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PREFACE 

California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation. 

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health. 

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders. 

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to energy sector resilience by providing 
a framework for assessing vulnerability of California’s transportation fuel sector to weather-
related events as well as assessing exposure to wildfires and flooding at both coarse (statewide) 
resolution and, for several vulnerable assets, very fine scale that fosters stakeholder 
engagement. 
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ABSTRACT 

California’s transportation fuel sector (TFS), whose assets supply crude oil from its source to 
end fuel users, will increasingly be exposed to extreme weather events including flooding and 
wildfire under climate change. Prior studies have not considered the TFS as one sector and its 
exposure and vulnerability to these weather events, nor have they projected and analyzed the 
exposure at spatial resolutions that are fine enough to inform stakeholders about the 
vulnerability of individual assets that are interconnected to reliably supply and distribute fuel. 
Therefore, we conceptualize the TFS into a physically and organizationally connected, multi-
sector network. Using this network, we project and analyze climate-change-induced flooding 
and wildfire exposure at both coarse and fine spatial resolutions, across multiple temporal 
horizons and climate scenarios. We then assess the statewide TFS’s exposure with the coarse 
resolution projections and discuss with various stakeholders about their assets’ vulnerability 
using the fine resolution projections in areas of interest. 

We find that transportation fuel product pipelines and central product distribution terminals 
are the most critical assets within the TFS network, and that the network is dependent on 
supporting sectors such as electricity and natural gas. Our statewide analysis identifies docks, 
terminals, and refineries as the most exposed TFS assets to coastal flooding, whereas roads and 
railroads are the most exposed assets to wildfire. The fine resolution models and the focus on 
different planning horizons (i.e. every 20-years between 2000 and 2100) facilitate our discussion 
with the stakeholders, which shows that they have implemented and plan to adopt hardening 
measures (improvements to physical infrastructures) and resiliency actions (improvements to 
behavioral responses at the organizational level) to adapt their infrastructures to these weather 
events, and that the fine resolution exposure projections are effective tools to facilitate 
stakeholder discussions. Overall, we find the TFS’s vulnerability to flooding and wildfire is 
three-fold: the direct exposure and potential disruption of operations, the impact on its 
supporting assets, and the increased pressure on California’s emergency management 
infrastructure. These findings will assist the TFS in adapting to the changing climate.  

Keywords: Transportation fuel sector, climate change, extreme weather events, exposure, 
vulnerability, wildfire, flooding, high-resolution modeling, stakeholder engagement. 

Please use the following citation for this paper: 

Radke, J.D, G.S. Biging, K. Roberts, M. Schmidt-Poolman, H. Foster, E. Roe, Y. Ju, S. Lindbergh, 
T. Beach, L. Maier, Y. He, M. Ashenfarb, P. Norton, M. Wray, A. Alruheili, S. Yi, R. Rau, 
J. Collins, D. Radke, M. Coufal, S. Marx, A. Gohar, D. Moanga, V. Ulyashin, A. Dalal. 
(University of California, Berkeley) 2018. Assessing Extreme Weather-Related 
Vulnerability and Identifying Resilience Options for California’s Interdependent 
Transportation Fuel Sector. California’s Fourth Climate Change Assessment, California 
Energy Commission. Publication Number: CCCA4-CEC-2018-012. 
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HIGHLIGHTS 

 Our development of a transportation fuel sector (TFS) conceptual model advances the 
understanding of the connectedness and complexity of California’s TFS. There is no 
formal definition of what constitutes a TFS, much less what the TFS represents at the 
California state level.  

 Pipelines for refined transportation fuel products are the most critical asset and the 
greatest threat to breaking the flow of fuel within the TFS network. Many of these 
pipeline assets are the singular link between refineries and intermediate transshipment 
nodes or end node terminals with no redundancy in place. If these pipelines go out of 
service for an extended period of time, the TFS could suffer a debilitating or even 
devastating failure. An impact on a singular node or link, depending on where it is in 
the network, could result cascading and devastating impacts. 

 Central distribution terminals are critical assets to the operational success of the TFS as 
many refineries transport fuels to such terminals via pipeline for further distribution. 
The two highest product throughput volumes in the TFS (post-refinery) occur at the 
Concord terminal in northern California and the Watson terminal in southern California. 
Here, cooperation exists between various companies and refined fuels from different 
refineries are mixed and further transported throughout the TFS. If a refinery goes 
offline for a period of time, fuels from other refineries can serve to make up the shortage 
and redundancy is achieved. However, if these individual terminals fail, the inability to 
move fuel in the system could seriously disrupt the TFS. 

 Statewide hazard modelling and exposure analysis reveals broad patterns of TFS asset 
exposure that vary by hazard, asset type, and region. Our modelling represents the 
range of possible outcomes under the various climate scenarios. Our use of the full range 
of scenarios in our flooding and wildfire modelling is critical in gaining the attention of 
stakeholders who might otherwise discount results from a single specific climate 
scenario or model.  

 Our introduction of fine spatial resolution modelling of flooding and wildfire allows for 
more accurate exposure evaluation for specific TFS assets at a local scale and is more 
effective for engaging stakeholders in discussions of asset vulnerability. At this fine 
spatial resolution, TFS stakeholders clearly recognize specific components of their assets 
on the ground in relation to modelled flooding or wildfire conditions and can more 
effectively consider adaptation and strategic planning. 

 Many of the retrofitting and design adaptive measures that are mentioned by 
stakeholders are driven by hazardous material regulations. This is relevant because 
owners and operators of TFS infrastructure consider these regulations as windows of 
opportunity to implement infrastructural adaptation measures. These windows of 
opportunity for implementing adaptation measures predominantly focus on 
environmental vulnerability in relation to spills and not necessarily the vulnerability of 
the TFS as a critical infrastructure. 
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 Repeated impact from extreme weather events may lead to the relocation of a TFS asset 
to a lower-risk area. However, this option has very high costs and was only mentioned 
by stakeholders as an option for key TFS links, mostly railways and roads. 

 Not knowing the vulnerability of interconnected assets, on which pipeline managers, for 
example, are dependent, increases uncertainty and is a very real threat to the resilience 
of the TFS pipeline system. For example, if electricity is interrupted, the pipeline pumps 
fail to operate, fuel is not transported, the intermediate transshipment nodes fail, and 
that section of the TFS is broken. 

 The uncertainties in future coastal flooding and wildfire from different climate scenarios 
are relatively small at the beginning of the century (i.e. 2000-2020 period) but become 
much more pronounced by 2100. Thus, similar uncertainty patterns in TFS asset 
exposure to coastal flooding and wildfire are also observed. Moreover, given the coarse 
resolution of the statewide flooding and wildfire modelling, the results are primarily 
appropriate to interpret at the statewide level. Fine resolution modelling is more 
appropriate for localized asset exposure analysis.  

 TFS stakeholders are focused on the immediate future and they consistently request 
higher resolution modelling of the 2020-2040 period, consistent with their near-term 
investment and asset life cycles and in recognition of the fact that some of their critical 
assets are already located in current-day flood and fire risk areas. 

 Our research shows the TFS is extremely complex, both physically and organizationally. 
The sector functions because of contracts and agreements between all stakeholders. 
Because of this complexity, no one stakeholder or group that has a comprehensive 
overview of all of TFS or has ability to respond reliably to all exposure risks and 
uncertainties. The uncertainty of what the future holds suggests that, in terms of 
developing resiliency to future exposure, there should be more coordination within the 
TFS and with interconnected sectors. 

WEB LINKS  

 http://keystone.gisc.berkeley.edu 
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GLOSSARY 

3Di: A hydrodynamic model (Stelling, 2012a) used in this project to model inundated areas 
during extremely high sea level events. 

Andeavor: A TFS oil company formerly known as Tesoro. 

California Transportation Fuel Sector (TFS): The infrastructure assets that are necessary to 
obtain crude oil, transport it to refineries, refine it into petroleum transportation fuels, 
and distribute those fuels within the state of California. It is considered a network made 
up of key locations (called nodes) and connections (called links) 

Choke-points: Areas of critical operational TFS infrastructure or where intra-operational 
disruption could quickly lead to a major TFS failure. 

Climate change: Refers to a change in the statistical distribution of weather patterns brought 
about by anthropogenic forced change in longer-term average weather conditions 
caused by human activity, as opposed to changes resulting from natural processes. 

Coastal flooding: Is due to sea level rise, storm surge, and tides and is an indicator of climate 
change. This occurs when normally dry low elevation land is inundated by seawater. 
The extent of coastal flooding is curtailed by the topography of coastal land. 

Commodity subsystems: Subsystems in this project’s TFS conceptual model comprised of 
the nodes and links of the different transportation fuel commodities used in the state: 
crude oil, common vehicle fuel products, airport fuel products, maritime fuel products 
and gasoil. 

Critical Infrastructures: Infrastructures that are vital to the security and daily wellbeing of 
the nation. In this case those responsible for petroleum production and distribution. 

Exposure: By being in a particular situation or place, exposure is the condition of being 
subject to a hazard that represents a potential threat to property or lives. In this project, 
by their location, some TFS assets are open to potential damage due to their exposure to 
flooding and wildfire hazards. 

Extreme weather-related events: The extreme weather-related events we discuss are 
flooding and wildfires under future climate change scenarios. There are three extreme 
weather-induced events this project focuses on: 1. Coastal Flooding (due to sea level rise, 
tides, and storm surge), 2. Inland Flooding (due to rainfall) and 3. Wildfires (due to fire 
in areas of carbon-rich vegetation and seasonally dry climates). 

Flooding, coastal: Flooding caused by sea level-rise, storm surge, and tides under various 
climate change scenarios. 

Flooding, inland: Flooding due to extreme rainfall under various climate change scenarios. 

Gasoil: A partially refined product that is produced in a number of the State’s refineries and 
sent to other refinery facilities for final processing into consumable fuel products. 
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General Circulation Models: We utilize the four GCMs selected by the Fourth Assessment 
(HadGEM2-ES, CNRM-CM5, CanESM2, and MIROC5) as they together cover a broad 
range of climate model projections. 

Hauling Chart: A fire response characteristic chart indicating how fire behaviors may impact 
fire suppression. 

Inland Flooding: Is due to inland moving tropical cyclones and thunderstorms with 
precipitation levels resulting in volumes of water on the land overcoming the capacity of 
the natural and built drainage systems to carry it through the watershed. 

Intraconnected assets: The assets within the TFS network that includes, amongst others, 
production facilities, refineries, storage tanks, pumps, land and marine terminals, 
pipelines, rail, and road. 

Interconnected sectors: The sectors on which the TFS processes of producing, transporting, 
refining and distributing the transportation fuels depend in order to sustain operations. 
This includes sectors such as those that provide electrical power, water, data 
communication, process inputs, and waste removal. 

Interdependent assets: TFS assets that are interconnected and mutually dependent on each 
other in order for the TFS to be operational. 

Links: Linear assets in the TFS that provide the connections between the TFS nodes. 
Commodities are moved along, over or through these assets. This includes pipelines, 
roads and railways. 

Loading Racks: Loading racks in distribution terminals are key units responsible for trans-
loading finished fuel products from pipelines and storage tanks into tanker trucks for 
further distribution. 

Multimodal network: Parts of the TFS network in which two or more types of transportation 
modes for the transportation fuel commodities are possible. 

Network analysis: The analysis of the relationships between discrete objects. In this project 
the objects that were analyzed are the TFS nodes. By examining the centrality of the 
node, its importance within the TFS network is described. Five centrality metrics are 
used and applied on the TFS network, serving as an example to understand the impact 
of coastal flooding on the TFS by running routing simulations within the network. 

Nodes: Areal, fixed location assets that make up the TFS where commodities are processed, 
transferred, and/or stored. This includes marine terminals at which a large volume of 
crude oil enters the state’s TFS, refineries to which crude is delivered and from which 
products are delivered, central distribution terminals (such as Concord and Watson) where 
various operators pool their fuels to be distributed to dispensers. 

Pre-Refinery Process: Part of the project’s TFS conceptual model, which consists of the Out-
of-state and California crude oil commodity subsystems. Within these subsystems the 
essential assets that transport the crude oil to the refineries (crude oil supply) are found. 
This includes: marine terminals, rail terminals, CA oil wells, pipeline pump stations, 
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gathering stations, railways, waterways, crude oil gathering pipelines and crude oil 
pipelines. 

Post-Refinery Process: Part of the project’s TFS conceptual model, which consists of three 
commodity subsystems: vehicle fuel, aviation fuel and marine fuel. Within these 
subsystems the essential assets that transport the produced fuels from the refineries to 
the demand destinations (fuel product demand) are found. This includes; vehicle fuel 
stations, break out tanks, pump stations terminals, airports, ports, product pipelines, 
waterways and roadways. 

Spatial temporal modeling: Modelling done to analyze and predict exposure to extreme 
weather events of flooding and wildfire over space and through time. In this project the 
spatial extents are statewide and local. Temporally, the focus is on different planning 
horizons of every 20-years between 2000 and 2100. 

Terminals: Any facility (node) in this project’s TFS conceptual model where a liquid bulk 
transportation fuel commodity originates, terminates, or is handled in the supply and 
distribution process. 

TFS – Transportation Fuel Sector: The network of infrastructure assets within California 
necessary to obtain crude oil, transport it to refineries, refine it into petroleum 
transportation fuels, and distribute those fuels within the state. 

TFS stakeholders: The organizations that are in that network and directly handle the 
commodity itself by extraction, and/or transportation of crude oil to the refineries, 
refining and/or then transporting the finished product (to include a variety of fuels) to 
intermediate and end terminals. 

 TFS Core: This project’s label for representatives of industry stakeholders that own and 
operate key TFS assets.

 TFS Dependent: This project’s label for representatives of organizations that provide 
services on which the TFS core organizations rely heavily. 

 TFS Knowledgeable: This project’s label for representatives of groups that regulate and or 
research the TFS core organizations. 

Transloading: The process of transferring a commodity from one mode of transportation to 
another. 

Transportation fuels: Fuels used to move people and goods for personal and commercial 
purposes. In this project the main focus is on the supply and demand of crude oil-
derived fuels – gasoline, diesel, propane, jet fuel, kerosene and heavy oil – that are used 
in the state for transportation via vehicles, aviation and, to a smaller extent, marine 
vessels. 

Wildfire: A sweeping and destructive conflagration in wilderness or rural areas, such as a 
forest, that spreads rapidly through woodland or brush and causes great damage. It is 
exacerbated by hot and dry climates.  
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1: Introduction 

This research examines and assesses the impact of flooding and wildfire on California’s 
Transportation Fuel Sector (TFS). The TFS is a network of infrastructure assets that comprise the 
fuel supply chain from source to end use in the State. In this study, we model the exposure of 
TFS assets to potential extreme weather-related flooding and wildfire events under future 
climate change scenarios and engage industry stakeholders to explore the sector’s vulnerability. 
In doing so, we provide a baseline to inform planners and policymakers to proactively mitigate 
potential future impacts from such extreme weather events. 

We construct an organizational schematic of this complex sector and map it – along with model 
projections of climate-related impacts – on the Californian landscape to predict where, when, 
and under what circumstances TFS assets may be compromised. In addition to providing TFS 
stakeholders with a baseline for their future strategic planning purposes, our results have been 
disaggregated by period to better reflect already existing near- and longer-term cycles for 
operations, multi-year budgeting and risk management, long-term investment, and 
equipment/plant depreciation. By engaging collectively and individually with TFS 
stakeholders, we provide finer resolution results of more relevance to these ongoing scheduled 
cycles in the TFS. In these and other ways discussed in the report, the results inform mitigation 
strategies to avoid systematic failures or severe service disruptions of the TFS and thereby 
better serve the citizens of California. 

1.1 Transportation Fuel Sector (TFS) 

Although we recognize a growing trend in alternative fuels, the majority of the State’s 
transportation fuel consumption is sourced from crude oil - an estimated 94% in 2014 
(Bahreinian et al., 2015). Therefore, this study defines the California Transportation Fuel Sector 
as the infrastructure assets necessary to obtain crude oil, transport it to refineries, refine it into 
petroleum transportation fuels, and distribute those fuels within the state. California’s TFS 
assets therefore are part of an intraconnected physical network that includes, among others, 
production facilities, refineries, storage tanks, pumps, land and marine terminals, waterways, 
pipelines, railways, and roads. TFS stakeholders, in turn, are organizations in this network that 
directly handle crude-oil and derived fuels from extraction, to transportation of crude oil to 
refineries, refining, or transporting the finished product (to include a variety of fuels) to 
terminals and end users. 

The weather-related events of extreme flooding and wildfires have disrupted the production, 
transportation, refining, and distribution of transportation fuels by damaging related assets (see 
U.S. Department of Energy, 2014). They may, in fact, lead to prolonged closure of transportation 
routes due to smoke or flooding production loss from crude wells; and evacuation and closure 
of refineries for several days (U.S. Department of Energy, 2014). 

1.1.1 Distinctive Aspects and Importance of TFS Assets 
Transportation fuels are used to move people and goods for personal and commercial purposes, 
and California is a major consumer of these fuels. Petroleum products (including gasoline, 
diesel, jet fuel, residual fuel oil and propane), biofuels (including ethanol and biodiesel), natural 
gas, and electricity (from various sources) are the different types of energy sources (or fuels) for 
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transportation in the State (Bahreinian et al., 2015; U.S. Energy Information Administration, 
2015a). When benchmarking the consumption of petroleum products derived from crude-oil, 
California ranks as the third largest gasoline consuming market in the world, after China and 
the United States (U.S.) as a whole (Western States Petroleum Association, 2017). The State was 
also the third-largest producer of crude oil among the 50 states in 2016, accounting for about 6% 
of total U.S. production. As of January 2017, California ranked third among the states in oil 
refining capacity, with a combined capacity of approximately 2 million barrels per day at the 
State's operable refineries (U.S. Energy Information Administration, 2017c). This accounts for 
approximately one-tenth of the total U.S. refining capacity (National Academy of Sciences, 
2017). More specifically, in 2015 California accounted for one-fifth of the jet fuel consumption in 
the U.S. (U.S. Energy Information Administration, 2017c). With a state population that is 
forecasted to grow to 48 million people by 2040, California’s demand for, and reliance on, 
transportation fuels is expected to increase (Western States Petroleum Association, 2017). 

Given the State’s reliance on transportation fuels, along with its role in producing them, a 
reduction in their supply would result in cumulative economic ripple effects, likely damaging 
major state industries and the greater California economy (Western States Petroleum 
Association, 2017). According to (Schremp, 2016b, 2017a) a catastrophic disaster in the greater 
San Francisco Bay Area or Los Angeles regions that causes a significant loss of production from 
Northern or Southern California refineries and/or diminishes the ability to transport refined 
products from these facilities has a high probability of curtailing or halting transportation fuel 
supply altogether. The pipeline systems that transport these fuels can generally operate only if 
fuel products are available to push liquid through the system, making continuous supply of 
refined products critical to operations. However, such continuous supply can be challenging in 
the face of a major disruption, as California has an approximately three-day supply of 
transportation fuel on hand. 

While a major producer and consumer of oil and refined transportation fuel products, 
California’s market is isolated by time, distance, and product characteristics from alternative 
sources of re-supply during unplanned refinery outages. The State requires its motorists use a 
specific blend of motor gasoline called California reformulated gasoline, a composite that is 
intended to help reduce emissions from motor vehicles. Locating and transporting replacement 
motor gasoline that conforms to California's strict fuel specifications from overseas can take 
several weeks and such disruptions can drive up wholesale and retail prices significantly 
(Hamilton, 2015; Schremp, 2016b; U.S. Energy Information Administration, 2017c, 2017d). 

Along with the impact within the State, disruptions to California’s Transportation Fuel Sector 
are more than likely to have effects beyond its borders. Pipelines connect California refining 
centers to out-of-state distribution terminals that provide 85% of the transportation fuel supply 
in Nevada and 45% of the supply in Arizona (Schremp, 2016b). While these states have 
connections to other refineries in locations such as Utah and Texas, those connections are less 
likely to quickly replace a large volume shortfall from California. 

1.2 Scope of Analysis 

Extreme events such as earthquakes happen with little warning and it is reasonable to assume 
that climate change will have no great impact on the occurrence of these events. However, 
climate change will impact the frequency and severity of extreme weather induced events such 
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as flooding and wildfires through increases in temperature, sea level rise, and changes in 
precipitation. Our study specifically measures and models the potential exposure of TFS 
infrastructure to extreme flooding and wildfires influenced by climate change. Our modeling 
effort is statewide, with a higher-resolution focus on where the events may have the greatest 
impact on critical TFS assets. We also cover a spectrum of climate change scenarios and a time 
span from 2000 to 2100. 

In order to model the exposure of TFS infrastructure, we first define the sector, identify the 
assets involved, and develop a geospatial dataset to digitally represent those assets. The TFS is 
represented as a network; first as a schematic characterizing the intra-connectedness within the 
sector itself, and second as spatial data embedded within the geography of California. We then 
model and analyze flooding and wildfires based on a range of California’s Fourth Climate 
Change Assessment (Fourth Assessment) climate projections (D. Pierce, Cayan, & Dehann, 
2016). To determine where the greatest exposure to extreme weather-induced events is likely to 
occur now and move forward to the end of the century, we model and analyze the model 
results of vast regions of California (statewide). Next, we model at a much finer spatial 
resolution in selected locations where TFS assets coincide with the statewide flood and wildfire 
projections, so that we can better understand the exposure at the individual asset spatial scale. 
This provides more pertinent results for the ongoing operations, investment, and planning 
cycles of those assets. 

While we model the exposure of TFS infrastructures, it is beyond the scope of this study to 
model flooding and wildfire impacts on sectors that are interconnected with the TFS and critical 
to its performance and operations. Interconnected sectors are those on which the process of 
producing, transporting, refining, and distributing the transportation fuels depends. They 
include the electrical power, water, data- and telecommunication, process inputs, and waste 
removal sectors needed by the TFS to sustain operations. More details of the links between the 
TFS and these sectors are discussed in Chapter 2. However, we do engage with TFS 
stakeholders to discuss their dependence, vulnerability, and resilience to failures of the 
interconnected sectors’ assets. 

