
of the SBM, the dynamics of the integrated system should be investigated thoroughly.
In comparison, there is only one design variable to control the stiffness in the previous
study, and nonlinearity and some undesirable nonlinear phenomena cannot be avoided [14].
Therefore, the current SBM design has a larger degree of control over the dynamic behaviour
of the system.

The non-dimensional restoring force of the system is

G(X) = (1− β)X + β(1 + α)
X√

1− X2
. (9)

The overall stiffness of the system is obtained by differentiating G(X) with respect
to X:

H(X) = (1− β) +
β(1 + α)

(1− X2)
√

1− X2
. (10)

As shown in Figure 3, when α = −1, i.e., δ0 = −l, the restoring force will be pro-
portional to the displacement X, and the system will be linear, with a constant stiffness
of 1− β. When α 6= −1, the restoring force is a nonlinear function of the displacement,
and the system becomes nonlinear. When (α, β) = (−0.5, 1.5) or (−0.4, 5), the stiffness
H(X) increases with the deflection |X|. For the former case, the stiffness remains positive
so that the restoring force increases with X. In comparison, the stiffness of the latter system
with (α, β) = (−0.4, 5) may be negative in the neighbourhood of the static equilibrium
position X = 0. For a system with (α, β) = (−1.5, 0.5), it can be seen that the stiffness
H(X) decreases with an increasing deflection and that the system exhibits a softening stiff-
ness characteristic. Clearly, the parameters α and β of the SBM should be chosen properly,
as they determine the stiffness characteristics of the system.

Figure 3. (a) Restoring force and (b) stiffness characteristics of the system. Solid, dashed, dash–
dot, and dotted lines represent systems with (α, β) = (−1, 0.75), (−1.5, 0.5), (−0.5, 1.5), and
(−0.4, 5), respectively.
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Using a Taylor expansion of Equation (10) around X = 0, the overall stiffness of
the corresponding linearized system is found to be 1 + αβ. Therefore, for different com-
binations of α and β with a fixed product, the linearized stiffness at the equilibrium
point will be the same. This was demonstrated in Figure 3, in which for three sets
of (α, β) = (−1, 0.75), (−1.5, 0.5), or (−0.5, 1.5) with αβ = −0.75, the stiffness at
X = 0 continues to be H(X) = 0.25.

The natural frequency of the linearized system is

Ωn =
√

1 + αβ. (11)

According to the linear vibration theory, a reduction of the natural frequency leads to a
larger effective isolation frequency range. Thus, the value of αβ can be set close to −1 such
that the natural frequency Ωn tends to zero, yielding a quasi-zero stiffness behaviour. This
requires that when the mass is at X = 0, the horizontal springs need to be in compression
so that α < 0. Figure 4a shows a three-dimensional surface plot of the variations of the
natural frequency of the linearized system against stiffness parameters α and β. For better
clarity, Figure 4b plots two-dimensional curves with the points (α, β) on each of them
corresponding to systems of the same linearized natural frequency. Clearly, Ωn is smaller
than 1 when α is negative and is larger than 1 when α becomes positive. This indicates that
by adjusting the initial deflection of the horizontal springs as well as the stiffness ratio of
the springs, it is possible to achieve a lower or higher natural frequency compared to that
of the conventional linear isolator.

Figure 4. Natural frequency of the linearized system; (a) 3–dimensional and (b) 2–dimensional plots.