We model flooding and wildfire in selected locations at a fine spatial resolution of 5 meters (m) 
or 16.4 feet (ft), so that the TFS stakeholders can recognize their individual assets at risk of 
exposure and are able to assess the danger and produce more targeted strategic, shorter-term 
plans and responses. We select locations for fine resolution modeling where we identify areas of 
critical operational TFS infrastructure (choke points). In addition, we use 1 m (3.28 ft) resolution 
data to identify and include objects such as buildings and trees as model inputs. We argue that 
our model results support the need for more accurate impact assessment and mitigation 
planning strategies. 

In order to cover a broad range of climate projections, we model and analyze flooding and 
wildfire under two Representative Concentration Pathways (RCPs), four General Circulation 
Models (GCMs), three probabilistic sea level rise (SLR) scenarios for flood modeling, and three 
land use and land cover (LULC) scenarios driven by population growth for wildfires, as 
recommended by the Fourth Assessment research team (D. Pierce et al., 2016). Our results 
represent a broad range of possible future exposure to flooding and wildfire and help document 
the chronic impacts of climate change on TFS infrastructure. These results are presented to 
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stakeholders for their consideration and strategic response. We document what is learned from 
those discussions regarding the vulnerabilities and resilience of the TFS as a whole. 

With our results on potential exposure of TFS assets to floods and wildfires, we hold 
discussions with TFS stakeholders concerning the sector’s vulnerability to and resilience under 
future climate predictions. These discussions help identify the conditions under which TFS 
assets, operations, and interactions are subject to negative outcomes from exposure to flooding 
and wildfire. This, in turn, gives us a starting point for discussing resiliency - how asset 
operators (and the sector as a whole) can mitigate, or are already mitigating, against the 
possible negative outcomes. Resilience is not just about better recovery from a shock; it is also 
about being better moving forward. Beheshtian, Donaghy, Geddes, & Rouhani (2017) assert that 
resilience is a system’s property to better withstand and absorb, efficiently adapt to, and 
quickly/cheaply recover from the inoperability imposed by extreme events. They also state that 
enhancing the resiliency of infrastructure is a process of complementary activities that takes 
place before, during, and after disruption. With this study we model potential exposure and 
discuss vulnerabilities to facilitate further discussion about mitigation strategies. 

1.3 Exposure to Flooding and Wildfire  

After identifying TFS infrastructure assets and building a geospatial dataset to represent those 
assets, we spatially model the potential exposure of TFS assets to three extreme weather-
induced events: 

1. Coastal Flooding (due to sea level rise, storm surge, and tides) 

2. Inland Flooding (due to extreme rainfall) 

3. Wildfires (due to fire in areas of flammable vegetation and seasonally hot and dry 
climates) 
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These events all may cause damage to TFS assets or to assets of its interconnected sectors. 
Damage can lead to disruption in production, transportation, and distribution of 
transportation fuels, which in turn, can ripple through California’s economy (see box). 

Examples of ripple effect 

- Hurricanes such as Katrina and Rita (2005), Irene (2011), Sandy (2012), and 
Harvey, Maria, and Irma (2017) influenced the affected areas’ transportation fuel 
sectors by causing flooding (coastal and inland) which led to disruptions in 
supply, production, and transportion of products (Devika Krishna Kumar & 
Jarrett Renshaw, 2017; U.S. Senate, 2006). The disruptions led to increased 
product prices and affected downstream stakeholders such as petrochemical 
plants (U.S. Senate, 2006) and retail gas consumers (U.S. Energy Information 
Administration, 2017a). 

- The Blue Cut wildfire (August 16, 2016) disrupted California’s TFS. It burned 
37,000 acres (57.8 square miles) and stalled both railway and highway transport 
through Cajon Pass for 24 hours. Preliminary assessments from the California 
Trucking Association (as cited in Uranga, 2016) estimated the wildfire cost the 
shipping industry in Southern California as much as $1 million per day (Uranga, 
2016). 

The actual extent to which TFS assets are exposed to flooding or wildfires depends on a number 
of factors. The first set of factors relates to the location of the assets. For example, refineries and 
terminals in the state are often located in urban areas near waterways (coast, bay, or river). This 
makes them naturally vulnerable to sea level rise and/or inland flooding but less at risk of 
exposure to wildfires because buildings and paved structures dominate the landscapes and 
there is limited vegetation. 

The second set of factors concerns mitigation measures already taken near an asset. Many asset 
owners and operators ensure reduction or removal of vegetation near TFS assets to limit 
wildfire exposure. Levee improvement is also a common strategy employed to protect existing 
assets against the rising sea. For example, the Airport Perimeter Dike FEMA and Seismic 
Improvements Project is underway at Oakland Airport in response to sea level rise and includes 
FEMA certification requirements for 100-year flood protection. 

The distinct nature of flooding and wildfires also needs to be considered, and 
mitigation/resilience strategies should be customized based on the hazard. Coastal flooding 
occurs when sea levels rise accompanied by storm surge(s). In this case, SLR is a rather slow, 
punctuated event for which stakeholders can prepare. For example, the San Francisco Bay Area 
is projected to experience a SLR above year 2000’s mean sea level of between 12.9 and 13.7 
centimeters (2.4 to 5.4 inches, median estimate under RCP 4.5 and 8.5 respectively) by 2040 and 
between 73.7 and 136.6 cm  (2.4 and 4.5 ft, median estimate under RCP 4.5 and 8.5 respectively) 
by 2100 (Cayan, Kalansky, Iacobellis, & Pierce, 2016). While the absolute amount of SLR seems 
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large, this is a continuous change over an extended period and allows time for adaptation. 
Changes in extreme rainfall, the driver for inland flooding, can be even smaller. For example, 
the Mt Diablo Creek watershed (i.e. location of a major refinery and a major terminal) is 
projected to have the highest daily rainfall between 76 and 79 millimeters (mm) between 2020 
and 2040, and between 73 and 102 mm between 2080 and 2100 (D. Pierce et al., 2016). 
Wildfire behavior is also context-dependent, such that wildfire intensity, flame length, and rate 
of spread are a function of type of vegetation and its moisture content, as well as topography, 
wind, and weather. Climate changes affect fuel type, condition, and amount by altering 
temperature and relative atmospheric humidity patterns. Westerling’s (2018) projections show 
that wildfire frequency will remain the same or decrease at least until the end of the century in 
many of California’s urban and desert regions. In contrast, in grass, shrub, chaparral, and forest 
dominated areas wildfires are expected to increase every few years (Westerling, 2018) such that 
rare events today will be more commonplace tomorrow. A number of climate-related causes 
contribute to this, including increased temperatures and extended periods of drought (Meigs, 
Zald, Campbell, Keeton, & Kennedy, 2016). Given the increasing wildfire trend, a growing 
population, and development expanding into forested regions, risks to communities and 
infrastructures will continue to increase (McGee, McFarlane, & Tymstra, 2015). 

Extreme weather events have varying response and planning horizons. While mean sea level 
rise and wildfires are projected to increase over time, the frequencies of these two events are not 
in synchrony. Wildfires are expected to occur more frequently than flooding. Wildfires and 
inland flooding require short-term emergency responses, whereas adaptation to coastal 
flooding presents an opportunity for longer-term planning. Finally, in the long run, the 
predicted increase in occurrence and increase in intensity of extreme weather events pose the 
added challenge to TFS network of disruptions in California leading to sector-specific failure. 

1.3.1 Combined Effect of Extreme Weather Events 
While it is beyond the scope of the research and this analysis to assess the potential for TFS 
assets to be exposed to landslides or debris-flows, such events related to flooding and wildfire 
have the potential to occur in regions of California that contain TFS assets. Heavy precipitation 
and loss of vegetation can contribute to such slides, especially if a wildfire precedes heavy rains. 
The combination of events has caused immense damage to homes, lives, and infrastructure 
(Dolan, 2018; Lee, Medina, & Parlapiano, 2018; Los Angeles Times Staff, 2018; L. McDonald, 
2018). Unfortunately, due to California’s Mediterranean climate, the arrival of the annual wet 
period often coincides with the end of wildfire season. Bill Patzert, climatologist at NASA JPL, 
characterizes the seasonal shifts as, "four seasons in California - drought, followed by fire, 
followed by floods, followed by mudslides" (Castillo, 2018). 

Extreme rainfall events that contribute to inland flooding decrease the amount of resistance hill-
slopes have to shearing under gravity and other stresses (Caine, 1980). When slopes do fail, 
rock, soil, mud, and vegetation are mobilized and can be transported great distances, especially 
in areas where steep slopes and large amounts of elevation relief are present (Jakob & Hungr, 
2005). Such conditions have been particularly apparent in coastal areas of Southern California 
(Cannon, Gartner, Rupert, & Michael, 2004; Cleveland, 1973; Wells, 1987) but can be found 
throughout the State. 

In addition, loss of vegetation and other forms of combustible groundcover during a wildfire 
may well increase the portion of rainfall that infiltrates subsurface materials, decrease the shear 
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strengths of hill-slopes, and render wetted areas more likely to slide (Campbell, 1974). For 
precipitation not absorbed into soils or parent materials underlying recently burned areas, the 
removal of groundcover by combustion allows storm-water runoff to travel at higher velocities 
and with greater erosive force than would be observed under pre-fire conditions (DeBano, 
1989). In certain situations, soils become hydrophobic, lose hydraulic conductivity, and repel 
rainfall in response to exposure to high intensity burns (DeBano, 2000). During periods of 
intense rainfall, torrents of runoff can dislodge and transport debris downhill in burned areas, 
often with ruinous effects, see box below.  

Examples of landslides and debris-flows in California 

 Feb 1998: A rainstorm that was part of a warm phase of the El Nino Southern 
Oscillation brought almost one half-foot of precipitation in just thirty hours across 
much of the San Francisco Bay Area. This event saturated hillslopes and triggered 
landslides and debris flows that resulted in approximately 158 million dollars in 
public and private economic losses(Coe, Godt, & Tachker, 2004; Godt et al., 1999). 

 Dec 2017/ Jan 2018: Santa Barbara County was impacted by an immensely damaging 
revolution of the wildfire-rainstorm cycle where the largest wildfire ever to burn 
entirely within the State’s boundaries set the stage for landslides and massive debris-
flows (Brown, 2018; Federal Emergency Management Agency, 2018). TFS assets 
affected by the landslides and debris-flows included Highway 101, a major trucking 
route. 

1.3.2 Operational Threats to TFS Under Climate Change 
The ripple effects mentioned above can result in a disruption of the complex intraconnected 
nature of the assets within the TFS network. The network is vulnerable at key locations 
(network nodes) and connections (network links), where disruption could result in complete 
shutdown of significant sections of the system with significant impacts to fuel distribution. 

Through our discussions with stakeholders, we consider what may happen to operations of 
various critical TFS assets when they are exposed to flooding or wildfire and how this could 
affect the entire sector. This includes looking at the operations of marine terminals where a large 
volume of crude oil enters the State’s TFS, refineries where crude oil is delivered and from 
which products are exported, central distribution terminals (such as Concord and Watson) 
where various TFS operators pool their fuels to be distributed to dispensers in the region, 
other terminals where liquid bulk transportation fuel commodities originate, terminate, or are 
handled in the supply and distribution process, the “links” (i.e. pipelines, roads and railways) 
between those fixed network “nodes,” and all other assets that support the functioning of TFS  
“nodes” and “links”. 

Consideration of how flood and wildfire exposure to certain TFS assets affects operation of the 
entire TFS is important because all TFS stakeholders we canvassed share a common operational 
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goal: maintaining the supply chain and keeping fuel moving through the system to serve 
paying customers. Communication and decision-making take place in real-time and at the 
operational level between and among intraconnected TFS stakeholders by virtue of agreements, 
contracts, and markets to ensure that fuels keep moving. This helps sustain a resiliency in joint 
TFS operations in managing the production and distribution of products in the system. 
Locations/assets considered choke points or critical nodes and links are well known to the TFS 
stakeholders. For example, stakeholders point out that outputs of the TFS’ operations need 
serious consideration. They indicate that the disposal of petroleum coke is considered an 
underestimated choke point of TFS’ output system, given that there are only a few alternatives 
for its disposal. This major by-product of oil refining needs to be disposed of regularly every 15-
20 days through the State’s port and waterway transportation infrastructure. In addition, these 
choke points or critical nodes and links and are often the subject of discussion during 
emergency response table tops and workshops where strategic response and planning is 
undertaken to offset temporary disruption in the flows of fuel, quickly repairing damage, or 
building redundancy into the TFS. 
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Examples of TFS operations considered: 

 We consider what may happen to refinery operations during extreme weather-
induced flooding because refinery operations are very vulnerable then, as 
witnessed in Houston Texas during Hurricane Harvey in 2017. If systems 
delivering crude oil or distributing finished product are disrupted, limited 
onsite storage capacity would force a refinery to cease operations. In addition, 
electricity, natural gas, and water are essential real-time inputs to the refining 
process and a loss of inputs from one of these strategically interconnected 
sectors could force a shutdown in short order. For example, although 
cogeneration (combined heat and power to create electricity) is common, it is 
not enough to maintain refinery operations. 

The refining process generates a number of by-products, such as petroleum 
coke, that need to be removed from the refinery site. Most California 
refineries are located near ocean water bodies where the by-products are 
removed via ship or barge. An indefinite disruption in this process would 
cause a refinery shutdown. 

 Pipelines are the main arteries of the TFS. If disrupted, the flow of finished 
product in the entire system is dramatically altered as few pipeline 
redundancies are built into the system. If the disruption lasts for days, access 
to fuel becomes critical in the region affected (J. Settles, personal 
communication, February 8, 2018). Although emergency preparedness 
exercises practice short-term repairs to the distribution network (such as 
truck, rail and marine transportation), it would be perilous to assume these 
repaired operations would be effectively maintained over any longer periods.  

During extreme weather events pipeline operations are most vulnerable to 
pump failure due to loss of power from interconnected electrical partners. 
Where backup generators exist, they are mainly in support of pipeline 
communications and keeping the loading racks operational at distribution 
terminals. Loading racks in distribution terminals are key units responsible 
for trans-loading fuel products from pipelines into tanker trucks for further 
distribution (Langenkamp, 2014). Aboveground pumps and valves are also 
susceptible to damage, which in turn could stop the flow of fuel. 

1.4 Assessment of Impacts on Assets 

With respect to uncertain futures of infrastructure due to changes in climate, different 
approaches are supported and advocated in the U.S. by the federal government, state 
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governments, national organizations, and TFS-related industries. The research approach we 
undertake follows, to some extent, recommendations given by the Society of Petroleum 
Engineers (SPE) and the U.S. Department of Transportation (DOT)’s guide for climate change 
adaptation framework; we undertake data-driven analyses, assess risk of infrastructure 
exposure, and develop a dialogue with TFS stakeholders to determine resiliency options. 

The Society of Petroleum Engineers (SPE) published a 2010 report that recognizes climate 
change, its impacts on various ongoing environmental trends, and the importance of adaptation 
planning by the oil industry (Pasteris, 2010). The authors recommend a “value chain adaptation 
approach,” the steps of which include: 

 Projecting physical climate change impacts of greatest significance in key locations of 
concern to the company in a relevant timeframe; 

 Identifying opportunities and risks to new projects and existing operations based on the 
projected impacts; 

 Identifying and assessing potential design modification, technologies, and other solutions 
to mitigate risks and leverage opportunities; and 

 Implementing adaptation solutions where the business case warrants it (Pasteris, 2010). 

In the U.S. Department of Transportation (DOT) guide for climate change adaptation within the 
greater transportation system’s management, operations, and maintenance, it is recognized that 
“with climate change comes uncertainty, be it in a greater variability of expected events or 
unexpected extreme weather and by not understanding the risk or not assessing the 
vulnerability of their operations, agencies can be caught off-guard by an unexpected event 
leading to significantly degraded capabilities when they are most needed” (US. Department of 
Transportation, 2015, p. 8). The guide proposes a framework for short-term, mid-term, and 
long-term adaptation planning that includes data-driven risk assessment, continued 
collaborative dialogue, and brainstorming across stakeholders (US. Department of 
Transportation, 2015). 

By looking at longer term climate projections (out to 2100), we take a step towards long-term 
adaptation planning, which generally involves studying potential future scenarios, considering 
potential effects of those scenarios, and designing adaptation measures fit for purpose. Pasteris 
(2010) defines adaptation as a process through which societies make themselves better able to 
cope with an uncertain future. But effective adaptation is more than coping; it is also managing 
better in the face of multiple unpredictabilities. 

Risk assessments requirements are one common management mechanism across initiatives set 
out by governing bodies including the Pipeline and Hazardous Material Safety Administration 
(PHMSA), the National Transportation Safety Board, and the United States Coast Guard 
(Transportation Research Board & National Academies of Sciences, 2017). These government 
bodies were, amongst others, identified as being in charge of ensuring the safety of pipeline, 
rail, and waterway hazardous liquid and gas transportation modes. The National Academies of 
Science, Engineering, and Medicine analyzed these transportation modes for repeating patterns 
of failure and made recommendations for improvements (Transportation Research Board & 
National Academies of Sciences, 2017). The National Academies’ analysis did not, however, 
look specifically at impacts of extreme weather-induced events on the relevant infrastructure. 
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In carrying out assessments and analyses related to climate change impacts on infrastructures, 
TFS stakeholders in the state are subject to a number of regulations and guidelines set by the 
state and local governments. A necessarily brief and selective summary of these include: 

 California Assembly Bill (AB) 2516: Sea level rise planning: database (Gordon, 2014). 
This bill required: 

“On or before January 1, 2016, the Natural Resources Agency, in collaboration with the 
Ocean Protection Council, to create, update biannually, and post on an Internet Web site 
a Planning for Sea Level Rise Database describing steps being taken throughout the state 
to prepare for, and adapt to, sea level rise. The bill would require various public 
agencies and private entities to provide to the agency, by July 1, 2015, and, beginning 
January 1, 2016, on a biannual basis thereafter, sea level rise planning information, as 
defined, that is under the control or jurisdiction of the public agencies or private 
entities.”  

 Executive Order B‐30‐15, signed by California Governor Brown, requires State agencies 
to incorporate climate change impacts into planning and infrastructure. 
The Order (Office of Governor Edmund G. Brown, Jr., 2015) articulates that: 

“Climate change poses an ever-growing threat to the well-being, public health, 
natural resources, economy, and the environment of California, including loss of 
snowpack, drought, sea level rise, more frequent and intense wildfires, heat 
waves, more severe smog, and harm to natural and working lands, and these 
effects are already being felt in the state…Taking climate change into account in 
planning and decision making will help the state make more informed decisions 
and avoid high costs in the future.” 

 The San Francisco Sea Level Rise Action Plan (City and County of San Francisco, 2016), 
which states: 

“The Plan, led by San Francisco Planning and San Francisco Public Works, 
defines an overarching vision and set of objectives for future sea level rise and 
coastal flooding planning and mitigation in San Francisco. Proactive, thoughtful 
adaptation planning will allow San Francisco to minimize risks and meet the 
challenges posed by rising seas. The innovation, creativity, and inclusivity that 
have always inspired growth and development in San Francisco will support 
both sea level rise adaptation and continued growth as a leading global city.”  

For example, the California Department of Transportation (Caltrans) has started carrying out 
vulnerability assessments that outline climate change effects, identify impacts, and present 
details on the technical processes that are employed to identify climate impacts. The first 
summary and technical report has been published for District 4, which serves Sonoma, Napa, 
Solano, Marin, San Francisco, Contra Costa, Alameda, San Mateo, and Santa Clara counties in 
Northern California (California Department of Transportation, 2018). The assessments take into 
account sea level rise, storm surge, wildfire, and a combination of these weather events. 

In carrying out assessments and analyses related to climate change impacts on infrastructures, 
TFS stakeholders are faced with obstacles to producing effective, long-term adaptation 
planning. In discussions with stakeholders and in analyzing the TFS, the following obstacles are 
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highlighted since they also pose real-time challenges to operations and risk management that 
are likely to persist into the foreseeable future: 

 Critical-goods supply chains within the TFS are very complex: complex to design, 
complex to operate, and complex to analyze. This is because they are large in size, 
involve dynamic time-variant behavior, have heterogeneity across end-users, and are 
extensively interconnected with other critical facilities outside the sector. The chief 
feature of socio-technical complexity is surprise and the inability to predict with the 
accuracy required (e.g. Demchak, 1991), which make long-term strategic planning all the 
more difficult for TFS stakeholders. 

 There is an ongoing replenishment of infrastructure within the entire TFS over time as 
assets need replacement, technologies are improved, and upgrades are warranted. This 
makes it difficult to project long-term system failures and develop long-term strategic 
plans for the sector as a whole. 

 The number of scenario combinations and permutations for analysis increase as various 
exposure threats are modeled and projected. These in turn can have a cascade effect and 
negatively impact TFS assets. For example, wildfires can destroy hillside vegetation, 
leading to landslides and flooding during subsequent severe rainstorms. 

 Finally, assessment of the interconnected parts of the TFS that are necessary to support 
movement of products across the supply chain demands the inclusion of a temporal 
dimension extending beyond many of its constituent’s planning horizons. This adds to 
the difficulty of long term planning at the sector level. 

Constant vigilance is required by both policymakers and individual TFS stakeholders in order 
to better manage and improve the TFS as a whole. As such, it is important to both groups to 
produce flooding and wildfire projections for temporal periods that are of relevance to them. 

1.5 Modeling Extreme Weather Events 

In order to estimate the potential exposure of TFS assets to extreme weather-induced coastal 
flooding, inland flooding, and wildfire under climate change, we use numerous climate change 
scenarios and spatially model and analyze flooding and wildfire events across time and by 
periods under the conditions prescribed by those scenarios. We then evaluate the coincidence of 
flooding and wildfire with our geospatial datasets of TFS assets to estimate their exposure to 
these hazards. We model and analyze both flooding and wildfire exposure of TFS asset 
statewide at coarse spatial resolution then identify specific exposed areas with concentrations of 
TFS assets or areas of particular interest to the stakeholders and model the flooding and wildfire 
exposure of TFS assets in those areas at a fine spatial resolution. 

1.5.1 Climate Change Scenarios 
We define climate change scenarios using combinations of 1) representative concentration 
pathways (RCP) scenarios; 2) General Circulation Models (GCMs); and 3) probabilistic sea level 
rise (SLR) for coastal flooding, land use land cover (LULC) projections for wildfire, or no 
additional component (for inland flooding). These scenarios cannot predict the future, but 
rather are intended to illustrate key uncertainties so that the subsequent decisions made in light 
of them can be more robust (see Moss et al., 2010). 
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RCPs are scenarios of future greenhouse gas (GHG) concentration in the atmosphere, indicating 
possible futures of global climate that serve as a fundamental layer in our scenario construction. 
Our modeling is based on RCP 4.5 and RCP 8.5 (out of a set of four adopted by the 
Intergovernmental Panel on Climate Change - IPCC). The Fourth Assessment recommends 
these two RCP scenarios to its research teams. Together the RCPs represent a wide spectrum of 
future climate, with RCP 8.5 portraying a high GHG concentration scenario and minimal 
mitigation and RCP 4.5 representing a mitigation heavy scenario with lower GHG 
concentrations (relative to RCP 8.5). 

The second component of our scenarios is the GCMs. They are used in conjunction with RCPs to 
project specific climate variables, such as precipitation and temperature, in future climate. This 
study uses the four GCMs selected by the Fourth Assessment: HadGEM2-ES (warm-dry), 
CNRM-CM5 (cool-wet), CanESM2 (average), and MIROC5 (complementary), as they cover a 
broad range of climate model projections on future climate for California. 

The third component in our scenarios depends on whether flooding or wildfire is being 
analyzed. In coastal flooding modeling, SLR values are projected probabilistically by sampling 
time-dependent probability distributions of five primary global SLR components (Cayan et al., 
2016). The Fourth Assessment recommends research teams examine the 50th, 95th, and 99.9th 

percentile probabilistic SLR values. In statewide wildfire modeling, Westerling (2018) used 
LULC projections made by Sleeter, Wilson, Sharygin, & Sherba (2017) as one model input. 
Westerling also used the central and low scenarios in Sleeter’s LULC projections (Sleeter et al. 
include ten Monte Carlo simulations for each scenario to account for stochastic nature of LULC 
change). 

We obtain our scenarios (Table 1) for flooding and wildfire modeling by combining the 
components above. For coastal flooding models, we identify 24 scenarios combining RCP 4.5 
and 8.5, four GCMs, and three probabilistic SLR values. For inland flooding models, we identify 
eight scenarios incorporating the two core RCPs and four GCMs. For wildfire models, 
Westerling’s dataset identified 240 scenarios from the two core RCPs, four GCMs, and three 
LULC scenarios (with 10 stochastic variations each). For more detailed information regarding 
the scenarios, please refer to section B.1 in Appendix B. 

Table 1. Scenarios assessed in this study and their components 

Hazard 

Components of the scenarios Number 
of 
scenarios  

GHG concentration 
scenarios 

Climate models and 
descriptions 

Additional scenario 
components 

Flooding 
Coastal 
flooding 

RCP 4.5 - moderate 
GHG concentration 
with some climate 

HadGEM2-ES: 
warm/dry; 

3 probabilistic SLR 
values 

24 

Inland 
flooding 

change interventions; 

RCP 8.5 – high GHG 

CNRM-CM5: cool/wet; 

CanESM2: average; 

- 8 

Wildfire 
concentration without 
climate change 
interventions 

MIROC5: 
complementary 

3 LULC scenarios, 
each with 10 
stochastic variations 

240 

Description of a climate model is given in terms of the projected climate pattern of this model relative to other 
candidate models. The warm/dry model tends to project hot temperature and less precipitation, which is contrary to 
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the cool/wet model. Average model tends to give projection values close to the average of the candidate models. 
Complementary model gives projections that are most different from the previous three models. 

1.5.2 Flood Modeling Methods Overview 
Our flood modeling looks at both coastal flooding caused by SLR and storm surge as well as 
inland flooding due to rainfall under the various climate change scenarios identified in the 
preceding section.  

To assess coastal flooding exposure, we initially execute a statewide model at a coarse spatial 
resolution of 50 m (164 ft). We employ a 3Di hydrodynamic model (Stelling, 2012a) to model 
inundated areas during extremely high sea level events (i.e. a 72-hour storm event with the 
highest sea level of a given climate scenario and bi-decadal period). Our statewide model 
assesses coastal flooding exposure under all 24 flooding scenarios in Table 1 over five 20-year 
periods between 2000 and 2100 (i.e. 2000-2020, 2020-2040, 2040-2060, 2060-2080, 2080-2100). 
Again, these horizons can be used for risk management, investment, planning, depreciation, or 
other purposes. We then conduct local scale modeling at a fine spatial resolution of 5 m (16.4 ft) 
only in selected areas because at this resolution it takes much more computing power to run our 
analysis. We select these areas based on flooding exposure in the statewide model, coincident 
concentration of TFS assets, and advice from TFS stakeholders. We then use the 3Di 
hydrodynamic model to simulate both coastal and inland flooding at local scales. 

Our local scale models focus on the 2020-2040 period (which TFS stakeholders express great 
interest in) and the 2080-2100 period (to show the exposure near the end of the century). The 
local models also focus on high, medium, and low estimates of the high sea level events (for 
coastal flooding) and the maximum daily rainfall intensity during a bi-decadal period (for 
inland flooding), to show the range and center of flooding exposures under a range of climate 
scenarios. An overview of the flood modeling is shown in Table 2. 

1.5.3 Wildfire Modeling Methods Overview 
We analyze statistical and process-based model outputs to determine which TFS assets are 
likely to face potentially hazardous wildfire events and behaviors during current and future 
periods of interest. Similar to flooding, we analyze wildfire exposure at both a statewide and a 
local scale. We obtain statewide projection data for wildfire events from work completed by 
Westerling (2018). Westerling’s wildfire projections are generated from an empirical modeling 
framework that relied upon past empirical data to estimate large (> 400 hectares (ha); 1.54 
square miles) fire presence, numbers of fires, and area burned at 16th degree (approximately 
3.85-square miles) spatial resolution for all months between 1953 and 2100. Westerling’s 
predictive modeling routine is initialized using input data from each of the 240 wildfire 
scenarios described Table 1. 

Our TFS exposure assessment takes estimates of area burned from all scenarios modeled by 
Westerling into account when evaluating regional and sub-regional changes in California 
wildfire patterns over the current century and between the aforementioned specific 20 year-long 
periods for investment, risk management, or other entity-specific purposes. To assess exposure 
of specific TFS assets and organizations to wildfire at local scales, we model wildfire behavior, 
including flame length, rate of spread, and fire intensity, based on weather, fuel, and 
topographic conditions using a fire behavior model, FlamMap (Finney, 2006). 
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TFS stakeholders express great interest in present-day and nearer-term levels of exposure. 
Fortunately, we are able to model local scale exposure to wildfire under both present and future 
weather conditions. Considering stakeholder interest, we focus our local scale modeling efforts 
on modeling wildfire behaviors using extreme weather conditions recorded during recent large 
or notable fires. However, in order to assess changes in wildfire hazard driven by changes in 
weather extremes, we also model wildfire behavior using weather derived from future climate 
projections. An overview of the wildfire modeling is shown in Table 2. 

Table 2. Overview of the models in this study, highlighting the hazards of interest, corresponding
spatial scales of the models, climate-related drivers of the hazard, and results for hazard 

exposure. 

Hazard Spatial 
scales and 
resolution 

Climate-related drivers 
of hazard 

Metrics for hazard 
exposure 

Model 

Flooding Coastal 
flooding 

Statewide 
(50 m) 

Projected sea level rise 
and storm surge during a 
72-hour window with the 

50 m maps of 
maximum flooding 
depths and extents  

3Di hydrodynamic 
model (Stelling, 
2012a) 

Local scale 
(5 m) 

highest sea level during a 
20-year period. 

5 m maps of 
maximum flooding 
depths and extents 

3Di hydrodynamic 
model 

Inland 
flooding 

Local scale 
(5 m) 

Projected rainfall with the 
highest daily intensity of a 
20-year period. 

5 m maps of 
maximum flooding 
depths and extents 

3Di hydrodynamic 
model 

Wildfire Large 
Wildfire 
Events 

Statewide 
(6.2 km) 

Projected climate variables 
such as precipitation, 
temperature, and relative 
humidity 

16th degree maps of 
burned area 

Empirical 
estimates by 
Westerling 
(forthcoming) 

Wildfire 
Behavior 

Local scale 
(5 m) 

Projected and present-day 
fuel moisture, relative 
humidity, temperature, 
cloud cover, wind speed 
and direction, in historical 
extreme fires and 
projected climate 

5 m maps of flame 
length, rate of 
spread, and fire 
intensity 

FlamMap fire 
behavior model 
(Finney, 2006) 

1.6 Stakeholder Driven Vulnerability Assessment 

After modeling the exposure of TFS assets to extreme flooding and wildfire events under 
climate change, we engage collectively with TFS stakeholders to document their response to our 
initial modeling outputs. We discuss their assessment of the exposure of TFS assets modeled 
under the extreme weather events and in some cases refine the modeling results in light of their 
advice. In addition, we ask stakeholders to discuss the added value of our modeling outputs 
and the modeling process in general in the development of short- and long-term strategic 
planning.  

As part of this interaction, we establish a Technical Advisory Committee (TAC), consisting of 
representatives of industry stakeholders that own and operate key TFS assets (labeled TFS core), 
representatives of organizations that provide services on which the TFS core organizations rely 
heavily (labeled TFS dependent), and representatives of groups that regulate and or research TFS 
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core organizations (labeled TFS Knowledgeable). We present preliminary plans and results to this 
TAC to ensure that the study is highly-relevant and includes as many types of stakeholders and 
assets as possible. 

We organize workshops to collect information from the public and TFS stakeholders to improve 
our understanding of the assets in the TFS network, its internal and external interconnections, 
and the areas stakeholders are concerned about from an extreme weather event exposure 
perspective. In addition to the workshops, we hold discussions with various groups of TFS 
stakeholders to gain more detailed insight into their TFS assets, potential vulnerabilities to 
extreme weather events, interdependencies within the sector and with other sectors, and 
potential strategic plans already in place or being developed. 

Last but not least, a key part of our analysis examines possible impacts of extreme weather 
events to the pipeline distribution system of refined fuels, a sector Kinder Morgan, Inc. 
dominates. Kinder Morgan, Inc. is the only common carrier of petroleum product pipelines in 
the state and transports the majority of fuels through its system each day. We enter into a Non-
Disclosure Agreement and hold in-depth discussions with Kinder Morgan, Inc. and complete 
specific exposure modeling focusing on their assets and flows within the state. The centrality of 
Kinder Morgan, Inc.’s assets underscores the importance of knowing more about the 
complexities and the vulnerabilities of its infrastructure and operations, especially given that 
some of their assets are considered possible chokepoints in the State’s TFS.  

1.7 Innovative Approach 

Much climate change research has been undertaken looking at the planet as a whole. This is 
expected given the many GCMs and the range of RCPs based on possible changes in future 
anthropogenic greenhouse gas emissions. Although researchers have downscaled the planetary 
projections to predict California’s future climate (Cayan et al., 2016; D. W. Pierce, Cayan, & 
Thrasher, 2014), the spatial scale often remains difficult for stakeholders to embrace beyond 
real-time and the nearer-term.  

With this in mind, and after meeting with our TAC, we embark on a multi-scale modeling 
strategy across various spatial scales. We began with a statewide approach, modeling vast 
regions and analyzing current and future wildfire and flooding events. We combine our model 
results with TFS infrastructure identifying regions of exposure. Although these results stimulate 
some discussion amongst stakeholders, it is apparent that the coarse spatial scale is insufficient 
for stakeholders to identify risk to their individual assets. 

We overcome this by gathering high resolution data, some of which are at very fine spatial 
scales (1 m or ~ 3 ft), and refine our models at a 5 m (~16 ft) spatial resolution. For flooding we 
included all objects or built structures with the topography in our model, using LiDAR data to 
estimate their heights above the datum (above the ground level). For wildfires, we include built 
structures and vegetation patches, once again using LiDAR data to estimate the heights. In 
addition, we employ 1 m (~ 3 ft) multi-spectral imagery to identify vegetation fuel types. 

The intersection of these detailed spatial resolution models with TFS infrastructure greatly 
enhances the exposure estimates of individual assets. Moreover, the stakeholders embrace the 
results and become more actively involved in the discussion of vulnerability and resilience. This 
leads to further discussions with individual TFS stakeholders. 
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Finally, our strategy to model different periods presented by flooding and wildfires enabled 
stakeholders to focus on both near-term and long-term strategic planning, and rapid, 
emergency response. 

1.8 Structure of Report 

The remainder of the report describes in detail our methods, analysis, and conclusions. Chapter 
2 describes our concept of the TFS in California, its key assets and their intraconnectivity. 
Chapter 3 identifies our spatial temporal modeling of coastal flooding, inland flooding, and 
wildfire through time under numerous climate change scenarios, and presents the results of our 
exposure analyses. Chapter 4 describes our engagement with TFS stakeholder to understand the 
complex TFS and the implications of our modeling results. Finally, Chapter 5 presents a 
summary of our results and our conclusions. 

2: Transportation Fuel Sector - Assets, Operation and 
Organization 

To understand the possible exposure of TFS assets to wildfire and flooding, a necessary first 
step is to identify and then frame the assets that are necessary for the reliable supply and 
distribution of transportation fuels in California. We conceptualize the TFS in the form of a 
schematic and explain the key assets, conceptualized as nodes and links in a network, their 
multimodal connections, and their various dependencies on each other. Finally, we map the 
georectified TFS assets within a Geographic Information System (GIS) of California.  

To illustrate the intraconnections between critical assets within the TFS and other indispensable 
infrastructure networks within the state, an example using a refinery is detailed. The 
organizational network and its institutional framework are briefly examined to give an idea of 
the inter- and intra-organizational relations that are formed to reliably operate and manage 
transportation fuel supply and distribution. This examination also provides a context for the 
laws, regulations, procedures, and informal conventions, customs, and norms which shape the 
economic market and behavior of the TFS organizations. 

To our knowledge, this chapter’s schematic is the first to consolidate into one conceptual model 
the key elements of the State’s TFS as currently represented in the literature and understood by 
sector stakeholders. 

2.1 Conceptualizing the TFS – Definitions and System Boundaries  

Because an estimated 94% of California’s transportation fuel consumption is sourced from 
crude oil in 2014 (Lawrence Livermore National Laboratory, 2014), our conceptual model of the 
TFS focuses on a supply chain strongly related to the oil industry. The focus is on the supply 
and demand of crude oil-derived fuels – gasoline, diesel, propane, jet fuel, kerosene, and heavy 
oil – that are used in the state for transportation via vehicles, aviation and, to a smaller extent, 
marine vessels. There are a great variety of alternative transportation fuel sources in California, 
such as biodiesel, ethanol, natural gas, electricity, and hydrogen. Together these constitute 
approximately 6% of the fuel consumed in California and are not directly addressed in this 
report. A parallel analysis of the exposure of hydrogen fuel stations to flooding and wildfire is 
available in Appendix F. 
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When conceptualizing the TFS, the oil industry is considered and must be recognized as one of 
the most complex supply chain systems (Kazemi & Szmerekovsky, 2015). It is conventionally 
subdivided into three core operational/business segments: upstream, midstream, and 
downstream (Cragg, Burton, Feinberg, & Schaik, 2011; Herkenhoff, 2014). However, there are 
acknowledged operational overlaps between and among what operators refer to as the 
midstream and downstream and the midstream and upstream segments. This overlap depends 
on an organization’s business profile. They might specialize in one of these segments or they 
might be an integrated oil company operating through the entirety of the supply chain system. 

Since segment overlap is not always clear, we refrain from referring to the parts of the TFS as 
upstream, midstream, and downstream segments. Instead, we divide the operational processes 
of the fuels (from production, transportation, refining to distribution) as separate subsystems. 

By representing the operational processes in a supply chain, we show the vertical integration 
between the steps and processes needed to achieve various transportation fuel products from 
crude oil. We then expand the supply chain schematic to include the assets needed to move, 
produce, and store crude oil and fuel products. This offers insight to which physical assets need 
to be mapped geospatially to gain a comprehensive overview of the TFS and simulate its 
exposure to current and projected wildfire and flooding events. The TFS functions as a coherent 
critical infrastructure when it vertically integrates the operational processes from production 
through refining to end-use distribution of fuels (Miller, 2009; Rinaldi, Peerenboom, & Kelly, 
2001). 

The conceptual model of the TFS helps us: 

1. Identify geospatial datasets that define TFS assets and the connections between them. 
These assets and connections are used to build the geospatial network model. This 
model is then intersected with the wildfire and flooding models to examine the exposure 
and thus the potential vulnerability of the assets to projected wildfire and flooding; and 

2. Communicate our vision of the TFS to stakeholders. The model is used during 
workshops and discussions to help identify and define important assets and their 
intraconnections. 

2.1.1 TFS Supply Chain Overview 
Our conceptual model is built after energy supply chain graphs of the oil sector commonly used 
to explain the diversity and complexity of the critical systems. These graphs seek to visualize 
key elements of supply and demand and the connections between and among them, as 
demonstrated in examples given by the American Petroleum Institute guidebook (American 
Petroleum Institute, 2016) and the EIA on weather disruptive events to the fuel supply (U.S. 
Energy Information Administration, 2013). 

At the conceptual model’s foundation lie the assets necessary in the state for the reliable supply 
and distribution of transportation fuels. This means we represent the essential infrastructures 
that transport the crude oil to the refineries (pre-refinery) and then transport the produced fuels 
from the refineries to the demand destinations (post-refinery). Most simply, this is represented 
in Figure 1 where we conceptualize the pre- and post-refinery processes and show five different 
commodities subsystems (crude oil, common vehicle fuel products, airport fuel products, 
maritime fuel products, and gasoil). Literature pertaining to oil supply chain graphs shows that 
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such integrated production-distribution structure is commonly adopted and adapted for 
planning and optimization (Sahebi, Nickel, & Ashayeri, 2014). 

Figure 1. TFS supply-demand chain overview 

2.1.1.1 Pre-Refinery: Crude Oil Supply 

The crude oil feedstock input into the crude oil subsystem is sourced from within the state or 
out-of-state. In 2017, out-of-state sources accounted for 69% of the crude supply to the State’s 
refineries; 12% from Alaska and 57% from foreign sources such as the Middle East and South 
American countries (California Energy Commission, 2017c). In that same year Californian oil 
fields produced 31% of the crude supply sourced to the State’s refineries (California Energy 
Commission, 2017c). 
2.1.1.2 Refineries 

Refineries are key TFS assets since they are the central nodes in the fuel supply-demand chain 
system; they are the ultimate demand nodes for crude oil feedstock and the primary supply 
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origin for fuel products. At these complex industrial facilities raw crude oil is converted by a 
range processes into usable fuel products (Hilyard, 2012). 

California's largest refineries are capable of processing a variety of crude oil types. Fifteen out of 
eighteen refineries are configured to produce cleaner fuels, including California reformulated 
motor gasoline and low-sulfur diesel (U.S. Energy Information Administration, 2017c). During 
2016, California processed 1.612 million barrels per day of crude oil and produced refined 
products including California reformulated gasoline (43%) and diesel (13 %); commercial jet 
fuel (13%); conventional gasoline (5%); Environmental Protection Agency diesel (4%); small 
amounts of military jet fuel and other diesel; and other petroleum products (20%) (Schremp, 
2017a).  

2.1.1.3 Post-Refinery: Fuel Product Demand 

The state fuel production for 2017 is approximately divided into 61% for motor gasoline, 20% 
for distillate fuels (diesel fuels, fuel oil), 16% for aviation fuels, and 3% for residual fuels 
(California Energy Commission, 2017c). In our TFS conceptual model, motor gasoline and 
distillate fuels are found in the vehicle fuel subsystem; distillate fuels as well as residual fuels 
are in the marine fuel subsystem; and the aviation fuels are what distinguish the aviation fuel 
subsystem. 

Vehicle Fuel Subsystem 

Products such as gasoline or diesel (distillate) leave the refineries and enter the vehicle fuel 
subsystem. They represent, on average, 80% of the State’s fuel production. Their destinations 
are wholesale and retail gas stations, which sell the fuel to end users of land vehicles, water-
borne vehicles, and small engine tools. 

Ethanol is added to produce California reformulated fuels for the vehicle fuel subsystem and is 
therefore integrated as a commodity in this subsystem. Ethanol constitutes 10% of the final 
gasoline and diesel products. There are four ethanol plants in California (U.S. Energy 
Information Administration, 2017), but a large portion of this commodity comes mainly by 
railway from the U.S. Midwest and a smaller portion by tanker vessels. The ethanol is blended 
with the gasoline and diesel at the refinery or intermediary terminals.  

Aviation Fuel Subsystem 

Representing around 16% of the State’s fuel production, aviation fuels, such as kerosene-type 
and naphtha-type jet fuels, are transported from refineries to civilian and military airports in the 
state. The highest demand is for commercial aviation, kerosene-type fuels commonly known as 
Jet-A and Jet A-1 produced to an international standard specification (Davidson, Newes, 
Schwab, & Vimmerstedt, 2014). Aviation gasoline is also part of this commodity subset, but it is 
used for smaller aircraft and corresponds to less than 1% of the aviation fuel demand (Davidson 
et al., 2014). 

Military jet fuels differ from commercial jet fuels and are commonly referred to as “jet 
propeller” with a variety of mixes used for different engine turbines. Usually they flash at a 
higher temperature and have specific additives. Mostly, the additives are added at the military 
marine terminals or at the airport fuel terminals, but smaller quantities are also added at the 
refinery.  
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Marine Fuel Subsystem 

There are two types of marine fuels: the lighter distillate fuels and the heavier residual fuels or 
marine gasoil (Vermeire, 2012), which represent less than 5% of the State’s fuel production. 
Small portions of the refined products are marine gasoil, also known as heavy oil or bunker 
fuel. It is considered as the heaviest commercial fuel that can be refined from crude oil and is 
made specifically for tanker barges or tanker vessels. 