2.3. Stability Analysis

To assist in further analysis, Equation (8) is written in the form of state–space repre-
sentation as (

X′

Y′

)
=

(
Y
F0cos Ωτ − 2ξY− (1− β)X− β(1 + α) X√

1−X2

)
. (12)

The equilibrium points of the unforced system (F0 = 0) can be obtained by letting X′ = Y′ = 0:

(X0,Y0) = (0, 0) and (X1,2,Y1,2) =

±
√

1− β2
(

1 + α

1− β

)2
, 0

, (β 6= 1). (13)

While (X0,Y0) always exists for varying α and β, the latter two points (X1,2,Y1,2) exist only
when 0 < β(1+α)

1−β < 1. The stability of these equilibria can be assessed by studying the
corresponding Jacobian matrix of Equation (12):

A =

[
0 1

−β(1 + α)
(
1− X2)− 3

2 − (1− β) −2ξ

]
. (14)
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The characteristic equation of matrix A is

λ2 + 2ξλ + β(1 + α)
(

1− X2
)− 3

2
+ (1− β) = 0. (15)

By investigating the signs of the real part of the solutions to this equation, the stability
of the equilibrium points can be determined. Using this and the total number of equilibria,
the bifurcation sets of the unforced system are obtained and shown in Figure 5, where the
entire parameter region is divided into four sub-regions by lines ACE and BCD. The former
line is defined by αβ = −1 with Ωn = 0 and the latter by α = −1, representing linear
systems. Bifurcation occurs when crossing either of these two lines. Table 1 shows different
types of systems categorized by parameters α and β. As shown previously in Equation (11),
as β remains positive, a linearized natural frequency lower than 1 requires α < 0. However,
systems satisfying this condition may either be due to softening stiffness in Region I to
hardening stiffness in Region II, to a double-well potential in Region III, or to a single hump
in the potential energy in Region IV. In contrast, the previous NSM study only exhibited
the softening stiffness characteristic. Therefore, with a prescribed design natural frequency
or a fixed product αβ, the relative values of α and β should still be selected carefully with
careful consideration of the stiffness characteristics. For example, for the softening stiffness
systems, the mass should not deflect beyond the unstable equilibrium points (X1,2,Y1,2) so
as to avoid reaching X = ±1 [14]. Similarly, the systems in Region IV are unstable and
thus not useful for vibration isolation.

Figure 5. The bifurcation set of the unforced system.

Table 1. Different categories of the system.

Locations of (α, β) Parameter Values System Characteristics

Line ACE αβ = −1 Ωn = 0
Line BCD α = −1 Linear system
Region I αβ > −1, α < −1 Softening stiffness system
Region II αβ > −1, α > −1 Hardening stiffness system
Region III αβ < −1, α > −1 Double-well potential system
Region IV αβ < −1, α < −1 Single-hump potential system
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2.4. Frequency Response Function

For periodic oscillations around the equilibrium position X = 0, the method of
averaging [38] can be used for a first-order approximation of the response in the steady
state. For its implementation, it is first assumed that the steady-state displacement is
X = r cos (Ωτ + φ) and that the corresponding velocity is Y = −rΩ sin(Ωτ + φ), where r
and φ are the response amplitude and the phase angle, respectively. Equation (12) is then
transformed into(

cos(Ωτ + φ) −r sin(Ωτ + φ)
−Ω sin(Ωτ + φ) −rΩ cos(Ωτ + φ)

)(
r′

φ′

)
=

(
0
f1

)
, (16)

where

f1 = F0cos Ωτ + 2rξΩ sin(Ωτ + φ) + rΩ2 cos(Ωτ + φ)− r cos(Ωτ + φ)∆, (17)

∆ = 1− β +
β(1 + α)√

1− r2 cos2(Ωτ + φ)
. (18)

A manipulation of Equations (17) and (18) leads to the following expressions of the
derivatives of the response amplitude and the phase angle:

r′ = − 1
Ω

f1 sin(Ωτ + φ), (19)

φ′ = − 1
rΩ

f1 cos(Ωτ + φ). (20)

According to the averaging method, the values of r′ and φ′ can be approximated by their
average values over a period of the excitation load so that

r′ = − Ω
2π

∫ 2π
Ω

0

1
Ω

f1 sin(Ωτ + φ)dτ, (21)

φ′ = − Ω
2π

∫ 2π
Ω

0

1
rΩ

f1 cos(Ωτ + φ)dτ. (22)