2.1.2 Conceptual Model 

While the above Figure 1 shows the general processes in the supply chain, it does not show the 
assets that physically make up the subsystems and enable the flow of crude oil and the fuel 
products (commodities) through the subsystems. We therefore expand the model to include 
nodes and links to show the network structure of the supply, production, and distribution of 
transportation fuels in California. This is reflected in the Figure 2 schematic used throughout the 
rest of this report). 
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Figure 2. California’s Transportation Fuel Sector conceptual model 
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Our starting point is a conceptual model that enables any reader to follow an oil molecule 
through the various TFS assets as it, for example, leaves a California oil field through crude oil 
gathering pipelines to gathering stations, and then moves from those stations to a refinery 
through a crude oil pipeline. Similarly, we can follow a hypothetical imported oil molecule as it 
moves through marine and rail terminals and through crude oil pipelines to one of the 
California refineries. 

The conceptual model follows a network structure containing nodes and links. Nodes are the 
assets where commodities are processed, transferred, and/or stored. Links are key 
transportation assets through which commodities are moved. They include waterways, 
railroads and roads over which tanker vessels, tank cars and tanker trucks carrying crude oil or 
fuels move, and pipelines through which crude or fuels flow. In examining the exposure of the 
assets to wildfire and flooding these nodes and links are generally categorized, as shown in 
Table 3. 

Table 3. General TFS assets categorized per node and link 

Nodes Links 
Oil Fields / Oil Wells Pipelines (crude oil and products) 
Refineries Railways 
Terminals (including rail) Waterways 
Ports (including marine terminals) Roadways 

Airports 
Vehicle Fuel Stations 

The nodes represent origin, intermediary, and destination nodes. The links represented in the 
TFS are four essential freight modes: Pipelines, railways, and waterways are usually used for 
long-haul movement of commodities (Figure 5, located at end of the chapter), while roads 
participate in shorter distribution transit, usually involving the last leg of product deliveries 
(Figure 6, located at the end of the chapter). 

2.2 Key Assets  

This section describes the function of the key assets shown in the conceptual model (Figure 2) in 
the State’s transportation fuel supply chain for each subsystem. In addition, it describes the 
location of these assets within the state. The latter is especially important in understanding 
possible exposure to flooding and wildfire. Most of the State’s refineries are located near 
waterways and thus could be at risk of exposure to coastal flooding. 

A quick look at maps of the TFS assets’ location shows that most of the State’s pre-refinery and 
refinery assets are located near waterways and exposed to projected coastal flooding (Figure 7, 
Figure 8, Figure 10, and Figure 11, located at the end of the chapter). This quick view shows that 
links, such as pipelines and railways, are more exposed to projected wildfire since they pass 
through the State’s wildland areas (Figure 5). However, we describe in Chapter 3 that actual 
exposure depends on the conditions at specific locations. 

2.2.1 Assets Found Across Subsystems  
Many assets have their functions contained within a single subsystem, while three assets, 
namely ports, waterways, and terminals, can be found across several subsystems of the pre-
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refinery and post-refinery processes. Ports, terminals, and waterways are important because 
two-thirds of the crude oil processed in California is imported from other states or countries 
and the majority of crude oil is received at the State’s marine facilities (U.S. Energy Information 
Administration, 2017c). The marine terminals in the ports are designed to accommodate crude 
oil vessels and petroleum product tankers and most refiners operate a proprietary dock with 
adjacent storage tanks to hold incoming crude and outgoing petroleum products prior to 
transfer (Schremp, 2017a). 

The marine transportation system is composed of thousands of kilometers of navigable 
waterways with hundreds of ports as origin and destination nodes. Waterways are the cheapest 
transportation mode for the movement of bulk petroleum products. The U.S. Army Corps of 
Engineers is the major governmental agency responsible for the maintenance of the navigable 
waterways, including channel dredging and control of water flows and channel depths 
(National Academies of Sciences, Engineering, and Medicine, National Academies of Sciences, 
Engineering, and Medicine, Studies and Special Programs Division, Transportation Research 
Board, & National Academies of Sciences, Engineering, and Medicine, 2017). In California, most 
movement is done through coastal and intra-coastal systems. In California, the most important 
river system is the Sacramento River, which links San Francisco Bay Area TFS assets to the 
Stockton TFS assets. Most oil companies lease ships on a charter basis either for a long period of 
time or on a spot basis. Refineries usually operate a proprietary dock and grant third-party 
access to pipeline, rail or truck infrastructure (Schremp, 2016b). 

Nine major ports are in California. Five serve the San Francisco Bay Area from the south bay to 
Stockton, four are in southern California between Port Hueneme and San Diego. Two major 
ports are at Los Angeles and Long Beach, the latter hosts the largest pier, Berth T121. This pier 
has the deepest berth in the port (23.5 m; 77 ft.) and is designed to accommodate tankers with 
50,000 to 265,000 deadweight tonnage (Port of Long Beach, 2017). Ships dock there only during 
high tide. It is chartered by Andeavor, but also serves other refinery companies and is 
considered to be the single most important unloading node of crude oil in terms of volume for 
the state. 

Terminals are any location where liquid bulk transportation fuel commodities originate, 
terminate or are handled in the supply and distribution process. Terminals are typically multi-
purpose and are polysemous. Depending on the organization or the TFS commodity subsystem, 
the same terminal facility might be an intermediate transshipment node, an end node, or an 
origin node. By way of illustration, port terminal facilities can be considered a crude oil origin 
node for imported feedstock with transloading equipment to railways. However, the same port 
might also be a fuel product intermediate storage facility with transshipment from pipelines to 
ocean-going vessels. That same port may also represent the end node for the marine fuel 
commodity subsystem. A common characteristic of terminals is that they are collocated with 
storage tanks, as the process of transloading liquid commodities usually requires a storage 
component.  

As there is no clear single definition of a terminal when comparing definitions from different 
government energy agencies, it is not possible at this point to identify for official purposes how 
many of these facilities exist in the State. We consider that a TFS terminal represents an 
intermediary facility in the fuel supply chain between the origin and destination nodes. 
Considering the terminal definition described for this project, we have identified approximately 
100 facilities, a number consistent with California Energy Commission’s (Energy Commission’s) 
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estimates. Roughly half of the State’s terminals are clustered in the San Francisco Bay Area and 
the Los Angeles (LA)/ Long Beach Area and three quarters are in California’s coastal zones 
(Figure 7 and Figure 8). 

2.2.2 Pre-refinery: Crude Oil Subsystem 
The node and link assets that are associated with the crude oil commodity subsystem provide 
crude oil to the State’s refineries and are summarized in Table 4. 

Table 4. TFS assets in the crude oil commodity subsystem 

Process Commodity 
subsystem 

Source Possible Node Assets Possible Link Assets 

Out-of-state  
Marine Terminals (in ports) 
Rail terminals 

Railways 
Waterways 

Pre-refinery: 
Crude oil Crude oil 

In-state 

California oil wells 
Pipeline pump stations 
Gathering stations 
Marine terminals (in ports) 
Rail terminals 
Refineries 

Crude oil gathering pipelines 
Railways 
Waterways 
Crude oil pipelines 

The commodity transfer from the marine and rail terminals to the refineries takes place through 
crude oil pipelines. According to the latest figures of the National Pipeline Mapping System 
(NPMS), there are nearly six thousand km of crude oil pipelines in service or idle in California 
(Pipeline Hazardous Material Safety Administration - PHMSA, 2017). Crude oil pipelines have 
shipment specifications based on the refineries’ grade needs. There are 36 different crude oil 
pipeline operators in California; Crimson Pipelines is responsible for nearly 30% of the network, 
followed by Phillips66, Shell, Chevron, ExxonMobil, and Plains All American, which 
collectively account for another 10-15% of the network. Thirty-one other companies cover 5% or 
less of the total crude oil network. 

According to the Energy Commission’s monthly receipts of crude oil by source, one-third of the 
crude oil processed in California comes from in-state oil wells. The main crude oil pipelines 
receive crude oils of distinct qualities along their routes, and they are either mixed or 
segregated into different delivery batches. Refineries are sometimes designed to receive a 
specific quality of crude oil. Accordingly, there are tests at the production level to assess basic 
sediment and water in the oil as well as other physical and chemical characteristics to ensure it 
conforms with the refinery contract’s specifications. This adds to the complexity of the supply 
chain, even at the pre-refinery process stage where crude oil is the sole commodity type. 

Pipelines have their own key infrastructures such as pump and valve stations that maintain 
desired pressure levels and flow rates. Pump station locations vary due to topography, pipe 
diameter, and operating pressure, but roughly they are placed in between 20-100 miles of 
pipeline intervals (National Academies of Sciences, Engineering, and Medicine et al., 2017). 

Crude oil sourced from within the State relies on oil fields mainly located in Kern County, 
which produces over 72% of the State’s total crude oil (Figure 3). The assets associated with 
these fields include: oil wells (Figure 9); oil lift structures (pump jacks); gathering stations or 
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crude oil stock tanks (nodes); and gathering lines (links). After the oil surfaces, it is gathered by 
a web of short-distance gathering lines to intermediary gathering stations before entering the 
main crude oil pipeline systems that deliver the feedstock to their ultimate destination: 
refineries. The network of crude oil pipelines connects the fields to three primary refining 
centers; the Los Angeles area, the San Francisco Bay Area and the Central Valley (U.S. Energy 
Information Administration, 2017c).  

Data sourced from Division of Oil, Gas, and Geothermal Resources (2016) 

Figure 3. In-state crude oil origins. 

Railways cover a minor fraction of the State’s crude oil transportation market compared to 
waterways. A fraction (0.59%) of the total crude oil imported into the state in 2016 came via 
railway (California Energy Commission, 2016b). Officially, there are six crude oil rail terminals 
in California, four concentrated in LA/ Long Beach Area, one in Bakersfield, and another in 
Richmond according to the EIA 2014 database. Following our discussions with TFS stakeholders 
(Chapter 4 and Appendix E), it is clarified that some of these terminals are no longer handling 
crude oil commodities but are still important to the TFS geospatial network as they handle other 
vital inputs to refineries such as ethanol and other products (see Chapter 2 section 3). The two 
main rail operators in the State transporting crude oil and vital inputs for the refining process 
are Union Pacific Railroad (UP) and Burlington Northern Santa Fe Railways (BNSF). 

Despite the small fraction of crude oil transported via railway, rail freight transportation carries 
the majority of ethanol. UP and BNSF own and operate most of the ethanol freight lines west of 
Mississippi River and in California (National Academies of Sciences, Engineering, and Medicine 
et al., 2017). In California, UP provides roughly 75% and BNSF 25% of long-distance freight 
transportation through Class I tracks. These organizations then rely on a series of local tracks 
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belonging to smaller companies or the refineries for the service’s last leg on Class II and III 
tracks. Class I tracks are designed to operate line-haul trains that contain 70 tank cars or more 
(Rodrigue, Comtois, & Slack, 2017). The most common tank car used to move hazardous liquids 
in the US is the DOT-111 with a capacity of approximately 30,000 gallons. Once a train has 
reached a rail terminal it can take up to one week to fully unload. Carloads of crude oil are a 
minor component of the rail traffic compared to ethanol. The principal supply origins of ethanol 
to the state are from the Midwest (Perez, 2005). There are a few train-capable destination 
terminals that transload ethanol received by rail in California, mostly located near the San 
Francisco Bay Area, Bakersfield and Los Angeles refineries. Other functions of railways in the 
TFS system are transporting vital inputs such as compressed liquified petroleum gas (LPG), and 
sulfuric acid, to and from refineries (Schremp, 2014). 

2.2.3 Refinery Assets 
For this research, the many different assets (nodes and links) that make up a refinery facility, 
such as chemical engineering unit processes, are grouped under one node - the refinery- when 
they are spatially located close to each other. 

Since most of the crude oil inputs to California refineries are off-loaded by ocean-going vessels, 
15 out of 18 refineries in the State are located near waterways (Figure 10). In northern California, 
five facilities are located between Richmond, Benicia, and Martinez in the San Francisco Bay 
Area (Figure 11); in Southern California nine refineries are in the Los Angeles/ Long Beach 
Area. There is one refinery in Santa Maria, and three facilities are located inland, in Bakersfield. 

Some of the State’s refinery facilities process crude oil into a partially refined product (referred 
to as gasoil), which is sent to another refinery facility for final processing into consumable fuel 
products (shown as a loop in the supply chain, Figure 2). Distinguishing these refineries are 
important for understanding the counting process of this TFS asset throughout the report 
(Appendix A) 

Refineries have long life cycles, which means there is a tradition of investing and upgrading 
existing facilities rather than constructing new ones (Carlson, Goldman, & Dahl, 2015). Because 
of permitting issues, low profit margins, and competitive markets, it has been judged 
improbable that new refinery construction will proceed in the country (Hilyard, 2012). In 
California, between 1985 and 1995, ten refineries were closed (California Energy Commission, 
2016a).  

Ten different organizations own and operate refineries in California. In 2016, Tesoro (now 
Andeavor) and Chevron were leaders in refining capacity in California, with a combined operable 
capacity for atmospheric crude distillation exceeding 510,000 barrels per calendar day, followed 
by Phillips 66 and Valero (U.S. Energy Information Administration, 2017a). 

2.2.4 Post-refinery: Fuel Commodity Assets 
The assets that are associated with the three fuel subsystems to get the fuel products from the 
State’s refineries to the end consumers are summarized in Table 5. 
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Table 5. TFS assets per fuel commodity subsystem 

Process Commodity subsystems Possible Nodes Possible Links 

Vehicle fuel 

Vehicle fuel stations 
Terminals 
Break out tanks 
Pumping stations 
Refineries 

Product pipelines 
Waterways 
Roadways 

Post-refinery 
Aviation fuel 

Airports (fuel 
terminals) 
Terminals 
Break out tanks 
Pumping stations 
Refineries 

Product pipelines 
Waterways 
Roadways 

Marine fuel 

Ports (Marine fuel 
distribution nodes) 
Terminals 
Pumping stations 
Refineries 

Product pipelines 
Waterways 
Roadways 

Gasoil Refineries Gasoil pipelines 

While the nodes within these fuel commodity subsystems somewhat differ (and are described 
below), the links in all four subsystems include pipelines. The movement of fuel products in 
California relies largely on pipelines. This key transportation infrastructure is considered as the 
most specialized mode for liquid fuels movement and the most cost-efficient (Miesner & Leffler, 
2006). Finished products (fuels) and crude oil pipeline networks are not interchangeable and 
mostly have inflexible flow directions. There are some pipeline segments exclusively for specific 
fuel types; but in general, the fuels are transported in batches of different products through 
pipelines to reach the terminals. Like crude pipelines, product pipelines have their own key 
infrastructures such as pump and valve stations that maintain desired pressure levels and flow 
rates (National Academies of Sciences, Engineering, and Medicine et al., 2017). 

Kinder Morgan, Inc. operates over 60% of the product pipeline network, followed by Chevron, 
Shell, and ExxonMobil, which operate between 5-10% each. Phillip66, Andeavor, and the 
Department of Defense each operate between 1-5% of the product pipeline network. Another 
two-dozen pipeline product carriers each operates 1% or less of the product pipeline network in 
California. One of the key distinguishing features of the CA TFS is that the State’s northern and 
southern product pipeline networks are not connected. 

The last transect of the product distribution is usually the road network. Trucking companies 
operate in different areas of the state to move the finished products from intermediary 
distribution terminals to the consumer. According to the CARB Fuels enforcement program, 
there are nearly 250 certified motor vehicle fuel distributing companies operating in the State in 
2016 and 2017. These trucking companies are to follow DOT, Caltrans, and municipal road 
restrictions on truck dimension, weight, and hazardous material transportation regulations that 
define their legal routes. The California Department of Transportation (2016b) legal trucking 
network identifies approximately 24,000 km (14,913 miles) of roadways where fuel trucks may 
operate. 

The transporting of fuel by road does not compete economically with other modes that are 
designed for long-haul movements and thus road is limited to shorter distance distributions. 
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However, road networks are denser than the other TFS modes which translates into higher 
redundancy and flexibility for the industry in case there is a disruption in any of the long-haul 
transportation modes described above.  

The vehicle fuel stations, airports, and marine fuel distribution nodes in the ports serve as the 
last point (end node) before the fuel is sold to the end user. Consistent with supply chain 
theory, the final distribution nodes in California are in more populous regions and are more 
distributed throughout the territory (Figure 12, Figure 13, and Figure 14). These end nodes have 
more redundancy compared to the other nodes and thus one single end node is less crucial to 
the entire TFS. 

Vehicle Fuel Commodity Assets 

Most (75-85%) of the vehicle fuels (gasoline and diesel) leave the refineries to the terminals by 
pipelines (Schremp, 2017a), while the remaining gets transported through roadways by tanker 
trucks or through waterways by tanker vessels and barges. Transit from the terminals to gas 
stations or retail outlets occurs mainly by tanker trucks. According to the California Retail Fuel 
Outlet Annual Reporting, there are 10,202 fuel stations that sell gasoline, diesel, and other 
transportation fuel to end users in the State (California Energy Commission, 2017a). 

Aviation Fuel Commodity Assets 

Similar to the vehicle fuel subsystem, the majority of jet fuel is transported by pipelines from the 
refinery to an intermediate terminal that stores said fuel before it is distributed to an airport by 
tanker truck or tanker barges. In the case of larger end users such as primary hub airports, jet 
fuel is directly distributed via pipelines. There are approximately 200 commercial airport 
facilities in the State that integrate the National Plan of Integrated Airport Systems that require 
fuel storage facilities within the airport’s premises (California Department of Transportation, 
2016a). In addition, 23 military airports represent other jet fuel end nodes in California 
(California Department of Transportation, 2012). 

Tanker barges or vessels transport a smaller portion of aviation fuel. The smaller regional 
airports that are not connected to the pipeline transmission systems may receive their jet fuel by 
tanker truck. Some of the primary hub airports also have delivery of gasoline and other fuels 
that are exclusively used for their own ground fleet. 

Marine Fuel Commodity Assets 

The origin node for marine fuels is the refineries and the final destinations nodes are the ports. 
Intermediary terminals for marine fuel commodities are rare as most marine fuel producing 
refineries have pipeline systems that connect directly to docks where the fuel is pumped 
straight into the vessels. 

According to the U.S. Department of Transportation (2016), there are 213 port facilities that 
handle all fuel products. It is not possible to determine from available information whether the 
ports are crude oil unloading terminals, intermediate fuel transloading facilities, or destination 
nodes for fuel products. In our analysis we therefore refer to them solely as “ports.” 

Gasoil Commodity Subsystem 

This is a commodity subsystem as both its origin and destination nodes are refineries belonging 
to Phillips 66. The origin nodes are Santa Maria refinery and Carson, both refineries upgrade 
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crude oil to a semi-refined commodity (also known as gasoil) that is then transported via 
pipeline to the San Francisco and Wilmington refineries respectively. 

2.3 Vital Inputs and Interconnected Infrastructures: The Case of 
Refineries  

The intraconnections between and among various assets within the TFS as a whole is explored 
in section 2.1 and 2.2. However, a closer analysis of each asset within the TFS and its 
dependencies on vital inputs reveals a more complicated system in which the TFS is connected 
to many other critical infrastructure networks such as electricity, natural gas, and water to 
maintain normal operations. We define these critical infrastructures outside the TFS as the 
interconnected assets. In this section, we use the example of a refinery to illustrate the inter-
connections between critical assets within the TFS and other indispensable infrastructure 
networks (Figure 4). 

An example of interconnected assets is: pipeline transmission of refined fuels (products) 
depends on electricity. If electricity fails, the pipeline pumping stations cease to operate, fuel is 
not transported, the intermediate transshipment nodes fail, and the associated section of the 
TFS is broken. Not knowing the real-time vulnerability of interconnected assets upon which 
pipeline managers depend increases uncertainty and is a very real threat to the resiliency of the 
TFS pipeline system. Other Fourth Assessment teams look at the impact of climate change on 
California’s electricity, natural gas, and water infrastructures. 

The refinery is itself a networked infrastructure that relies on a variety of unit operations for 
processing raw crude oil into usable end products. For our purposes here, these processes have 
four different phases: separation/distillation, conversion, enhancement, and blending. Each 
phase depends on vital inputs from other external networks to ensure the reliable and safe 
functionality of the refinery itself. In the conversion phase, for example, the refining process and 
utility heaters are in fact powered by large amount of natural gas fuels. Without stable 
connection to the natural gas pipeline network, a refinery cannot maintain its normal 
operations.  
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Figure 4. TFS refineries interconnections: vital inputs and outputs 

Refineries also need hydrogen and sulfuric acid. The latter comes in by truck and is necessary 
for the alkylation process. On the other hand, there is considerable onsite generation of 
hydrogen, though this vital input is increasingly provided by industrial suppliers (U.S. Energy 
Information Administration, 2016). This substance comes in by pipeline and is important to 
lower the sulfur content of finished fuels. Natural gas is also essential for hydrogen production 
using steam methane reformers (U.S. Energy Information Administration, 2016). In the Los 
Angeles TFS hub, there is a hydrogen pipeline circuit shared by the different refinery 
organizations. Equally important, fresh water—and the infrastructure to provide it—is another 
vital interconnected input for refineries during the separation/distillation phase. 

Not only do these facilities depend on a variety of vital inputs, their operational stability is 
linked to a reliable disposal of outputs such as waste water, sulfur, and petroleum coke. 
Refineries can generate large amounts of wastewater exposed to hydrocarbons. This wastewater 
is often produced in the separation/distillation phase (IPIECA, 2013) and is treated by refinery 
wastewater management units. Part of the used water is usually stored and temporarily 
disposed in open areas near the refineries and is particularly prone to environmental 
contamination, for example in the case of flooding. Since this wastewater contains dissolved 
salts and other corrosive chemicals, failure to effectively dispose of it can cause damage to a 
refinery’s equipment, among other potential causes for disruptions.  

Refineries also need to off-load sulfur, which is a residue that comes from hydro sulfurization, 
or the process of breaking down hydrocarbon molecules. Sulfur can be used by the agriculture 
industry as fertilizer, so it is reported not to present a major encumbrance for the output system 
and it is commonly off-loaded by trucks. 

Petroleum coke is another major by-product of oil refining. It is a carbon-rich solid material that 
can accumulate in refinery barn units if not disposed of regularly. Petroleum coke needs to be 
disposed of approximately once every 15-20 days. It is considered by some stakeholders to be 
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an underestimated choke point of the output system, given that there are only a few alternatives 
for its disposal. Most of the petroleum coke is exported oversees and moves through the port 
and waterway transportation infrastructure. 

A vital infrastructure in the real-time operations of refineries is electricity. In all four phases of 
the refining process, electricity is needed for equipment such as valves and pumps, as well as 
for telecommunications. An unscheduled and prolonged disruption in electricity negatively 
impacts the refineries and many other key TFS infrastructures. 

Based on the electric supply requirements for the refining process example, it is clear that assets 
within the TFS network depend on not only other assets within the TFS schematic 
(intraconnections) but also external infrastructure networks for vital inputs and outputs, in real 
time and over time. Any usable model of the TFS cannot be portrayed in isolation of these 
interconnected vital infrastructures when it comes to TFS operations, let alone cycles for risk 
management and investment. 

These inter-infrastructural connections fall beyond the scope of this research but are covered in 
varying extent by a few limited (geographical extent, scope) Fourth Assessment studies that 
assess potential impacts and adaptation options for infrastructure systems such as the electrical 
and natural gas systems. There is a need for future research on inter-infrastructural connections. 

2.4 TFS Organizational and Institutional Frameworks 

In the preceding sections, this chapter describes the TFS physical infrastructure dimensions by 
key assets and subsystems, simplified as nodes and links, their multimodal connections, their 
various products, and their multiple connectivities. Another necessary dimension to understand 
the fuel supply chain is the organizational network and its institutional framework. 
The organizational network refers to inter- and intra-organizational relations for reliably 
operating and managing transportation fuel supply and distribution. Any such framework 
must represent the formal laws, regulations, procedures, and informal conventions, customs, 
and norms that shape the economic market and behavior of the TFS stakeholders. Just as no 
single schematic of the entire TFS as a sector is possible, so too would be any attempt to 
describe fully the organizational network and its various stakeholders, not least of which 
include the various regulators. Nevertheless, we present here an overview of the intricate 
organizational relations by explaining the different managerial systems related to ownership 
and operations of TFS assets as well as the market drivers of transportation fuel commodities 
with an emphasis on regulations. For the purposes of this report, and to make the following 
overview useful for our readers, we focus particularly on those relations already impacted by 
disruptions associated with flooding and wildfires and thus most likely to be disrupted in the 
future as well under model projections. An overview of the governance complexities of the TFS 
will be presented in the interest of uncovering TFS owner and operator responsibilities whilst 
facing current and projected wildfire and flooding exposure. 

2.4.1 TFS Governance: Private and Public Spectrum Ownership and Operations 
TFS governance involves both the public and private sectors in ownership and operations. The 
TFS key assets are mostly privately owned, while some links, such as roadways, waterways, and 
railways, present mixed governance models that balance private and public interests and 
influences. These governance models translate into specific responsibilities for the public and 
private sectors and to different characteristics of the ownership and operations of the assets. 

32 



 

 

 

  

 

 

 

 

 

 

 

  

Ownership TFS defines who owns the site, facility, and equipment, while operation refers to the 
management, maintenance, and other day-to-day activities (Jacoby, 2012). Owners generally 
partake in managing the portfolio of investments and implementing strategic changes such as 
selling and buying assets. Operators’ decision making and costs usually involves responsibility 
and payment of: the workforce (salaries, wages, and benefits); the vital inputs (such as fuel, 
power, water, etc.); services such as inspection, maintenance and insurance; and all levels of 
governmental taxes and fees (Jacoby, 2012). 

Ownership of TFS commodities adds another complexity to the management models of the TFS; 
in some cases, the same organization might own the upstream suppliers and its downstream 
buyers. Kinder Morgan, Inc. does not own the product flowing through its pipelines but is 
responsible for product delivery according to specifications only. This means an organization 
may own the commodity only and relies on other organizations for the storage and 
transportation of the feedstock or product. In other cases, it is possible that the same 
organization might own and operate the assets as well as own the commodity. 

Furthermore, commodity trading can happen anywhere along the delivery chain and is 
conducted through supply contracts (Cragg et al., 2011). The contracts might change based on 
the oil delivery sequence; where ownership could be transferred at the wellhead point, the 
vessel, or barge delivery node. This contractual shift entails distinct pricing commonly referred 
to as wellhead prices, cargo prices, and barge prices. Product ownership also changes and 
follows similar price changing processes based on trade location in the distribution network.  

When trade pertains to products leaving a refinery, the contracts refer to “refinery gate price;” 
and, when traded at some point in the pipeline network, the contract refers to “pipeline price.” 
For trucking companies’ contracts for example, the product trade will follow the “rack price” 
which is the price at the wholesale point. Before selling it to the end user, there might also be a 
“dealer-tank-wagon price” contract, when the commodity is delivered to gasoline stations and 
other retail outlets, where the consumer finally can access the product based on the “retail 
price” (Hilyard, 2012). 

Public ownership is common for specific end and intermediate TFS nodes such as ports, 
airports, and terminals, and exists only for TFS links such as the roadways and waterways. 
Here, investment in infrastructure and planning strategies are carried out and funded by the 
public authority, who then offers leasing or carrier opportunities with the private market 
(Rodrigue et al., 2017). Private ownership may then come in forms of partnerships, 
corporations, or individuals. Individuals can own stocks, pension plans and mutual funds. 
Partnership and corporation ownership are more influential in most decision-making processes 
in private ownership (Miesner & Leffler, 2006). 

For the majority of the TFS links such as pipeline and railways, private ownership and 
operation is the most common governance model. For these links, a variety of private 
organizations usually own the rights-of-way (ROW) and operate respective carrier 
infrastructures. Conversely, most roadways and waterways are provided and maintained as a 
public good by governments while the carriers (vessels and trucking company fleets) that move 
over them are privately owned and operated. 

Private ownership and operation is also the dominant model for key TFS nodes. California. is 
populated by privately-owned international oil companies, also referred as “super majors” 
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(Energy Intelligence Research, 2011; Herkenhoff, 2014), as well as privately-owned independent 
producers. Super majors are typically vertically integrated companies derived from a few 
decades of mergers and acquisitions, whereas independent oil companies are smaller and 
usually more recent players in the petroleum market. In most of the oil producing and refining 
countries, petroleum markets are controlled by state owned companies (Hilyard, 2012), while 
the U.S. and California oil markets are characterized by corporate governance models. 

In summary, the TFS from a supply chain perspective relies on a complex mix of privately 
owned organizations that trade commodities through owned and/or operated infrastructures. 
This organizational network also includes several public entities that mostly own but 
sometimes also operate parts of these infrastructures. The public-private organizational 
spectrum is commonly described in transportation system planning and operation literature as 
the Public-Private Partnerships (PPP). 

Ports and marine terminals provide examples of the complexity of management models within 
the TFS. Their PPP models fluctuate between public and private ownership and operation from 
an administrative, nautical management, infrastructure, and super structure perspective. 
Specific services for port operations and maintenance (such as pilotage, towage, mooring, and 
dredging) might also be shared through different sectors and organizations. 

Addressing the implications of this organizational complexity, it is understandable why TFS 
governance in general is considered fragmented and inconsistent (Goldthau & Sovacool, 2012). 
Compared to other critical infrastructures (i.e. gas, electricity, water, etc.), TFS fragmentation is 
accentuated because it relies on a much higher number of organizations for the supply and 
distribution of fuel commodities. An approximation of the population of private owners and 
operators of the different TFS infrastructures portrayed in our model is presented in Table 6 (for 
more details see Appendix A). Were we to add to this table those public owners and operators 
or organizations responsible for the reliability and safety of the different TFS infrastructures, the 
complexity would increase by greater magnitudes. 

The petroleum market’s unpredictability based on global economic and political conditions 
(Hilyard, 2012) in conjunction with the complexity of actors involved results in high volatility 
ownership and operation of assets. Although the core structure of major organizations that own 
and operate key TFS infrastructures (such as refineries and pipelines) varies little, ownership of 
specific assets fluctuates continually through mergers and acquisitions. This fluctuation renders 
tracking of organizations even more difficult and increases uncertainties related to risk 
mitigation strategies that transgress the industry’s business model time frames. 

Table 6. Estimated count of different TFS private owners and operators in California 

Key TFS assets associated 
owners and operators 

Approximate count of organizations that 
own and/or operate 

Nodes 

Refineries 10 
Terminals 30-35 
Ports 100-200 
Airports 150-200 
Gas stations 1000-2000 
Oil wells 750-800

 Pipelines 35-40 
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Links Trucks 200-250 
Rail transportation 15-20 
Vessels and barges No available data 

2.4.2 Relationships Between Fuel Market Drivers, Emergency Management and 
Regulations 
Market drivers of the TFS are embedded in the complexities of commodity trading. The oil 
industry is a commodity based business (Cragg et al., 2011) and the different stages of oil 
production and distribution determine important prices and basic economic competitive forces. 
However, relationships between supply dynamics and retail prices are more complicated than 
classic supply and demand markets because transportation energy is a vital commodity; thus, 
there is no substantial reduction of fuel consumption due to price increase. In emergency 
response situations, there might be those well-known spikes in fuel demand from the 
population due to  “panic-buying and hoarding of fuels,” coinciding with first responder 
demand spikes (Schremp, 2016a). The demand spike coming from first responders in California 
is typically associated with firefighter fleet and equipment fuel needs. Trucking companies and 
other fuel distributing organizations have contracts with CalFire, for example, to ensure their 
fuel supply. The increases in wildfires we are projecting can only exacerbate these matters. 

Fuel shortages in emergency situations are planned for and can be mitigated through 
Emergency-Fuels Set-Aside Programs coordinated by CalOES and other state agencies. These 
programs promote multi-agency and inter-agency coordination to facilitate incident 
prioritization and provide fuel for overall emergency response activities. However, emergency 
fuel actions also represent a disruption to the traditional fuel commodity market as they 
empower the Energy Commission and other government agencies to hold, control, and redirect 
petroleum stocks needed to ensure the health, safety and welfare of the public (Schremp, 
2017b). Compared to other western states, California’s emergency fuel plans have a higher 
potential to interfere with the regional fuel market, as the state is the major fuel producer in the 
Petroleum Administration for Defense District 5 (PADD5). This region includes the western 
states of California, Arizona, Nevada, Oregon, Washington, Alaska and Hawaii (U.S. Energy 
Information Administration, 2015b). Another important factor influencing the western U.S. fuel 
market is California’s isolation from the rest of the Nation’s fuel supply. There are no 
substantial movements of product from the PADDs east of PADD5 or from the other states in 
PADD5 to California.  

Finally, regulation is also a significant market driver. TFS associated regulations are intrinsically 
related to safety and environmental protection as well as to energy security and critical 
infrastructure protection. Recent inter-agency reports have described the federal regulatory 
framework for the TFS from a hazardous material safety perspective (National Academies of 
Sciences, Engineering, and Medicine, 2017; National Academies of Sciences, Engineering, and 
Medicine et al., 2017). These reports provide regulatory expertise that overlaps with 
transportation system analysis, energy market analysis, emergency management, transportation 
safety and operations oversight, and risk analysis at the federal level (National Academies of 
Sciences, Engineering, and Medicine, 2017; National Academies of Sciences, Engineering, and 
Medicine et al., 2017). These reports show that regulations concerning the TFS have been largely 
focused on safety of storage and transport of hazardous materials, and pollutant emission 
reduction, but less so on the reliability of transportation energy supply. The same tendency can 
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be observed throughout our stakeholder engagement process, where most TFS organizations 
refer to regulations that address wildfire and flooding exposure that are framed under 
hazardous material safety (cf. CH4.3.1. Marine Oil Terminal Engineering & Maintenance 
Standards and AB 864 on Oil Spill response). 

Major actors for the TFS regulatory framework at the state level include: the California State 
Fire Marshal (equivalent of PHMSA), which focuses on hazardous material transportation and 
pipeline regulations in California, DOGGR (California Department of Conservation’s Division 
of Oil, Gas and Geothermal Resources), and the State Lands Commission, which regulates oil 
exploration, production, and transportation of fuel commodities when these take place on 
sovereign land. Caltrans, the agency regulating transportation infrastructure safety and 
reliability for the movement of liquid fuels, California Office of Emergency Services (CalOES), 
which focuses both on emergency preparedness and critical infrastructure protection, and the 
Energy Commission, which is concerned with safeguarding the State’s fuel supply, are also 
major actors. 
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 Figure 5. Long-haul TFS links in California: Pipelines, railways, and waterways 
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 Figure 6. Short distance TFS links in California: Roadways 
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Figure 7. TFS terminals in California: Intermediate transshipment nodes. Example of multimodal 
terminals: a) Nustar. b) Shell. c) Chevron. 

39 



 

 

  
 

 

a 

b c 

c 

Figure 8. San Francisco Bay Area TFS hub terminal examples. a) Nustar rail/pipeline/marine terminal. 
b) Shell marine/pipeline terminal. c) Chevron marine/pipeline terminal. 
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Figure 9. California’s oil fields and active oil wells: Crude oil origin nodes. Digitized from (Division of 
Oil, Gas, and Geothermal Resources, 2017, 2018). 
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 Figure 10. TFS refinery nodes in California 
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Figure 11. San Francisco Bay Area TFS Hub Refineries. a) Andeavor (ex-Tesoro) refinery. b) Valero 
refinery. c) Chevron refinery. d) Shell refinery. e) Phillips 66 refinery. 

43 



 

 

 Figure 12. Port and dock nodes in California 
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 Figure 13. Airports in California: Jet fuel demand nodes 

45 



 

 

 Figure 14. Gas stations in California: Motor vehicle demand nodes 
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3: Transportation Fuel Sector Exposure to Flooding 
and Wildfire Under Climate Change 

Our evaluation of the potential exposure of California’s TFS to extreme flooding and wildfire 
events under climate change combines two primary components: 1) a geospatial data model of 
TFS infrastructure assets (i.e. both nodes and links) across the State, and 2) spatial-temporal 
modeling of exposure to potential flood and wildfire events under climate change scenarios. 
This chapter describes the results of both our exposure analyses and of our spatial temporal 
modeling of coastal flooding, inland flooding, and wildfire through time and under numerous 
climate change scenarios. We start by describing how the climate change scenarios are selected. 

Our exposure models contain both fine and coarse spatial resolutions. The models are initially 
run at coarse spatial resolution at the statewide scale. At the areas and assets of concern that 
indicated by our TFS stakeholders (see Chapter 4, for more details), we model the flooding and 
wildfire exposure of TFS assets at finer spatial resolution. Since computing time and resources 
increase exponentially as resolution moves from coarse to fine spatial resolution, our 
combination of coarse and fine resolution models allows us to feasibly study California, the 
third largest State in the US. Our geospatial data model of the State’s TFS infrastructure is based 
on our conceptual model and the geospatial data we obtain to represent the TFS assets as a 
network of nodes and links (see Chapter 2 and Appendix A). 

3.1 Future Scenarios 

Our flood and wildfire simulations encompass a suite of scenarios regarding the climate and 
land use, so that the results can cover a range of different future possibilities. As described in 
section 1.4.1, we derive futures scenarios from combinations of two primary RCP scenarios of 
future GHG concentrations in the atmosphere along with four priority climate models and 
either three probabilistic SLR values (for coastal flooding), three LULC projections (for wildfire), 
or no additional component (for inland flooding).  

The current set of RCP climate change scenarios adopted in the IPCC 5th Assessment (Moss et 
al., 2010) includes RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, each representing different levels of 
GHG concertation levels in the atmosphere (i.e. RCP 8.5 has the most concentration and 
suggests 2%/yr growth in carbon emissions through mid-century whereas RCP 4.5 has less 
concentration with a moderate policy that does not comply with what international powers 
agreed upon in Paris in 2015). There are no Fourth Assessment scenarios available for RCP6.5 or 
RCP2.6 and that RCP4.5 and 8.5 bracket what the State's research investigates, vis a vis 
resilience planning, our modeling is based on RCP 4.5 and RCP 8.5.  

The RCP 8.5 scenario is a high GHG concentration scenario with high population, modest 
improvements in technology and energy use, high-energy demand, and no climate change 
policies. RCP 4.5 is a scenario that includes climate change mitigation, such as a widespread 
shift to electric energy, lower emission technologies, and implementation of carbon capture and 
storage. 

Global climate models are used in conjunction with RCPs to project specific climate variables in 
future climate. For the same geography and input conditions, different climate models may 
produce different climate projections due to the internal differences between the models. We 
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utilize the four GCMs selected by the Fourth Assessment - namely HadGEM2-ES (warm/dry), 
CNRM-CM5 (cool/wet), CanESM2 (average), and MIROC5 (complementary) - as they together 
cover a broad range of climate model projections in California. For a detailed description about 
the model characteristics (i.e. warm/dry, cool/wet, average, and complementary), please refer 
to Table 1 in section 1.5.1 and Appendix B.  

Finally, as described further in sections 3.2.1 and 3.2.2 below, our scenarios include a 
component of either probabilistic SLR or LULC projections (or no additional component for 
inland flooding). Combining these components (RCP + GCM + SLR or LULC or no component) 
results in 24 coastal flooding scenarios, 8 inland flooding scenarios, and 240 wildfire scenarios 
(Table 1 in section 1.5.1). For more detailed information regarding the scenarios, please refer to 
section B.1 in Appendix B. 

3.2 Exposure of Transportation Fuel Sector Assets  

Our results show that California’s TFS assets are differentially exposed to flooding and 
wildfires, which may disrupt fuel distribution or cause significant infrastructure damage. Our 
coarse resolution, statewide models show that small proportions, such as 1% of gas stations and 
12% of docks (average percentages over five 20-year periods between 2000 and 2100, similar 
below), of the statewide assets are exposed to coastal flooding (see section 3.2.1) and higher 
proportions, such as 48% of pipelines and 70% of roadways, are exposed to wildfire (see section 
3.2.2.2 and Supplementary Table 2 in Appendix C). The exposure, both in terms of spatial extent 
and severity, is likely to increase with time, particularly for coastal flooding driven by 
continuously rising sea levels.  

In addition to the statewide models, we produce fine spatial resolution (i.e. 5 m or 16.4 ft) 
models in selected areas so that the flooding (see section 3.2.1) and wildfire exposure (see 
section 3.2.2.3) results can better inform the TFS stakeholders about the potential vulnerability 
of their assets at local scales in the face of climate change. 

3.2.1TFS Assets Exposed to Flooding 
TFS assets in low-lying, flat, and coastal areas such as the San Francisco Bay Area and 
Sacramento-San Joaquin Delta in Northern California, and Long Beach – Huntington Beach 
region in Southern California, are exposed to coastal flooding according to our results.  

Our 50 m (164 ft) spatial resolution coastal model finds that a small proportion of each TFS asset 
examined is exposed to any depth of coastal flooding in the State. Docks and terminals are the 
most exposed assets with on average 12.21% and 11.85% of them flooded between 2000 and 
2100, whereas only 0.92% of the State’s gas stations are exposed. 

From the 2000-2020 period to the 2080-2100 period, the exposed proportions of the assets 
increase from a narrower range between 0.5% (gas stations) and 9% (terminals) to a broader 
range between 2% (gas stations) and 22% (docks). In addition, increased proportions of the 
assets are exposed to more severe levels of flooding overtime. During the 2000-2020 period, a 
range between 0% (gas stations) and 5% (docks) of the assets are exposed to extreme flooding 
with depth greater than 2.0 m, and this range increases to between 0.2% (gas stations) and 6% 
(docks) during the 2080-2100 period.  

In addition to the statewide 50 m (164 ft) resolution model, we also conduct 5 m (16.4 ft) 
simulations for coastal and inland flooding in specific areas during specific time horizons, so 
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that these customized results can better inform the stakeholders. These specific areas include 
Richmond, Concord, Martinez, Stockton, Brisbane, and San Francisco International Airport in 
the north and Los Angeles/Long Beach Port and San Diego in the south. We simulate these 
areas at high-resolution during the 2020-2040 period that stakeholders are more interested in 
because it fits with their near-term investment and planning timeframes. 

We simulate statewide-coastal flooding caused by projected SLR and storm surge at 50 m (164 
ft) spatial resolution using a 3Di hydrodynamic model (Stelling, 2012b). The 3Di model takes 
time-series water levels as its input to produce flooding extent and depth by user-defined time 
steps. To obtain the time-series water levels, we extract high sea level events from the hourly 
sea level projections by Cayan, Kalansky, Iacobellis, & Pierce (2016). This sea level projection 
includes contributions from SLR, storm surge, and tides. Cayan et al. (2016) project SLR 
probabilistically by sampling from a distribution of five primary global SLR components 
respectively under RCP 4.5 and 8.5. The Fourth Assessment recommends research teams to 
consider three SLR value percentiles under each RCP: the 50th, 95th, and 99.9th percentiles. Cayan 
et al. (2016) project storms for the four priority GCMs in the Fourth Assessment. Combining the 
two RCPs, three percentiles of SLR values, and four GCMs results in 24 scenarios of hourly sea 
levels between 2000 and 2100.  