By further simplifying Equations (21) and (22), we obtain

r′ = − 1
2Ω

F0 sin φ− rξ, (23)

rφ′ = − 1
2Ω

F0 cos φ− rΩ
2

+
(1− β)r

2Ω
+

2β(1 + α)

πΩr
[K(r)− E(r)], (24)

where K(r) and E(r) represent the first and second complete elliptic integrals, respec-
tively [39]. By setting r′ = φ′ = 0 in Equations (23) and (24) and by cancelling out the
phase angle φ, the relationship between the system parameters and response amplitude is
obtained as

F2
0 = (2ξΩr)2 +

{(
Ω2 − 1 + β

)
r− 4β(1 + α)

πr
[K(r)− E(r)]

}2
(25)

When the system parameters are known, Equation (25) can be solved by using a
bisection method [40]. Figure 6 compares the obtained results based on the averaging
approximations with those obtained using the numerical time-marching Runge–Kutta
method. A good agreement between the analytical and numerical results is observed;
thus, the averaging formulations are verified. In Figure 6a, four sets of parameters with
(α, β) = (−1.5, 0.5), (−1.25, 0.6), (−1, 0.75), and (−0.5, 1.5) are considered. The prod-
uct αβ is kept as −0.75. The other parameters are set as ξ = 0.015, F0 = 0.01. Essentially,
the variations in the combinations of α and β change the system from being that of a
softening stiffness system for the first two parameter sets to a linear system and then finally
to a hardening stiffness system. Correspondingly, the figure shows that the resonant peak
bends to the low-frequency range for the softening stiffness systems and to high frequencies
for the hardening stiffness system. It shows that the response peak of the softening systems
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is larger than that of the linear and the hardening systems. Away from the resonance
region, the amplitude r is not sensitive to the variations in α and β. Figure 6b examines the
system responses when (α, β) = (−1.2, 0.7), (−1.6, 0.4), (−1, 0.36), and (0.2, 2.2). The
product αβ varies from −0.84 to −0.64 to −0.36 and then to 0.44. The figure shows a shift
of the resonance peak, which is due to the corresponding changes in the linearized natural
frequency from 0.4 to 0.6 to 0.8 and then to 1.2. It can be seen that the resonance peak
reduces with the natural frequency. In the low-frequency range, a lower natural frequency
leads to a larger response amplitude. In contrast, for a large excitation frequency Ω, the
response amplitude r is the almost same, and the curves tend to coincide with each other.

Figure 6. Frequency response curves of systems with (a) a fixed product αβ and (b) a varying
product αβ with ξ = 0.015, F0 = 0.01. The dashed, dash–dot, solid, and dotted lines in (a) are
for (α, β) = (−1.5, 0.5), (−1.25, 0.6), (−1, 0.75), and (−0.5, 1.5), respectively, while in (b), the
lines are for (α, β) = (−1.2, 0.7), (−1.6, 0.4), (−1, 0.36), and (0.2, 2.2), respectively. Circles,
triangles, crosses, and squares denote the corresponding numerical results.

The parameters set in Region III of Figure 5 yield systems of double-well potentials.
This kind of system can exhibit chaotic motion, as seen by the bifurcation diagrams in
Figure 7 when ξ = 0.02, α = −0.55, β = 2, F0 = 0.05. Figure 7a,b presents low-to-high
and high-to-low frequency sweepings of the displacement, respectively. The steady-state
non-dimensional displacement Xs(Ts) of the mass at sampling time Ts = Ti + 2(n− 1)π/Ω
is recorded, where Ti is the pre-iteration time. Note that for a periodic response, there
will only be finite points shown in the bifurcation diagram at the particular frequency.
For the current system with the prescribed parameters, the corresponding pattern of the
bifurcation diagram is similar to that of the Duffing oscillator with double-well potential.
Figure 7b indicates that the system can exhibit possible chaotic motion when Ω is lower
than 0.28 as well as when Ω is located in the range between 0.60 and 0.87. In terms
of vibration isolation, chaotic motion is generally considered undesirable. As there are
infinite frequency signals in the chaotic response, the traditional force transmissibility is
not suitable to reflect the vibration isolation effectiveness. Vibration power flow provides
a good indicator of vibration isolation by effectively quantifying the amount of energy
input, transmission, and dissipation associated with both periodic and non-periodic chaotic
responses [29].
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Figure 7. Possible chaotic motions of the double–well potential system ξ = 0.02, α = −0.55,
β = 2, F0 = 0.05. (a) Sweeping from low to high frequencies and (b) sweeping from high to
low frequencies. Period–1 (black), period–2 (red), period–3 (cyan), period–4 (green), and chaotic
motion (blue).