For every 20 years and each of the 24 scenarios, we identify a high sea level event - the 72-hour 
period with the highest sea level in the 20-year interval - and use hourly water levels during the 
event as input to the 3Di model. We thus identify a total of 120 events for the five 20-year 
intervals between 2000 and 2100 under the 24 scenarios. For each event, we use an hourly time 
step and combine the hourly results to produce a single map of the largest flooding extent and 
the highest depth during the event. In addition, we rank the 24 events (representing different 
RCP, SLR percentile, and GCM combinations) in a 20-year interval by their peak sea level to 
identify the maximum, median (i.e. the middlemost event with higher peak sea level), and 
minimum events to quantify the range of flooding scenarios. A detailed description of this 
coastal flooding model can be found in Appendix C. The remainder of this section documents 
TFS exposure to flooding using the results from the median event among the combined RCP 4.5 and 
8.5 scenarios (i.e. one middlemost event from the 24 scenarios per 20-year interval). We include 
exposure under other events (e.g. the maximum and minimum across the 24 scenarios in each 
20-year period) in Appendix C to indicate the range in TFS assets’ exposure to future coastal 
flooding.  

Our median scenario event simulation over the five 20-year intervals indicates that flooding 
extent and severity are likely to increase with rising sea level and intensified storms in the 
future. In the 2000-2020 period, 1943 km2 (750 square miles) of California’s coastal area is 
exposed to flooding. This number increases slightly to 2042 km2 (789 square miles) during the 
2020-2040 period, and eventually to 2924 km2 (1129 square miles) during the 2080-2100 period 
(Figure 15 (a)). We further analyze the median scenario under RCP 4.5 and 8.5 respectively to 
highlight the differences in coastal flooding under the two. In general, RCP 8.5’s median 
scenario results in more areas flooded than RCP 4.5’s, as RCP 8.5 assumes a higher GHG 
concentration and presumably greater SLR. However, we find that this expected pattern 
reverses for the two time periods between 2000 and 2040 (Figure 15 (a)), because in some 
regions the hourly sea level projections by Cayan et al. (2016) include higher peak sea levels for 
RCP 4.5 than for RCP 8.5. While the projections constantly have higher SLR for RCP 8.5 than for 
RCP 4.5, they sometimes project weaker storm surges for RCP 8.5, particularly when the 
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projections are before 2040. Please refer to Supplementary Table 1 in Appendix C for a list of the 
median scenarios’ peak sea levels by geographic region under RCP 4.5 and 8.5, respectively. 

The distribution of maximum flooding depths during the median scenario events becomes more 
severe as the analysis moves towards 2100. We classify maximum flooding depth during the 
events into six classes: 

 no flooding  (0 m) (0 ft.) 
 low (0 m - 0.5 m) (0 - 1.64 ft.) 
 moderate (0.5 m – 1.0 m)  (1.64 - 3.28 ft.)  
 high  (1.0 m – 1.5 m)  (3.28 - 4.92 ft.)  
 very high  (1.5 m – 2.0 m  (4.92 - 6.56 ft.)  
 extreme  (more than 2.0 m) (more than 6.56 ft) 

As shown in Figure 15 (b), during the 2000-2020 period, approximately 16% of the flooded area 
experiences low level flooding. The areas experiencing low level flooding decrease to 14 % 
during the 2020-2040 period, and to 9% during the 2080-2100 period. Meanwhile, areas under 
extreme flooding increase from 42 % during the 2000-2020 period, to 45% during the 2020-2040 
period, and dramatically to 62% during the 2080-2100 period. The increased portion of areas 
under deeper flooding is a result from California’s steep coastal topography, where the flooding 
has limited areas to expand horizontally but more spaces to accumulate vertically. 

Figure 15. Statewide coastal flooding exposure during the high sea level events between 2000 and 
2100. (a) flooding exposure during the median scenario event under RCP 4.5 and RCP 8.5 respectively, 

and combined RCP 4.5 and 8.5. (b) Percentage area in the five flooding exposure classes during the 
median scenario event under combined RCP 4.5 and 8.5. 
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Figure 16 highlights two areas with established concentrations of TFS infrastructure and 
illustrates their flooding exposure: the San Francisco Bay Area (Bay Area) and Sacramento-San 
Joaquin Delta (Delta) in Northern California, and Long Beach-Huntington Beach area in 
Southern California. 

The Delta in particular is likely to be extensively flooded as sea levels increase, and it currently 
accounts for most flooding statewide as many Delta islands are 3-8 m (9.84-26.25 ft.) below sea 
level (Ingebritsen, Ikehara, Galloway, & Jones, 2000). While Delta islands are reported to be 
protected by more than 1700 km (1056 miles) of levees (Mount & Twiss, 2005), these levee 
structures are too granular to be detected in our statewide modeling at 50 m (164 ft) spatial 
resolution (see Appendix C for details). This results in additional waterflow pathways and 
overestimation of flooding in our coarse model results, particularly in low-lying areas protected 
by levees. While these waterflow pathways and the resulting flooding are artifacts due to the 
coarse modeling resolution, considerable contemporary concern remains over the robustness of 
existing levees to withstand failure and overtopping events, which have occurred in the past 
and are predicted for the future. For example, a levee failure in 1969 at Sherman Island in the 
Delta cost the US Army Corp of Engineers on the order of $600,000 to repair, re-slope, and re-
grade the levee break (Hanson, 2009). Moreover, most of these levees were constructed with 
standard cross sections of 0.3 m (0.98 ft.) above the estimated 100-year flood elevation 
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(Ingebritsen et al., 2000); therefore, they are susceptible to overtopping under future SLR and 
intensified storms. 

Figure 16  Modeled flooding exposure classes for twenty-year periods between 2000 and 2100, 
zoomed to San Francisco Bay Area and Sacramento-San Joaquin Delta in Northern California, and 
Long Beach – Huntington Beach in Southern California. (a): the median scenario event in the 24 high 

sea level events combing the two RCPs (8.5 and 4.5), four GCMs, and three percentiles of SLR values 
(50th, 90th, and 99.9th). (b) the median scenario event in the 12 high sea level events combining RCP 8.5, 
the four GCMs, and three percentiles of SLR values (50th, 90th, and 99.9th). (c) the median scenario event 
in the 12 high sea level events combining RCP 4.5, the four GCMs, and three percentiles of SLR values 
(50th, 90th, and 99.9th). As there were two middlemost events in even number of events (i.e. 12 or 24), we 

used the middlemost one with higher peak sea level as the median. 

To measure the potential exposure of TFS assets statewide to inundation under future climate 
scenarios, we intersect the geospatial model of statewide TFS asset—nodes and links—locations 
(see Chapter 2) with the median scenario high sea level events. We calculate the exposure of the 
TFS links, including pipelines, roadways, and railways, as the length of the asset within each 
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flood depth class. For the TFS nodes that have footprints in our geospatial model, including 
refineries, terminals, and oil fields, we calculate the exposure as the area of their footprints in 
each flood depth class. For the TFS nodes that we do not have footprints in the model, including 
docks, airports, and gas stations, we measure their exposure as the number of assets in each 
flood depth class. In this way, we quantify exposure as the amount of an asset directly exposed 
to the flooding of the median scenarios high sea level events. We summarize flooding exposure 
by TFS asset category in absolute amount (Supplementary Table 2, Appendix C), and in 
percentage values (Supplementary Table 3, Appendix C). This exposure analysis is a first step to 
understand how the TFS is impacted under the projected flooding. The analysis does not reflect 
the ripple effect of exposure, where when one segment of the TFS assets is flooded and 
operations disrupted, the assets connecting to this segment can also be affected. Such analysis 
would also need to be combined with additional information about whether an asset’s 
operation is disrupted due to exposure to flooding. 

The exposure of TFS assets to the simulated flooding increases over the total period of analysis, 
and critical nodes including terminals, docks, and refineries have higher proportions exposed 
compared with the other assets (Figure 17). Our simulated flooding occurs mainly in flat, 
coastal, and low elevation regions, resulting in different exposure patterns of the assets. Assets 
that are distributed throughout the State (e.g. gas stations, pipelines, and roadways) tend to 
have lower exposure (i.e. the proportion of the statewide asset being exposed) when compared 
to the ones that are concentrated in coastal zones (e.g. refineries, terminals, and docks). Gas 
stations are the least exposed asset with an average of 1% of them statewide exposed to the 
simulated flooding in the five periods. This low amount of exposure is due to the wide 
distribution of gas stations throughout the State. Docks and terminals are among the most 
exposed assets with 12% of each exposed respectively on average in the five 20-year planning 
periods. The concentration of docks and terminals along the coast results in their high flooding 
exposure. Flooding exposure could disrupt the operations in docks and terminals and affect the 
State’s fuel supply and distribution.  

TFS assets become more exposed to flooding, particularly greater depths of flooding, when our 
analysis moves into the future with rising sea levels. In the 2000-2020 period, a range between 
0.4% (gas stations) and 9% (terminals) of the assets are exposed to any flooding, and this range 
slightly increases to between 0.5% (gas stations) and 10% (terminals) in the 2020-2040 period 
and finally to a broader range of 2% (gas stations) and 22% (docks) in the 2080-2100 period 
(Figure 17(a)). Assets are also likely to experience deeper levels of flooding. During the 2000-
2020 period, a range between 0% (gas stations) and 5% (docks) of the assets are exposed to 
extreme flooding with depth greater than 2.0 m, and the range increase to between 0.2% (gas 
stations) and 6% (docks) during the 2080-2100 period (Figure 17(b-j)). 

Importantly, we find that exposure characteristics vary by geography (northern versus southern 
California), asset type, and ownership (large versus small operator). Most product pipelines in 
Northern California that are exposed to the simulated coastal flooding in our analysis are 
operated by a single, large operator (Kinder Morgan, Inc.) with a small fraction of its pipelines 
exposed. The limited exposure should not be treated as grounds for complacency, since the 
projected flooding could impact a key interconnected infrastructure (e.g., electricity), which 
would have direct effect on real-time pipeline operations. Conversely, in southern California, 
flooding exposure is distributed among several operators with some small operators highly 
exposed, indicating that these operators could be severely disrupted individually due to the 
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limited redundancy for rerouting within their own pipeline systems. A more detailed coastal 
flooding exposure analysis is included in Appendix C. 
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Figure 17  TFS assets’ exposure to flooding. (a) The percentages of each of the nine TFS asset 
exposed to any depth of flooding during each 20-year period. (b) – (j) the percentages of a TFS asset 

exposed to the different classes of flooding depth during each 20-year period. 
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We model selected time periods and areas at a fine 5 m (16.4 ft) spatial resolution to more 
rigorously measure flooding exposure at a level that stakeholders find more useful for their 
near-term planning. Stakeholders express interests especially in the 2020-2040 period, whereas 
we also model the 2080-2100 period to show the potential for exposure far in the future.  

The simulated areas are chosen based on flooding exposure in the statewide model, the 
concentration of TFS assets, and the inputs from TFS stakeholders. The areas include Concord, 
Martinez, Richmond, Stockton, Brisbane, and San Francisco International Airport in Northern 
California, and Los Angeles/Long Beach Port and San Diego in Southern California. We model 
the maximum, minimum, and median scenario high sea level events (from the 24 total events), 
for the 2020-2040 period and 2080-2100 periods respectively. The differences between the three 
scenarios (i.e. max., median, and min.) increases over time. For example, in Richmond, where a 
Chevron refinery is located, there is a -1.5% to 1% difference (i.e. min. and max. scenario 
compared to the median) in flooded areas in 2020-2040 and a -14% to 17% difference in 2080-
2100. A detailed description of local scale coastal flood modeling can be found in Appendix C. 

Due to the differences in spatial resolution and level of detail between our 50 m (164 ft) 
resolution statewide model and 5 m (16.4 ft) resolution local model, the simulated exposures 
from the two models differ somewhat. These differences indicate the importance, if not the 
necessity, of conducting fine spatial resolution modeling with more precise topographic data at 
areas of interest. Figure 18 illustrates such differences using the median scenario high sea level 
event simulated in Richmond, Northern California, during the 2020-2040 period. While the 
statewide model and the local model show similar flooding extent and depth distribution 
(Figure 18), the actual exposure values differ in degree (Table 7). 

Not incidentally, this study and previous studies (Haile & Rientjes, 2005; Ju et al., 2017) have 
found that flood modeling is sensitive to resolution and the accuracy of input topographic data. 
Such sensitivity is due to the fact that flooding models need precise topographic information to 
correctly identify waterflow pathways. Low-quality topographic data with large errors or 
coarse resolution tend to inaccurately represent the actual waterflow pathways and therefore 
result in over- and under-estimation of flooding. This sensitivity is more salient in flat and low-
lying regions where the low-quality topographic data could miss fine changes in the 
topography (e.g. levees and channels) and estimate flooding differently from the high-quality 
data (i.e. fine resolution and more accurate). 
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Table 7. Contrasting between the two modeling resolutions in terms of total exposed area and 
percent area by different depth levels, illustrated by the median scenario high sea level event 

simulated in Richmond, Northern California, during the 2020-2040 period. 

Exposure level Local model (5 m) Statewide model (50 m) 

Area 
(km2) 

% in total exposed area Area 
(km2) 

% in total exposed area 

Low 0.53 13.90% 0.88 20.46% 

Moderate 1.51 39.65% 1.77 41.38% 

High 1.18 30.83% 1.04 24.37% 

Very High 0.21 5.43% 0.17 4.03% 

Extreme 0.39 10.19% 0.42 9.76% 

Total exposed 3.81 100.00% 4.28 100.00% 
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Figure 18. Contrasting the two modeling resolutions, illustrated by the median scenario high sea 
level event simulated in Richmond, Northern California, during the 2020-2040 period. (a) and (c) 
show results from the statewide coastal flooding model at 50 m (164 ft.) spatial resolution. (b) and (d) 
show results from the local flooding model at 5 m (16.4 ft.) spatial resolution. (a) and (b) highlight the 
differences in flooding extent, whereas (c) and (d) highlight the differences in flooding depth values 

classified into the five exposure classes. 
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We also model inland flooding using projected rainfall events in the selected areas (see 
Appendix C for details). Figure 19 shows an example of projected inundation at San Francisco 
International Airport under the median scenario high sea level event and median scenario 
rainfall event. This highlights the differences between inland flooding and coastal flooding. 
While coastal flooding is more spatially concentrated in low-lying coastal areas, inland flooding 
is more widely distributed over the modeled area (Figure 19 (a) and (b)). Although diffuse, 
inland flooding tends to produce shallower inundation depths compared with coastal flooding 
(Figure 19 (c) and (d)). 
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Figure 19. Coastal flooding and inland flooding, illustrated by the median scenario high sea level 
event and median scenario rainfall event simulated in San Francisco International Airport, 

Northern California, during the 2020-2040 period. (a) and (b) are maximum extent of the coastal and 
inland flooding respectively within the modeled boundary. (c) and (d) are zoomed-in maps showing the 
differences in flooding depth (classified into five exposure classes) between coastal and inland flooding. 
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In addition, most of the areas we model around the San Francisco Airport remain exposed to 
low level flooding (Table 8), indicating inland flooding may be less an ongoing concern for the 
TFS compared to coastal flooding in this study area. 

Table 8. Coastal flooding versus inland flooding in terms of total exposed area and area by
different depth levels, illustrated by the median scenario high sea level event and median scenario 

rainfall event simulated in San Francisco International Airport, Northern California, during the 2020-2040 
period. 

Exposure classes  Coastal flooding (5 m resolution) Inland flooding (5 m resolution) 

(by maximum flooding 
depth during the events) 

Area (km2) % in exposed 
area 

Area (km2) % in exposed 
area 

Low (0 m – 0.5 m) 1.90 43.89% 4.34 99.91% 

Moderate (0.5 m – 1.0 m) 1.41 32.63% 0.00 0.06% 

High (1.0 m – 1.5 m) 0.78 18.02% 0.00 0.01% 

Very High (1.5 m – 2.0 
m) 

0.21 4.93% 0.00 0.00% 

Extreme (> 2.0 m) 0.02 0.52% 0.00 0.02% 

Total exposed 4.32 100.00% 4.35 100.00% 

To summarize, we use multi-scenario, multi-temporal, and multi-resolution flooding models to 
help stakeholders achieve a comprehensive overview of how TFS assets in California are 
projected to be exposed to coastal flooding induced by sea level rise and storm surge and to 
inland flooding (in selected areas) induced by rainfall. Our coarse-resolution projection shows 
that increased proportions of TFS assets statewide are exposed to coastal flooding, particularly 
deeper levels of flooding, between now and 2100. Refineries, terminals, and docks are the most 
exposed assets to coastal flooding due to their geographic concentration in coastal zones. 

The coarse-resolution coastal flooding model also sparked discussions with the stakeholders to 
identify a list of areas and time horizons to conduct fine resolution models that better inform 
the flooding potential at the asset level. The areas of concern identified include Concord, 
Martinez, Richmond, Stockton, Brisbane, and San Francisco International Airport in Northern 
California, and Los Angeles/Long Beach Port and San Diego in Southern California. 
Stakeholders are also more interested in the 2020-2040 period, which better fits with their near-
term planning and investment circles. The fine resolution models of coastal and inland flooding 
help the stakeholders to visualize the future flooding at the level of their own assets and further 
inform their decisions. 

3.2.2 TFS Assets Exposed to Wildfire  
The California TFS faces a very real threat of exposure to hazardous wildfire events. The 
establishment and maintenance of sector resiliency relies upon an understanding of where and 
when potentially destructive wildfires are likely to occur. This section sheds light on the 
characteristics of present-day and future wildfire threats and trends in the State. 

61 



 

 

 

 

 

 

We conduct this assessment of TFS exposure to wildfire at two spatial scales. In sections 3.2.2.1 
and 3.2.2.2 we present outputs from a linked probabilistic model for estimating the amount of 
area burned by large (> 400 ha) wildfires during past and future periods. This regional scale 
(16th degree latitude x 16th degree longitude spatial resolution) wildfire forecasting model was 
generated by Dr. Anthony Leroy Westerling of UC Merced to support Fourth Assessment 
research projects and is sensitive to changes in climate as well as population growth driven 
modifications of land cover over time. We, in turn, use these projection data to determine which 
TFS node and link types have an elevated likelihood of being exposed to the potentially 
disastrous impacts of large wildfire events during 5 separate 20-year planning periods that span 
between 2000 and 2100. TFS node and link containing areas deemed likely to face chronic 
exposure to hazards associated with large wildfire events are examined using a fine-resolution 
(5 m2 or 16.4 ft2) approach to potential wildfire behavior modeling. Our approach to modeling 
physical characteristics of wildfires burning under specified conditions at a fine spatial scale of 
analysis is described in Section 3.2.2.3. Information and models outlined in the aforementioned 
subsections of 3.2.2. can be used by TFS stakeholders to identify trends in exposure to wildfire 
during multiple future planning periods and to develop targeted risk mitigation strategies that 
increase the resiliency of the Sector as a whole. 

3.2.2.1 Exposure of TFS Assets to Large Wildfire 

We evaluate the exposure of individual TFS node and asset types to large wildfires for specific 
periods of time using a Modeled Wildfire Threat Rating (MWTR) system we develop from the 
outputs of a probabilistic wildfire forecasting modeling effort put forth by Westerling 
(forthcoming). Our assessment of changes to large wildfire patterns throughout California 
between present and future twenty-year planning periods takes into account results from all 
wildfire projection scenarios modeled by Westerling. We reduce the total number of prediction 
sets from 240 to 24 by employing average estimates of area burned by wildfire annually across 
the ten stochastic variations of each unique population growth scenario modeled during the 
construction of the MWTR system. See Appendices B and D for detailed descriptions of GCMs, 
RCPs, and population growth scenarios used to estimate changes in land use and land cover 
(LULC) over the prediction period and to generate inputs to the Westerling large wildfire 
forecasting models. 

The MWTR is a classification system that describes the relative threat of large wildfire 
occurrence throughout California over the remainder of the twenty-first century. MWTR class 
labels include “Little to None or Unassessed,” “Low,” “Moderate,” “High,” “Very High,” and 
“Extreme.” The upper and lower bounds of these MWTR classes are defined by the 2nd, 26th, 
50th, 75th, 90th, 99th, and 100th percentile break values, respectively, for Westerling’s modeled 
estimates of area burned by large wildfires during a 2000-2020 reference period (Table 9). We 
recognize the ambiguity contained within the “Little to None or Unassessed” MWTR class; 
however, separating the assessed areas with very small estimates of area burned by large 
wildfire from the unassessed areas is challenging. The difficulty in doing so stems from the fact 
that Westerling’s wildfire forecasting models do not always produce a numerical estimate for 
area burned by wildfire at every time step and at every location. The vegetated proportion of 
each prediction cell can vary over time and between future climate and population growth 
scenarios modeled. If the vegetated faction of a prediction cell becomes too small to support a 
large wildfire occurrence, a null estimate may be output from the model and the cell would be 
classified as unassessed at that time step even if a wildfire was predicted to occur in that same 
cell during some other time step. In places where this sort of complication arises out of the 
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wildfire forecasting model’s design, drawing a clear distinction between what qualifies as 
assessed versus unassessed proves problematic. Refer to Appendices B and D for more 
information on the complexities of Westerling’s large wildfire forecasting models. 

Those who work with wildfire related risk may draw comparisons between our MWTR system 
class labels and those belonging to the National Fire Danger Rating System (NFDRS), which is 
widely used by state and federal wildland fire management agencies to inform the public of 
wildfire threat levels and to allocate fire management resources geographically. However, the 
NFDRS system characterizes the threat of wildfire during very short windows of time and does 
not forecast changes in wildfire threat over the long-term planning period we investigate in this 
study (i.e. from present day until the year 2100). For additional background on the NFDRS, 
refer to Appendix D. 

To illustrate how the MWTR can be used to better understand projected changes in the pattern 
of area burned by large wildfire over time and throughout the State, consider a climate change 
scenario where the total proportion of California with an "Extreme" MWTR classification 
increases between the 2000-2020 period and the 2080-2100 period. Change in this direction 
indicates that estimates equal to or greater than the top one percent of median estimates of area 
burned by large wildfire during the reference period (2000-2020) are expected to become more 
common within California by the end of the century. Now consider an instance where a single 
16th degree latitude x 16th degree longitude wildfire forecasting cell has its MWTR 
classifications transition from "Moderate" to "Very High" during the length of time that spans 
between the 2000-2020 reference period and the 2080-2100 future planning period. In this 
situation, wildfires occurring in the predication cell being considered would be expected to 
experience an area burned by large wildfire that was greater than or equal to the statewide 75th 
percentile central tendency estimate among all scenarios modeled by Westerling during the 
reference period. For more information on inputs to the MWTR system or the exact reference 
period percentile break values used to construct the MWTR class definitions and analyze 
localized trends in exposure to wildfire over time, refer to Appendix D. 

Table 9 Modeled Wildfire Hazard Rating (MWTR) level definitions. Percentile break values used in 
Class Definitions were determined by examination of pooled estimates that include modeling outputs from 
all four GCM and two RCP permutations recommended for use by agencies managing the development 

of California’s Fourth Climate Assessment. 

Modeled Wildfire Threat Rating Class 

Class Definition for the 2000-2020 
Reference Period 

Note: Median MEV falls within the specified 
percentiles of the distribution for all GCM and 
RCP models combined 

Little to None or Unassessed  < 26  

Low ≥ 26 and < 50 

Medium ≥ 50 and < 75 

High ≥ 75 and < 90 
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Very High   ≥ 90 and <99 

Extreme   ≥ 99 and <100 

 

Modifications to current wildfire patterns over time are expected to be largely driven by 
changes in land use and wildland fuel stocking levels as well as by fluctuations in local climate 
and weather conditions. Our MWTR results, shown in 

Figure 20, imply that the Extreme, or 99th percentile or greater, estimate of area burned by 
wildfire currently is predicted to become more common throughout many areas of the State 
during future periods. Mountainous portions of the State (e.g. the Southern Cascades, the Sierra 
Nevada, the Central Coast Ranges, etc.) should see the greatest relative increases in area burned 
by large wildfire events as 2100 approaches. Decreases in the threat of large wildfire are 
projected to occur within some TFS asset-containing regions of California where urban 
development (e.g. in portions of the Los Angeles basin or the San Francisco Bay area) or 
agricultural expansion (e.g. in portions of the Great Central Valley) are expected to increase 
during remainder of this century. Development tends to replace combustible landcover types 
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with non-combustible impervious surfaces and built structures that are more susceptible to 
urban fire than wildland fire. However,  the introduction of irrigated and non-irrigated crops 
typically replaces naturally occurring vegetation types with less combustible cultivated 
vegetation types and thereby reduces the threat of large wildfires simply because there is not 
enough fuel present to support the establishment of large wildfire incidents. Although the 
threat of large wildfires may diminish when these types of changes in land use and land cover 
occur, it is important to recognize that pockets of fuel remaining in parks, greenways, etc. can 
support smaller sized incidents when the same conditions that increase the probability of large 
wildfire occurrence present themselves. 

 

Figure 20. Modeled present-day and future Wildfire Threat Ratings (MWTR) for twenty-year 
planning periods falling between 2000 to 2100. The pool of values from which median estimates of 

area burned by wildfire annually for each prediction cell and 20-year period were found included modeling 
outputs from all 240 wildfire projection scenarios modeled by Westerling (forthcoming). A statewide 
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distribution of median estimated values from the 2000-2020 reference period were then used to construct 
the MWTR class definitions. 

3.2.2.2 Exposure of TFS Assets to Present-day and Future Wildfire Threats Using MWTR 

For TFS link assets, including pipelines, roadways, and railways, we define exposure to wildfire 
as the length and percentage of the individual asset type intersecting the different MWTR 
classifications. TFS node asset types such as refineries, terminals, airports, oil wells, and 
hydrogen stations, as well as gas stations, are represented as points and assessed as counts 
exposed to each MWTR class. We do not assess changes in MWTR for dock or port TFS asset 
types, as is done in the flooding portion of this study, because trends in large wildfires 
occurring in highly developed and water-rich areas of the State where these TFS components 
are located are difficult to characterize using the Westerling wildfire forecast data. For more 
information on all asset types assessed as well as data sources used to build the GIS layers for 
each asset type, refer to Appendix A.  
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Figure 21. Percentages of each TFS asset types exposed to Very High or Extreme MWTR classes 
during each 20-year period of analysis. Note that refineries and terminals carry no Very High or 

Extreme MWTR exposure during the entire 100-year timeframe assessed and thus are not shown in the 
chart (they have slopes of zero and intersect the y-axis at zero). 

During the 2000-2100 period, our results show marked increases occur in the percentages of 
roadways (+ 8% of total length), railways (+ 5% of total length), and airports (+ 4% of total 
count) that intersect areas of the state with MWTR classifications that are Very High or Extreme 
(Figure 21). We find lower magnitude increases in the percentages of pipelines (+ 1% of total 
length) and gas stations (+ 2% of total count) with exposure to the two most severe MWTR 
classes during the same timeframe. Oil wells show a slight decrease (<1% of total count) in 
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exposure to Very High or Extreme MWTR classes while refineries and terminals carry no Very 
High or Extreme MWTR exposure during the assessment period. 

The majority of each TFS asset type is below the 90th percentile (less than very high) median 
estimate for area burned by wildfire annually during the reference period (2000-2020). Many 
TFS asset containing regions of the state are projected to carry Low, Moderate, or High MWTR 
throughout the 21st century and still have potential to be exposed to large wildfire events 
(Figure 22). Terminals and refineries are exposed to very small amounts of large wildfire 
relative the other asset types. However, the threat still exists and is projected to persist. 
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Figure 22. Percentage of each TFS asset type exposed to each MWTR class. 

3.2.2.3 High-resolution Wildfire Behavior Modeling 

High spatial resolution (5 m, 16.4 ft) wildfire behavior modeling reveals the current exposure of 
TFS assets to wildfire hazards. Locations identified as Very High and Extreme by the MWTR 
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system were examined at the asset scale and modeled under catastrophic wildfire conditions. 
For TFS asset managers, the benefits of identifying current wildfire hazards include assessing 
over time periods and at locations already relevant to them, their own vulnerabilities and 
damage scenarios, developing targeted risk mitigation strategies, and preparing for wildfire 
events where firefighters cannot control wildfire around the asset. 

Our high-resolution modeling approach uses three wildfire behavior metrics to quantify 
wildland fire hazards: fire intensity (British Thermal Units (BTU)/square ft, heat per unit area), 
flame length (ft), and rate of spread (ft/minute). Each of these metrics describes a wildfire 
behavior as a different type of hazard, which is useful in examining different forms of direct 
wildfire exposure and differentiating the impact on different assets. Fire intensity indicates heat 
emitting potential of a wildfire per unit area. Flame length, according to the National Wildfire 
Coordinating Group (NWCG) (2014), measures “the distance between the flame tip and the 
midpoint of the flame depth at the base of the flame (generally the ground surface),” and is an 
indicator heat emitting potential and fire propagation potential. NWCG (2014) defines rate of 
spread as “the relative activity of a fire in extending it’s horizontal dimensions.” For further 
description of these wildfire behavior hazard metrics, see Appendix D.3.4.1. 

The regional scale wildfire analysis found that highways, railways, and pipelines are and will 
continue to be the primary TFS assets exposed to wildfires. These asset types have different 
vulnerabilities to wildland fire and certain wildfire behaviors metrics are more important to 
some managers than others to ensure that damages and disruptions do not occur. For example: 

1. Trucks may be stopped due to high flame lengths that extend into roadways. Proximity 
to tall, flammable trees falling into roads and traffic are a highway-specific vulnerability.  

2. Railways share similar vulnerabilities to roadways. Moreover, railroad rails may warp 
from thermal expansion when exposed to high heat intensities or may have wooden ties 
that ignite. Heat capacity and type of rail tie are rail-specific vulnerabilities. 

3. Pipelines are often buried and insulated but have above-ground appurtenances 
susceptible to exposure. Belowground infrastructure may be damaged during wildfire 
suppression activities when emergency response equipment (e.g., D9 bulldozers) dig up 
soil to create fuel breaks. Depth of underground pipelines and quality of insulation are 
pipe-specific factors of vulnerability. 

A more general application of wildfire behavior metrics is used in assessing the degree to which 
wildland firefighters can control a wildfire. Based on existing wildland firefighting protocols, 
fire behavior that exceeds a specific threshold value changes how wildfire suppression is 
approached. Assets exposed to high and extreme metric values may indicate wildfires are out-
of-control or nearly so, leaving assets unprotected during these events. 

We measure the direct exposure of TFS assets to wildfire as the proximity of modeled fire 
behavior hazards to a specific asset. Each asset has an exposure profile that describes the 
distribution of wildfire behavior characteristics within 304.8 m (1000 ft) of the asset. 

These characteristics do not consider indirect wildfire threats, such as duration of fire, soil 
instability, mudslides, and damaging wildfire suppression activity. Similar to threats from 
direct heat exposure, indirect wildfire threats to TFS assets are also asset-specific. A more 
comprehensive wildfire exposure assessment would consider indirect wildfire effects in order 
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to better understand the relationships between wildfire exposure, potential damages and 
system-wide TFS disruptions. 

A Case Study of Dutch Flat 
Figure 23 shows an example of high-resolution wildfire modeling in a forested region of 
northern California, Dutch Flat, which we identify as having an increasing frequency of large 
wildfires from 2018 until 2100. In the town of Dutch Flat, there is a convergence of three TFS 
assets: highway, railway, and pipeline. 
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Figure 23. Convergence of TFS link assets and land cover surface used in high-resolution fire 
modeling. a) is a NAIP image with TFS link assets and their respective 1000’ buffers for assessing 

exposure to fire hazards. b) is a close up of the NAIP image at the convergence area. Note the pixilation 
of the image. c) is the land cover surface (see Appendix D 3.8 for details) and d) is the landcover surface 

zoomed in to match the area of b. 
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Figure 25, Figure 27, and Figure 29 describe asset exposure to wildfire hazard within a buffer 
around each asset. The convergence of TFS assets in Dutch Flat represents a high-risk location 
for the TFS, where the assets have a disproportionate amount of exposure to high and extreme 
hazards combined. Figure 25, Figure 27, and Figure 29 show a distribution of wildfire behaviors 
by asset type. 

Figure 26, Figure 28, and Figure 30 illustrate how fire behavior is variable across the landscape, 
affected by factors such as slope, aspect, elevation, fuel type, and canopy cover. Such figures are 
increasingly useful, we argue, for developing targeted risk mitigation plans and informing fire 
suppression strategies. The Fire Characteristics Chart below (Figure 24), also known as the 
“Hauling Chart”, indicates how fire behaviors may impact fire suppression. For additional 
discussion on the modeling process, refer to Appendix D Sections 3.3, 3.4, 3.5, and 3.6. 
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Figure 24. Hauling Chart (Andrews, Heinsch, & Schelvan, 2011): On this graph are our three modeled 
fire behaviors, rate of spread, flame length, and fire intensity (heat per unit area). The zoned areas from 

the lower left corner, diagonally up and to the right, are the expected fire suppression methods and 
behaviors expected. At the lowest flame length class, hand tools will primarily be used in fire suppression. 
The next region indicates potential use of mechanical suppression methods. The next class denoted by 

the burning tree indicates potential for a canopy fire. The final classes indicate extreme wildfire behaviors, 
where spotting and indefensible space are expected. 
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Figure 25. Modeled fire intensity estimates for each asset type as percent exposure to each 
wildfire behavior threshold at Dutch Flat. 

 

Figure 26. Fire intensity modeled across the Dutch Flat landscape. 
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The proportion of high fire intensity is expected due to the high density of tree cover. Where the 
assets converge in the zoomed-in image (Figure 26), the pipeline and railway have a relief due 
to the bordering grass patch just north of the assets. However, the south side of the rail is 
bordered by areas of high and extreme fire intensities that threaten northbound rails. Rail 
infrastructure is vulnerable to fire intensity because rails can be damaged by thermal expansion 
from direct wildfire exposure. While the pipeline asset has the greatest exposure to high fire 
intensities (Figure 25), it is less vulnerable because it is buried and less sensitive to surface fire 
exposure, unless there are any aboveground appurtenances in this area. From stakeholder 
discussions, we know TFS pipelines are generally three feet belowground. Preisler et al. (2000) 
shows that heat fluxes from smoldering vegetation decrease significantly centimeters beneath 
the surface. We infer that pipelines at depths of three feet or deeper are not significantly 
exposed to high- and extreme-intensity surface fires. However, pipelines nearer to the surface 
may have greater exposure. Highway segments are composed of wildfire resilient materials, 
such as concrete and asphalt. While these materials may be less vulnerable to wildfire damages, 
wildfire has in the past produced disruptions with forced lane closures or segments of highway 
being shut down until an active wildfire is suppressed. The broader implications for safe and 
reliable TFS transportation in such areas are considerable. 

The spatial distribution of high and extreme fire intensity measures across Dutch Flat indicate 
that firefighters may not be able to control a wildfire near these assets (see Figure 24). This is a 
concern for this TFS asset convergence because it may allow these hazards to materialize in the 
event of a nearby wildfire, and moreover, cause system-wide disruptions. 

Figure 27. Modeled flame length estimates for each asset type as percent exposure to each 
wildfire behavior threshold at Dutch Flat. 
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Figure 28. Flame length modeled across the Dutch Flat landscape. 

 

Flame lengths are strongly influenced by slope steepness, wind, and fire intensity. At the point 
of asset convergence (Figure 28) a large proportion of high and extreme flame lengths are 
evidently due to the very steep slope and dense pine trees bisecting the highway from the 
railway and pipeline. 

Flame length affects all aboveground assets similarly and is useful to understand the distance 
between flames and the asset. To our knowledge, flame length has not been a reported concern 
for belowground assets, but presents serious concerns for assets like railways, which may be 
damaged by direct flame contact. 

Firefighters use flame lengths (see Figure 24) as the primary indicator to inform their control 
strategies. When flame lengths are high and extreme, firefighters likely will retreat to a secure 
location where they can suppress the flames, allowing the asset to be compromised.  
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Figure 29. Modeled rate of spread estimates for each asset type as percent exposure to each 
wildfire behavior threshold at Dutch Flat. 

Figure 30. Rate of spread modeled across the Dutch Flat landscape. 
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In the event of a nearby wildfire, assets exposed to high and extreme rates of spread face a 
higher likelihood of a proximal ignition. Rate of spread is strongly influenced by slope 
steepness, wind, and fuel type. Grasses are light, flashy fuels that are known for having high 
rates of spread. High and extreme rates of spread may jeopardize a firefighter's ability to 
contain an expanding fireline. 

High resolution modeled wildfire hazards can be used to manage the direct exposure of 
wildland fire to assets by informing wildfire adaptation strategies. This includes targeted 
vegetation management, implementing wildfire fuel breaks, and hardening infrastructure. 
Vegetation management strategies and fuel break implementation can be modeled by applying 
vegetation changes to the digital landscape and can be “re-burned” in a wildfire behavior 
simulation. High-resolution wildfire modeling can be used to demonstrate proactive wildfire 
mitigation strategies and to achieve a more desirable level of exposure (See Appendix D.7).  

3.2.2.4 High-resolution Wildfire and Tree Mortality Assessment 

Recent research by Scott Stephens et al. (2018) reports that tree mortality is becoming more 
prevalent in California, especially in the northern California Sierra Nevada. The mortality is a 
result of recent drought, insects and disease, and a human-induced infrequency of low and 
moderate intensity wildfires. Downed vegetative fuels pose a risk of high and extreme surface 
fire intensity if ignited (Stephens et al., 2018). 

We identify canopy biomass loss in forests using remotely sensed MODIS imagery. We leverage 
the Enhanced Vegetation Index (EVI) to indicate canopy biomass loss derived from decreases in 
seasonal peak canopy greenness from 2000 to 2016 (see Appendix D, Figure D 23). These are 
areas of potential concern for high- and extreme-surface fire intensities described by Stephens 
(2018). We intersect these tree mortality assessments in wildfire prone regions with TFS 
infrastructure and identify wildfire hazards (see Appendix D, Table D8). We find 72 km (44.7 
miles) of refined fuel pipeline is exposed to biomass loss and a CalFire high wildfire rotation 
class. These pipelines are concentrated in the northern California Sierra Nevada and in southern 
California (see Appendix D, Figure D 24). High-resolution tree mortality assessment can be used 
to demonstrate levels of TFS asset exposure throughout the State (See Appendix D.2.9). 

3.3 Measuring Exposure and Impacts Using Networks 

It is a truism today that the connections and linkages between and among infrastructure 
components have increased more and more, promoting the growth of large-scale interconnected 
systems (Lindner, Burla, & Vallée, 2018). However, this truism merits a closer examination since 
it is often left unclear whether the new connectivity in question, infrastructure by infrastructure, 
is more tightly coupled or loosely coupled with regard to potentially cascading interactions. As 
such, this growing complexity of connected infrastructures across multiple infrastructure 
networks poses great challenges for evaluation of potential impact of extreme weather events 
on the entire network, particularly at the sectoral level of the TFS as a whole. Creating a 
network model is intended to assist in understanding better the possible pathways of the 
network connectivity and in quantifying the impact of disruptions to the flow within the 
network. 

The TFS is an interconnected complex network regarding both organizational connections and 
geospatial infrastructure connectivity. The former type of complexity is fully explored in 
Chapter 2. The latter is evaluated below to better understand TFS network connectivity as well 

78 



 

 

 
 

 
 

 

 

 

 

 
  

 

as the impact of extreme weather events on the flow of fuel between TFS infrastructure assets. 
Our process involves several steps: (a) data collection of TFS assets in the study area; (b) 
creation of a comprehensive TFS multimodal network model; (c) identification of critical assets 
in the network; and (d) evaluation of impact on the fuel supply through routing simulations 
under different climate scenarios. 

3.3.1 A Network Example: Coastal Flooding Case Study in the San Francisco Bay 
Area 
A break in the TFS network can lead to cascading impacts that are far greater than the actual 
impacted asset. To demonstrate how a particular type of extreme event - coastal flooding - 
impacts the TFS under our scenario modeling, we choose to focus on a smaller region within the 
state. The San Francisco Bay Area is chosen because of its high concentration of TFS assets and 
its high percentage of average flood inundation across all the climate scenarios under which we 
model coastal flooding. 

Our network analysis, in which we measure betweenness centrality, underscores that many 
refineries and terminals along the east coast of the San Francisco Bay are core to topological 
network connectivity. This means that if they are negatively impacted due to extreme weather 
event exposure, the network will be disrupted. By way of illustration, we simulate the routes 
between two distinct pairs of TFS assets which are topologically critical for the TFS. The results 
show where coastal flooding potentially damages parts of the network and how this leads to 
rerouting the transfer of crude oil or refined oil products to the specific destinations. 

On the left of Figure 31, the present-day optimum route used to deliver petroleum products 
from the Chevron Martinez terminal to the Phillips66 terminal in Richmond is shown. On the 
right is the “new” route that would be used (in this simulation) due to disruptions on the 
present-day route caused by coastal flooding, which has mainly flooded the last leg of the 
present-day route near Richmond. The network analysis model indicates that an alternative 
route, the rerouting identified in the preceding paragraph, could be used to deliver petroleum 
product first to a marine terminal and then to the destination via an extra marine route. This 
would place extra pressure on a marine terminal that is already in high demand. In addition, it 
would mean that marine routes will need to be more heavily utilized in future flooding events 
scenarios to successfully complete the oil product transport to the Phillips66 terminal.  

Network modeling and analysis can, and we believe should, be done for other locations of 
California. This would, however, require more detailed information about the interconnected 
multi-modal network of the TFS, within the state and beyond its borders. More specific 
information about the flow of crude oil or petroleum products would be needed, and more 
detailed information would be needed on the actual disruption and its duration caused by 
exposure to an extreme weather event at specific locations within the TFS. 

3.3.2 Steps Towards Network Modeling 
We start, as with the flooding and wildfire modeling, by collecting geospatial data for all types 
of TFS assets within the state in order to build a comprehensive multi-modal network. We then 
integrate data representing TFS network nodes and links together using NetworkX, a Python 
language software package for efficient creation and analysis of complex networks (Hagberg, 
Schult, & Swart, 2008). 
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In order to understand the critical assets within the TFS in terms of topological network 
connectivity, we choose metrics from graph theory to calculate network centralities such as 
betweenness centrality and apply to all nodes within the network. 

Betweenness centrality measures how important an asset is in terms of its role as an 
intermediate stop along all shortest distance routes between two nodes within the network. 
Figure 32 illustrates an example result of betweenness centrality calculation for the TFS network 
in the San Francisco Bay area. In the figure, the larger red circles represent assets with higher 
betweenness centrality while the smaller green circles represent assets which have low 
betweenness centrality. To calculate betweenness centrality, we first start with a fully connected 
network and generate shortest distance routes between all possible pairs of nodes. We store the 
names of all intermediate nodes and count how many times a particular node appears. If a node 
appears frequently, then this means that this node is on many shortest distance routes. If this 
node is removed out of the network (similar to an asset being disrupted due to coastal 
flooding), then many shortest distance routes within the network will need to be re-routed 
which might lead to increased cost in time and resources. 

The calculation results are integrated with findings from the stakeholder discussions. From this 
we identify potential critical origins and destinations for network routing simulations. Network 
routing simulation is a process of generating the shortest distance route between a specified 
origin and destination. The resulting route can be displayed in GIS; it shows the location of the 
route, its length, and what types of transportation modes are used along the route. This is useful 
for examining changes in the routing between two nodes across different climate scenarios and 
understanding the impact of extreme events on the flow within the network. For further 
detailed explanation of this network model, please refer to Appendix A. 
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 Figure 31. Routing simulation before-after illustrations 
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Figure 32. Map of betweenness centrality in San Francisco Bay area 
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4: Stakeholder Engagement 

This chapter describes the stakeholder engagement process. Stakeholder engagement is a 
critical step to understanding the inherently complex nature of the TFS and the numerous 
organizations that are key to the reliable and safe distribution and supply of transportation fuel 
in California. Stakeholders representing organizations throughout the state were involved in 
this process. 