3. Force Transmission and Power Flow Analysis
3.1. Force Transmisibillity

Equation (25) may be rearranged to obtain the nonlinear receptance function of
the system:

r
F0

=
1√

(2ξΩ)2 +
{

Ω2 − 1 + β− 4β(1+α)
πr2 [K(r)− E(r)]

}2
, (26)

which represents the response amplitude of the system per unit excitation force. Note
that this function depends on the response amplitude r when α 6= −1, different from the
receptance functions of linear systems.

To evaluate the performance of vibration isolators, a conventional index is force
transmissibility. For the current system, the non-dimensional transmitted force from the
mass to base point D is

ft1 = 2ξX′ + X. (27)
When a first-order approximation of response X = r cos(ΩT + φ) is assumed, the ampli-
tude of this transmitted force is

| ft1| = r
√
(2ξΩ)2 + 1. (28)

The force transmissibility of the system can be approximated by

TR =
r
F0

√
(2ξΩ)2 + 1, (29)

which is the
√
(2ξΩ)2 + 1 times of the receptance function shown by Equation (26).

Figure 8 provides the plots of the defined receptance function r/F0 and the transmissi-
bility TR against the excitation frequency Ω. For five sets of parameters α = −1.2, β = 0.7
(Case one), α = −1.6, β = 0.4 (Case two), α = −1, β = 0.36 (Case three), α = 0.2, β = 2.2
(Case four), and α = 0.5, β = 2.5 (Case five), the corresponding natural frequencies of the
linearized system are 0.4, 0.6, 0.8, 1.2, and 1.5, respectively. The damping ratio ξ is fixed
as 0.01. Cases one and two refer to softening stiffness systems, while Cases four and five
correspond to hardening stiffness systems. On each surface, there is a peak curve, which
can be described mathematically by examining the minimum condition of the denominator
of the expression on the right-hand side of Equation (26) [14]. For Cases one and two,
the surface shifts and bends to the low-frequency range. This is beneficial for vibration
isolation, as there is a larger frequency range of effective isolation. At high excitation
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frequencies, the surfaces merge with each other, and r/F0 and TR become insensitive to
the nonlinear parameters α and β.

Figure 8. (a) Receptance function r/F0 of the system and (b) force transmissibility TR with ξ = 0.01.
The yellow, magenta, green, cyan and blue surfaces correspond to Case one, two, three, four, and
five, respectively.

Figure 9 shows the force transmission behaviour of the proposed SBM design (Case
three: α = −1 and β = 0.36), the analogical NSM design [14] (α = 2P/kl = 0.02, damping
and external force are the same as Case three), and the linear spring-damper isolator (i.e.,
β = 0). For the conventional NSM, negative stiffness is obtained by applying constant
compression forces at the ends of the bars, while variable spring forces are used for the
same purpose in the current SBM. Figure 9a presents that the resonant peak of the TR
curve shifts to lower frequencies compared to the conventional linear and the NSM cases,
thereby expanding the effective isolation range. In the high-frequency range, three different
isolators have similar force transmission performance. Figure 9b shows the time history
of the steady-state transmitted force ft1 within four periodic cycles. When the excitation
frequency Ω = 1, the force amplitudes are approximately equal to 0.33, 0.050, and 0.029 for
the linear, the referenced NSM and the proposed SBM cases, respectively. This indicates
that the SBM in the proposed isolator can effectively reduce the force transmission level
near the original resonance.

Figure 9. Force transmission performance of the SBM, the analogical NSM [14], and the linear
isolator in terms of the (a) force transmissibility TR and (b) time histories of the transmitted force ft1.
Parameter values α = −1, β = 0.36, ξ = 0.01, F0 = 0.01.
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3.2. Time-Averaged Input Power and Kinetic Energy

The time-averaged dissipated and input powers in the system over the time span
τp are

pd =
1
τp

∫ τ0+τp

τ0

pddτ, pin =
1
τp

∫ τ0+τp

τ0

pindτ, (30)

Respectively, where pd = 2ξX′X′ is the dissipated power and pin = X′F0 cos Ωτ is the
input power, τ0 is starting time of the integral, and τp is the integral time period, which
equals one excitation cycle, i.e., τp = 2π/Ω.

When a first-order approximation of the response is used, the velocity of the mass
is Y = −rΩ sin(ΩT + φ). Consequently, the time-averaged input power over a cycle of
oscillation 2π/Ω is

pin = − rΩF0

2
sin φ. (31)

Replacing sin φ in Equation (31) using Equation (23) and further simplifying, the time-
averaged input power is rewritten as

pin = ξr2Ω2 = pd. (32)

Equation (32) shows that the time-averaged input power is equal to the time-averaged
dissipated power within one excitation cycle, indicating that total external power input is
consumed by the viscous damping.

The maximum kinetic energy of the system in the steady-state motion is encountered
when the mass has the maximum speed of |Vmax| = rΩ, so that

Kmax =
1
2

r2Ω2 =
pin
2ξ

. (33)

Note that from Equations (25), (32), and (33), pin and Kmax are re-expressed as

pin =
ξF2

0

4ξ2 +
{

Ω2−1+β
Ω − 4β(1+α)

πr2Ω [K(r)− E(r)]
}2 , (34)

Kmax =
0.5F2

0

4ξ2 +
{

Ω2−1+β
Ω − 4β(1+α)

πr2Ω [K(r)− E(r)]
}2 , (35)

respectively, from which we have

pin ≤
F2

0
4ξ

, Kmax ≤
F2

0
8ξ2 . (36)

These two expressions show the existence of an upper bound power flow values, which
only depend on the damping ratio ξ and the excitation amplitude F0. The upper bound is
only reached when the terms in the curly brackets of Equations (34) and (35) vanish:

Ω2 − 1 + β− 4β(1 + α)[K(r)− E(r)]
πr2 = 0. (37)

With reference to the frequency–response relationship in Equation (25) to replace Ω, a
nonlinear equation of response amplitude r can be established:

F2
0 = 4ξ2r2

(
1− β +

4β(1 + α)[K(r)− E(r)]
πr2

)
, (38)

It is the feasible solutions of which that provide the response amplitude r correspond-
ing to the upper bound value. Together with Equation (38), responses with maximum time-
averaged power flow can be identified. The upper bound value cannot be achieved if there
is no solution to the equation. Additionally, it can be seen from Equations (34) and (35) that
in the high-frequency range where Ω is large, the following approximations may be made:

pin ≈
ξF2

0
4ξ2 + Ω2 , Kmax ≈

0.5F2
0

4ξ2 + Ω2 (39)
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Thus, the time-averaged input power and kinetic energy become independent of the
stiffness parameters α and β at large excitation frequencies.

To obtain the transient response and power flow variables, Equation (8) is first trans-
formed into two first-order differential equations. Then, the Runge–Kutta method based
numerical integrations is used for solutions. By using this method, Figure 10 shows the
input power behaviour of the system with α = −0.55, β = 2, ξ = 0.02, and F0 = 0.05, with
the excitation frequency Ω taken as 0.5 in Figure 10a–c and 0.8 in Figure 10d–f, respectively.
It is shown in Figure 7 that at those two frequencies, the system will exhibit periodic and
chaotic motion, respectively. Figure 10a shows that input power pin is periodic and that its
dominant frequency is located at the excitation frequency 2Ω. This is due to the trigono-
metric product of the response velocity and the excitation. Figure 10d shows that when
chaos occurs, the time series of pin exhibits an irregular, random-like behaviour. Figure 10e
and f further shows infinite frequency components in both pin and the displacement X.
The dominant components in X are located at Ω and Ω/3. Consequently, there are high
spikes in the spectrum of pin at 2Ω/3, 4Ω/3, and 2Ω.

Figure 10. Instantaneous input power. Parameters α = −0.55, β = 2, ξ = 0.02, F0 = 0.05, and
(a–c) Ω = 0.5, period–1 motion; (d–f), Ω = 0.8, chaotic motion. (a, d) are for transient input power;
(b, e) are the frequency components in pin; (c, f) show the frequency components in displacement.

Using the averaging formulation as well as numerical integrations, the effects of param-
eters α and β on the power flows of the system are examined and shown in Figures 11 and 12.
In the following content, the power flow variables are presented in decibel scales with a
reference level of 10−12. In Figure 11, the system changes from being of softening stiffness
when (α, β) = (−1.5, 0.5) or (−1.25, 0.6) to being linear when (α, β) = (−1, 0.75) and
then to being of hardening stiffness when (α, β) = (−0.5, 1.5). The other parameters are
set as ξ = 0.01, F0 = 0.01. For all of these cases, the product of α and β remains −0.75
so that the natural frequency of the linearized system remains unchanged at 0.5. It can
seen that the peaks in the power flow curves bend to the low-frequency range for soften-
ing systems and to the high-frequency range when the system is of hardening stiffness.
The power flow curves for the (α, β) = (−1.5, 0.5) case are continuous with the peak
values being lower than the case with (α, β) = (−1.25, 0.6). This indicates a potential
benefit of using softening stiffness to reduce the peak time-averaged power flows. The
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time-averaged input power and the maximum kinetic energy for linear and the hardening
cases are approximately of the same height. As Ω moves away from the resonance region,
the curves for different combinations of α and β coincide, and the power flow levels are
approximately the same. This results from the fact that the response amplitude at these
frequencies is small, so the nonlinear stiffness effects are insignificant.

Figure 11. Effects of different combination of α and β with a fixed product on (a) the time–averaged
input power and (b) the maximum kinetic energy. Dashed, solid line, dash–dot, and dotted lines
for (α, β) = (−1.5, 0.5), (−1.25, 0.6), (−1, 0.75), and (−0.5, 1.5), respectively. Circles, triangles,
crosses, and squares denote the corresponding numerical results.

Figure 12. Effects of a varying product αβ on (a) the time-averaged input power and (b) the
maximum kinetic energy (ξ = 0.015, F0 = 0.01). Dashed, solid line, dash–dot, and dotted lines
for (α, β) = (−1.2, 0.7), (−1.6, 0.4), (−1, 0.36), and (0.2, 2.2), respectively. Circles, triangles,
crosses, and squares denote the corresponding numerical results.

Figure 12 presents the power flows of systems with different products of α and β. The
system changes from being one with softening stiffness when (α, β) = (−1.2, 0.7) or
(−1.6, 0.4) to being linear when (α, β) = (−1, 0.36) and then having a hardening
characteristic when (α, β) = (0.2, 2.2). The other parameters are set as ξ = 0.015,
F0 = 0.01. The natural frequency Ωn of the linearized system varies from 0.4 to 0.6 to 0.8
and then to 1.2. The figure shows that with a small product of α and β, the peaks in the
power flow curves shift to the low-frequency range. This is good for vibration isolation,
as the amount of the input power of the system is low over a larger range of excitation
frequencies. At low excitation frequencies, a smaller value of αβ results in a larger amount
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of time-averaged input power and also a higher level of maximum kinetic energy. It is seen
that the peak values of pin and Kmax of the softening system with (α, β) = (−1.2, 0.7)
are lower than those of the other cases. Again, this characteristic may be used to enhance
vibration isolation. When the excitation frequency Ω becomes large, there is little difference
in the values of pin and Kmax for the examined sets of stiffness parameters α and β. This
can be explained by Equation (39), i.e., the time-averaged power flow variables are not
sensitive to the variations of the stiffness parameters in the high–frequency range.

3.3. Non-Periodic Response

In the previous content, the power flow behaviour of the system with periodic re-
sponses was examined. It is noted that when stiffness nonlinearities are introduced by
the SBM, the steady-state response may become non-periodic or even chaotic. The perfor-
mance of the vibration isolation system exhibiting non-periodic motions is unclear and
investigated herein.

To examine the dynamic behaviour of the system over a large frequency range, nu-
merical simulations based on the fourth-order Runge–Kutta method were conducted. For
each interested value of excitation frequency, the steady-state displacement response was
sampled over each cycle of excitation. In this way, by plotting the sampling point po-
sitions against the frequency, the response characteristics can be shown. Based on this,
Figures 13 and 14 show the response behaviour and the associated time-averaged power
flow of a system with the parameters set as α = −0.7, β = 1.5, ξ = 0.015, F0 = 0.01.
Figure 13a shows that non-periodic responses can be encountered in frequency bands
located between 0.125 and 0.142. There are also period-2 motions in frequency range B from
Ω = 0.645 to Ω = 0.70, with the period of the response being twice that of the excitation.
The corresponding time-averaged input power to these responses is shown in Figure 13b.
To reflect the long-time steady-state dynamic behaviour of the system, the starting time
τ0 and the averaging time τp are set as 500 and 1000 cycles of the excitation, respectively.
The results shown in Figure 13b indicate that the level of the time-averaged input power of
the non-periodic responses in frequency band A is similar to that of the periodic responses
near the band. A jump in the time-averaged input power occurs when Ω = 0.4 with the
response bifurcates from motions across two potential wells to a single-well motion. In
the higher frequency range B with the system exhibiting period-2 response motions, the
time-averaged input power is larger than the period-1 responses encountered close to
the frequency band. Figure 13 shows that the bifurcation diagrams of the displacement
response and input power can present different quantification outcomes; therefore, it is
necessary to assess the level of vibration transmission and isolation performance from the
two aspects of displacement and energy.

In Figure 14, the system parameters and numerical settings remain the same as those
used in Figure 14, but the excitation frequency varies from 10 to 0.1 to follow the response
branches from high to low frequencies. Comparing this figure with Figure 13, it can be
seen that there is a coexistence of the period-1 and period-2 responses from Ω = 0.57
to Ω = 0.645. This is mainly due to the different initial conditions in low-to-high and high-
to-low sweeping. Additionally, non-periodic responses appear from Ω = 0.29 to Ω = 0.35,
where period-1 responses were observed in the same region in Figure 13. Clearly, these
multiple solutions of the system arise from the stiffness nonlinearity of the SBM. A jump up
in time-averaged input power is encountered at Ω = 0.29, with the system motion changing
from being non-periodic to being periodic. In high-frequency range, Figures 13 and 14
show the same results, which means that the displacement and power flow behaviour are
not sensitive to the initial conditions when the excitation frequency is large.
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Figure 13. Bifurcation diagrams of (a) displacement response and (b) time–averaged input power
with low to high excitation frequencies.

Figure 14. Bifurcation diagrams of (a) displacement response and (b) time–averaged input power
with high to low excitation frequencies.
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To examine whether the non-periodic responses are chaotic, the corresponding Lya-
punov exponent can be calculated [41]. This quantity has been widely used in the identifi-
cation of chaotic responses by evaluating the rate of separation of nearby trajectories. A
positive Lyapunov exponent indicates the occurrence of chaotic motions. For a system with
α = −0.7, β = 1.5, ξ = 0.015, Ω = 0.3 and the initial conditions

(
X0,

.
X0

)
= (0, 0), the

time histories of the steady-state response are obtained by using numerical integrations. A
Fourier transformation of the response was performed, and the results shown in Figure 15a
demonstrate a broadband frequency spectrum. The largest Lyapunov exponent obtained
was 0.049, suggesting that the response is of a chaotic nature. In this situation, the response
does not repeat itself at a regular interval, as shown in Figure 15b. As a result, the use of
force transmissibility, traditionally defined as the ratio of the amplitudes of the transmitted
and the excitation forces, is not suitable. Additionally, when chaos occurs, assessing the
performance of the isolator via approximations by only considering the response ampli-
tude can result in large inaccuracies. In contrast, time-averaged power flow variables
can provide good performance indices by taking into account of the long-term dynamic
behaviour of the system. As shown in Figures 13 and 14, the use of time-averaged input
power pin allows quantitative comparisons of the vibration levels associated with periodic
and chaotic responses.

Figure 15. Dynamic response at Ω = 0.3 with α = −0.7, β = 1.5, ξ = 0.015, F0 = 0.01. (a) Frequency
spectrum, (b) instantaneous input power, and (c) time–averaged input power.

It should be noted that for a robust functioning of pin as a performance index, the
effects of averaging time on the time-averaged input power should be examined [29].
For this purpose, an investigation is conducted on the dependence of the time-averaged
input power of a chaotic response on the averaging time. The results shown in Figure 15c
suggest that the variations of pin are confined to a 4dB band when the averaging time
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τp is larger than 10 excitation cycles (10T) and to a 2dB band when τp > 100T. As
τp increases further, the changes in pin become smaller, and the time-averaged input
power evolves asymptotically to 161dB. The asymptotic characteristic of pin can arise
from the fact that chaotic responses are bounded in the phase space [42]. This asymptotic
behaviour enables quantitative measurements of vibration levels associated with chaotic
responses and consequently demonstrates the advantage of using power flow variables as
the performance indicators of nonlinear vibration isolators.

4. Conclusions

This study investigated a vibration isolation system consisting of a vertical spring-
damper linear isolator unit and a spring-bar mechanism (SBM) created by a pair of bars
linked with horizontal springs. The system model was first introduced and was then
analysed, both by analytical approximations using the averaging method and by numerical
integrations. The performance of the isolator was examined by using both nonlinear
force transmissibility as well as the time-averaged power flows and the maximum kinetic
energy of the mass. It was shown that the stiffness characteristics of the system can be
controlled by two parameters describing the initial compression of the horizontal springs
as well as the stiffness ratio of the horizontal and vertical springs. It was found that
adding SBM can reduce the natural frequency of the linearized system so as to provide
a larger functioning frequency range. Compared to the traditional linear spring-damper
isolator and the previous NSM isolator design, the proposed SBM can reduce the force
transmission level near the resonance and has a wider effective isolation range. It was
also found that different combinations of these parameters may yield different nonlinear
effects for enhanced vibration isolation. By adjusting these two parameters, the SBM can
also provide a purely linear negative restoring force and thus negative stiffness without
introducing possibly harmful nonlinear effects into the system. It was shown that adding
the SBM was shown to be beneficial for vibration isolators as both force transmission and
the amount of power input were reduced in the high-frequency range. It was found that the
system can exhibit chaotic motions, for which the associated time-averaged input power
tended to an asymptotic value with increasing averaging time. Thus, time-averaged power
flow variables can be used as a uniform index to assess and compare the performance of
nonlinear vibration isolation systems exhibiting either periodic or chaotic motions.
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