We engage with stakeholders in order to 1) understand the TFS as critical intraconnected 
infrastructures considering physical and organizational networks (see Chapter 2), 2) link the 
measured outputs of our exposure models to damage propensity of the stakeholder’s exposed 
assets and supply-demand chain network, and 3) gain insight into stakeholders’ strategic 
planning in light of extreme weather-caused events such as flooding and wildfires. 

Significantly, the stakeholder discussions provide a picture of the TFS that complements our 
modeling picture, serving to overlay our modeling results with real-world applications. 

4.1 Stakeholder Profile  

To gain insight in the TFS and its assets, we engage with a variety of organizations (or their 
representatives) knowledgeable about the nodes and links identified in our TFS conceptual 
model (see Chapter 2). Organizations that own and operate key TFS assets are identified as 
“TFS Core” stakeholders. Stakeholder organizations on which the TFS Core organizations 
depend are categorized as “TFS Dependent”. The TFS Dependent organizations are owners and 
operators of services that organizations in the TFS Core rely heavily on, such as water and 
power; they can also be agencies that regulate TFS-dependent infrastructure. Last, we engage 
with stakeholders that regulate and research TFS Core organizations. This final group is 
categorized as “TFS Knowledgeable”. The latter are either regulatory or academic institutions 
that work directly with one or more key oil and transportation assets, as well as organizations 
that provide safety and emergency management services to the TFS Core. The organizational 
categories are shown Table 10. 

Table 10. TFS Organizational Categories 

TFS Core TFS Dependent TFS Knowledgeable 

• Owners/operators 

• Associations 

• Power 

• Water 

• Regulators of TFS Dependent   
  infrastructure 

• Academic 

• Regulatory 

• Safety/emergency
  management 

Our stakeholder outreach follows a purposive sample and snowball engagement technique. The 
Technical Advisory Committee first helped develop the attendee list for our two workshops. 
These workshops then led to further discussions. In total, 47 organizations participated in these 
stakeholder engagement activities and are broken down as follows: 25 TFS Core (out of which 
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seven correspond to the hydrogen fuel industry, see Appendix F), 6 TFS Dependent, and 16 TFS 
Knowledgeable. 

Within each stakeholder organization, discussion participants provide a range of knowledge 
and expertise. This enabled us to categorize them according to the information they shared 
regarding the TFS. We divide the “knowledge pool” into classes to depict specific aspects of the 
TFS, such as commodity subsystem, key oil infrastructures, key transportation infrastructures, 
and dependent infrastructure. Further categorization provides insight into the breadth of the 
representation of stakeholders involved in the engagement process and ensures that each key 
transportation fuel sector asset is represented. Our breakdown of the knowledge pool classes is 
summarized in Table 11. 

Table 11. Stakeholder knowledge pool categories 

Class Subclass 

Commodity 
subsystem  

Crude oil 

Refining (all products and gasoil) 

Motor vehicle fuels (gasoline, diesel, biofuels) 

Jet fuels (kerosene, naphtha) 

Marine fuels (marine gasoil, distillate marine diesel, residual oil) 

Key nodal assets Oil fields/gathering stations 

Marine terminals/wharfs/ berths 

Crude rail terminals 

Refineries 

Distribution terminals/Bulk plants/Breakout tanks 

Motor vehicle fuel dispensing facilities 

Airport fuel dispensing facilities 

Marine fuel dispensing facilities 

Key linkage 
assets 

Pipelines 

Railway 

Roadway 

Waterway 

Dependent 
infrastructure/ 
services 

Water  

Power  

Emergency management 
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4.2 Areas and Assets of Concern 

To guide our exposure modeling (particularly fine resolution modeling) efforts, we ask 
stakeholders to identify areas of concern and assets of concern in the context of coastal flooding, 
inland flooding, and wildfire exposure. In many cases, stakeholders express concern for their 
own assets when these are directly or obviously exposed to the extreme weather events above. 
For instance, any infrastructure located adjacent to water is deemed vulnerable to sea level rise 
or inland flooding, and any asset located near heavy and dry vegetation is deemed vulnerable 
to wildfire. 

Our discussions indicate that the stakeholders we engaged with are more concerned about 
coastal and inland flooding than about wildfires, and their concerns are more focused on their 
own assets than intraconnected ones. However, stakeholder level of concern for coastal flooding 
decreases if their assets are located well above sea level, even when their assets are connected to 
other key TFS infrastructure close to water. In like fashion, wildfires are mainly of concern to 
stakeholders whose assets are either in close proximity to vegetation or near areas that 
previously underwent large wildfires. The assets of concern to stakeholders in our discussions 
include refineries, various forms of transshipment intermediate terminals (marine terminals, 
petroleum docks, distribution terminals, and petroleum bulk plants or card lock facilities that 
are specific to trucking companies), as well as product pipelines and their pumping stations. 

Pipelines are generally not perceived by stakeholders as being at risk of exposure when they are 
buried underground or have protective steel encasements. During our discussion with 
stakeholders, we present historical burned areas that overlapped with their assets. Pipeline 
stakeholders report that there have been no disruption incidents from these historical wildfire 
events, except for infrequent low consequence impacts on aboveground appurtenances such as 
pumping and valve stations. The vulnerability of pipelines is predominantly discussed by 
pipeline stakeholders in the context of wildfire emergency response activities and excavation 
strikes from fire suppression techniques and equipment such as bulldozers (Table 11 and the 
wildfire “Hauling chart” in Figure 24 and Appendix D).  

Very few organizations express concern about TFS assets other than the ones they own and/or 
operate, even when their commodity supplier is shown to be exposed to wildfire and/or 
flooding according to our modeled results or historical events (See Appendix E.2.1). This lack of 
concern contrasts with stakeholders frequently mentioning product pipeline assets as an 
essential part in the system because of their lack of redundancy and their critical role in fuel 
distribution in the state. Deeper investigation is specifically conducted with Kinder Morgan, 
Inc. to better understand their exposure to flooding and wildfire (see section 4.6). 

In terms of areas of concern, stakeholders repeatedly note the major TFS hubs in the Los 
Angeles/Long Beach port complex and in the San Francisco Bay Area covering assets from 
Brisbane to Oakland, through Richmond, Martinez, and Benicia, extending all the way to 
Stockton. These areas are identified as such because of their high concentration of major assets 
(TFS hubs) and proximity to sea level. These hubs are highlighted as obligatory points of 
commodity transit for supply and distribution, which is why they are critical. Other vulnerable 
areas mentioned include San Diego, Sacramento, Riverside, Temecula, and Colton. We find that 
expressed areas-of-concern are localized—organizations in Southern California are concerned 
about Southern California hubs while Northern California organizations are concerned for 
Northern California hubs—unless their organization has assets spanning the state. 
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The location of specific areas of concern identified during the stakeholder engagement activities 
are shown in Figure 33 and summarized in Table 12, along with specific assets of concern within 
those regions. 
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 Figure 33. Areas of concern mentioned during the TFS stakeholder discussions 
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Table 12. Summary of areas and assets of concern 

Key TFS Infrastructure Areas of Concern Assets of Concern 

Pipelines 
West of Sierras Foothills (Northern 
CA) San Gabriel Mountains 
(Southern CA 

Aboveground appurtenances, 
pumping and valve stations, 
and power as an 
interconnected dependent 
infrastructure. 

Waterways and 
associated infrastructure 

San Francisco Bay and Los 
Angeles/Long Beach TFS hub 
areas 

Storage tanks, dock fenders, 
and product pipelines. 

Railways Feather River Canyon 
Signal infrastructures and rail 
transect with wooden ties. 

Refineries 
San Francisco Bay and Los 
Angeles/Long Beach TFS hub 
areas 

Pumping stations, vital inputs 
and other interconnected 
critical infrastructure (power 
and water), and product 
pipelines. 

Road and trucking 
companies 

West of Sierras Foothills (Northern 
CA) and Cajon Pass (between San 
Gabriel and San Bernardino 
Mountains in Southern CA,) 

Distribution terminals 
transloading fuel to trucks and 
product pipelines. 

4.3 Adaptation Interests and Efforts 

The following section covers existing strategic interests of TFS stakeholders in terms of 
responding and adapting to extreme weather-related events in general, followed by some 
focused information on flooding and wildfire hazard mitigation and adaptation strategies. We 
do not intend to cover the extensive literature on climate change adaptation strategies. 
Moreover, we do not explore the division between strategic actions that cover emergency 
preparedness for near-term abrupt events and strategic actions that address long-term chronic 
threats. Our goal is to outline what our discussions with stakeholders reveal as strategies being 
employed or considered in light of current and expected extreme weather events, particularly 
flooding and wildfire. 

Two types of adaptation responses to climate change recur in the transportation energy sector 
literature: those focused on physical or infrastructural response, also referred to as hardening 
actions, and those focused on behavioral or structural responses (policy frameworks), also 
referred as resiliency actions (Acclimatise, 2009; Ebinger & Vergara, 2011; IPIECA, 2013; 
Neumann & Price, 2009; U.S. Department of Energy, 2010). 

Our findings on adaptive efforts are likewise subdivided into hardening measures and 
resiliency measures. Following the definitions proposed by the U.S. Department of Energy 
(2010), we interpret hardening measures as those intended to improve the durability and 
stability of the infrastructure’s physical aspects, thereby improving its capacity to sustain 
damage. In contrast, resiliency actions as defined do not directly prevent damage, but enable 
the continuous supply and distribution of a commodity (fuels) despite any damage or 
disruption, as well as promote a faster recovery to normal operations. 
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The next two subsections present a summary of our findings regarding TFS stakeholders 
hardening measures and resiliency activities. 

4.3.1 Currently Implemented or Under Implementation 
Stakeholders indicate a number of hardening and resiliency measures currently being 
implemented by organizations to protect assets. These are described below, but it is important 
to note that many identified measures and actions are multi-hazard approaches and are not 
exclusively implemented to face extreme and chronic weather challenges. Stakeholders do 
identify a few hardening measures for flooding specifically and behavioral changes in 
vegetation management around TFS links and node assets to reduce exposure to wildfires. 

It is also relevant to note that many retrofitting and design adaptive measures that are 
mentioned by stakeholders are driven by hazardous material regulations. This is significant 
because owners and operators of TFS infrastructure consider these regulations as opening or 
closing windows of opportunity to implement infrastructural adaptation measures. Such 
regulations include building code programs such as the Marine Oil Terminal Engineering 
Maintenance Standards (MOTEMS) regulated by the California State Lands Commission and 
regulation AB 864 (Oil spill response: environmentally and ecologically sensitive areas). An 
example on the federal level is PHMSA’s pipeline integrity management in high consequence 
areas regulation (49 Code of Federal Regulations 195.452). Still, these windows of opportunities 
for implementing adaptation measures predominantly focus on environmental vulnerability in 
relation to spills and not necessarily the vulnerability of the TFS as critical intraconnected 
infrastructures.  

4.3.1.1 Hardening Measures 

Hardening measures are mostly focused on improving the robustness of installations to 
withstand hazardous weather conditions that are not all necessarily due to flooding or wildfire. 
Some measures that stakeholders mention include construction of classic defensive structures 
such as flood walls (for coastal and inland flooding) and placement of infrastructure in elevated 
zones, such as berms and dikes. Assets such as pumping and valve stations, which are 
mentioned to be critical for the operations of pipelines, are placed on higher ground.  

Other hardening measures are related to design and materials. For example, wood materials 
may be upgraded to concrete or steel, or concrete pipelines may be replaced or modified with 
flexible membrane liners. Assets may be secured with anchorage systems, such as those used on 
fuel tanks to prevent buoyancy. They might also reinforce the asset’s robustness through design 
by duplicating pipeline membranes, as another example.  

These design strategies overlap with defensive and protective measures but differ when they 
are applied more holistically to infrastructure. Many of these design strategies are attached to 
building code programs such as MOTEMS. Others are guided by programs of environmental 
certification such as the Leadership in Energy and Environmental Design (LEED). In these 
cases, the existing assets and facilities are replaced by alternatives that incorporate broader 
sustainable operational practices that go beyond preoccupation with weather hazards and 
include measures that will lower cost, allow for rapid installation and reduce maintenance. 

Another hardening measure is technological design implementation, as exemplified by the 
modernization of semi-manual fuel flow operational systems to fully automated industrial 
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control systems such as Supervisory Control and Data Acquisition (SCADA) or similar control 
systems. 

4.3.1.2 Resiliency Measures 

Most of the resiliency actions stakeholders mention relate to behavioral responses undertaken at 
the organizational level. Participation in mutual aid or logistics preparedness groups that work 
together for emergency preparedness are examples of a resiliency action. This involves 
interaction between private actors in the same industry (working groups), as well as between 
private and governmental actors, including the Defense Logistics Agency and the Energy 
Commission. In this same line of resiliency measures, there are also anticipatory behavioral 
activities. These include conducting table-top exercises for emergency situations; having 
emergency management plans for fuel shortages (Fuel Emergency Plans) or for other weather-
related external threats; and hiring consultant services or participating in research grants to 
identify assets that are in risk-prone areas through production of hazard and risk maps.  

Many stakeholders mention specific behavioral actions that relate to adapting their operations 
and procedures. An example is having fuel trucks replacing retail fuel service closer to fuel 
demand points during emergency response situations. Using trucks for on-site storage is cost- 
and time-efficient, but it requires portable adaptable hoses and nozzles that are not common for 
commercial fuel tank trucks. Other specific actions currently employed include preventively 
shutting down fuel flow between TFS nodes in the event of threatening weather conditions or 
keeping fuel tanks full to avoid buoyancy in case there is flooding. For wildfire risk, the most 
commonly mentioned behavioral mitigation strategy is vegetation treatment or maintenance of 
defensible space around the infrastructure or in right of ways. 

Our discussions suggest that another very important resiliency strategy for stakeholders is the 
insertion of redundancy of flow paths for fuel—either by multiplying the paths of the same 
transportation mode (e.g. multiple rail routes) or by different modes (rail and pipeline). 
Stakeholders also see redundancy as important for the functioning of critical equipment, not 
least of which are pumping and valve stations. Many of the stakeholders we engaged with 
worry about power failure and some opt for alternate sources of power supply such as 
cogeneration options that generate power along with the stakeholder’s main operations. 

Finally, repeated impact from extreme weather events may lead to the relocation of a TFS asset 
to a lower-risk area. However, this resiliency option has high costs and is only mentioned as an 
alternative for certain TFS links, primarily roads and occasionally railways. 

4.3.2 Implementation Interest  
We ask stakeholders whether they are interested in implementing hardening or resiliency 
measures to protect their assets from exposure to extreme weather-related events. Some 
reported interest in the development or increasing of protective (hardening) measures, such as 
floodwalls and reinforcing pipelines. Interest is expressed in the resiliency actions of increasing 
the redundancy of transportation modes for supply or distribution, as well as in the possibility 
of changing the flow direction in pipelines and being able to rely on redundant demand and 
supply points. 

Stakeholders suggest that awareness of exposure to extreme weather-induced events can be 
promoted through working groups and meetings. Stakeholders propose the identification of 
high hazard areas that overlap with their assets and the development of impact scenarios with 
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cost assessments. They also comment on creating defensible space for wildfires and promoting 
more rigorous mitigation actions on parcels and right of ways. Last but not least, stakeholders 
mention interest in the facilitation of waivers for fuel commodity transactions, even though this 
is mostly considered a reaction to supply chain disturbance as opposed to a proactive 
behavioral change for adaptation. 

4.4 Converging Exposure Projections and Planning Time Horizons 

Most stakeholders do not exceed 10 years for their current planning and investment cycles, with 
20 years as the limit for their strategic planning. These time horizons are not aligned with the 
much longer-term extreme weather exposure found in existing climate change research. 
Therefore, to better relate to the outer limits of our stakeholders’ planning horizons, this 
project’s exposure projections follow five 20-year periods from 2000 to 2100. This allows for 
near- and long-term exposure assessments. Stakeholders also express a concurrent need for 
high probabilistic modeling results in order for potential measures to fit their key decision-
making processes, including those for risk assessment and management. 

Stakeholders suggest that research studies should look at the life-cycle of the TFS assets and to 
relate those to projections of exposure. Some stakeholders give rough estimates of the life-cycle 
length of their infrastructure assets, but with some inconsistencies. A 50 to 75-year life-cycle for 
pipelines is considered reasonable by some, while others suggest their assets’ life-cycle is 
indefinite as long as the infrastructure is properly managed. However, the actual life-cycles of 
the assets depend on a variety of factors, such as the environmental exposures (soil acidity and 
median weather conditions), pipeline integrity management plans, quality of maintenance, etc. 

It is important to note that the window of opportunity for hardening TFS links (such as 
pipelines, roadways, and railways) is more complicated than nodes given that these links are 
subject to “quick fixes” and a complete replacement of a pipeline, for example, would rarely be 
applied. Some stakeholders also question the very relevance of petroleum-based products in 
transportation energy in the future with alternative transportation energies such as hydrogen 
and electricity increasing in popularity. These challenges further amplify the difficulty of 
implementing long-term adaptive strategies, where the uncertainty intrinsic to long-term 
planning has a clear dissuasive effect on the TFS core organizations. However, it is beyond the 
scope of this study to further investigate reasons for the aversion to long-term thinking and 
uncertainty, which has been associated with climate change inaction at the individual, 
organizational, and institutional levels through psychology, sociology, and organizational 
theory (Slawinski, Pinkse, Busch, & Banerjee, 2017). 

That said, it is also important to underscore that TFS assets have long been and are still subject 
to flooding and wildfire risks, suggesting a no-regrets approach to undertaking adaptive 
measures into the foreseeable future. As such, we expect there to be increasing demand by TFS 
stakeholders for increased high-resolution flood and wildfire modeling applicable to already at-
risk assets now and into the next decade and more.  

4.5 Concerns about Climate Model Resolutions and Effective 
Stakeholder Engagement 

Throughout the stakeholder engagement process, stakeholders express difficulty in utilizing the 
proliferating climate-related projection models. Different governmental organizations propose a 
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variety of hazard modeling approaches, which challenge stakeholders in their attempt to 
narrow down the scientific information for their risk assessment, management, strategic 
planning, and investment purposes.  

Downscaling each exposure potential to the asset level at finer resolutions is one way to address 
the uncertainty surrounding the use of larger scale climate hazard modeling. The downscaled 
models are more aligned with the stakeholders’ risk assessment, which involves understanding 
how climate projections lead to exposures that are altered in severity and frequency and how an 
asset’s propensity to damage is changed. 

In addition, we find that smaller group interactions with stakeholders lead to greater 
information exchange and discussions compared to large-group engagement approaches, such 
as workshops and meetings. The smaller group set-up allows for more in-depth discussions of 
how specific exposure projections that lead to altered severity and frequencies of events that 
threaten specific assets. 

4.6 Engagement with Kinder Morgan, Inc.  

Given Kinder Morgan, Inc.’s (KM) role as the sole common carrier of petroleum products in the 
state and thus their centrality to TFS operations, we held discussions with KM to better 
understand their infrastructure and operations affected by extreme weather exposure associated 
with flooding and wildfires. In addition to our broader stakeholder engagement process, we 
work with KM staff (located in California and Houston) to focus targeted flood and wildfire 
exposure modeling on KM assets that they identified within the state. 

In discussion with KM, we focus on flooding exposure in the Northern California area of the 
Brisbane-Richmond-Concord-Martinez complex and wildfire exposure in the Richmond-
Sierras-Reno complex, heading south along the major KM pipelines. In addition to holding 
discussions with Northern California KM staff and working with information management staff 
in KM’s Houston office, we meet with key management staff (scheduling and operations 
management) in KM’s Orange Control Center (OCC) at their terminal in Orange, CA. 

Based on our KM discussions, we conclude that: 

 More frequent and intense flooding and wildfires have a triple impact on KM operations 
in the state: 1) KM assets could be directly flooded or disrupted by wildfires, 2) key 
interconnected infrastructures that KM direct operations depend upon, including but 
not limited to electricity, could themselves be flooded or subject to disruption by 
wildfires or flooding taking place in other areas, and 3) the effect of increased and 
intense wildfires and flooding, wherever they occur in the state, will substantially 
increase pressure on the State’s emergency management infrastructure (and its federal 
counterpart within the state), which in turn depend on KM supplies and which KM 
depends upon for protection and mitigation during flooding and wildfire emergencies. 

 However, KM already has experience with flooding (washouts) and wildfire events in 
its Pacific Region, such that new flooding or new wildfires, even when induced by 
climate change, are not novel phenomena to their real-time operations. It is our 
observation that the OCC has real-time procedures for its controllers to follow for 
flooding and wildfire events affecting KM assets monitored in real time. 
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 From our TFS perspective, it would be misleading to talk about a self-contained “Kinder 
Morgan, Inc. system” in California when it comes to real-time operational purposes 
important for flooding and wildfire events: 

o For the OCC’s real-time scheduling, there are five “hubs” to KM Pacific 
Operations (Portland, Richmond, Concord, Watson, and El Paso), each with its 
own stations/terminals and set of pipelines, each pipeline of which has its own 
set of special characteristics for real time scheduling purposes. 

o For the OCC’s real-time operations, KM Pacific Operations are spread across 
different control room consoles, each console responsible for a different set of 
pipelines going from or into the terminals and stations, not all of which are in 
California. 

o With respect to flooding and wildfires it is best, we conclude from our 
observations and discussions, to treat each of the major KM pipelines, if not the 
terminals and stations, as individual systems. 

 From our TFS perspective, wildfire and flooding scenarios must be distinguished from 
each other, irrespective of the pipeline or station/terminal asset involved. Transmission 
flows can and have been disrupted by major washout events due to rainfall; 
underground flows, however, are reported to continue during a wildfire event. 

 Power (principally electricity) is a fundamental part of the real-time KM pipeline flow 
operations. In the state, they chiefly rely on Pacific Gas and Electric Company (PG&E) 
and Southern California Edison for electrical power. Without electricity, KM would not 
have working pumps, and thus may be unable to sustain flows. Moreover, real-time 
operations are central to informed risk assessment and management when it comes to 
flooding and wildfire events. The importance of highly reliable energy to KM assets is 
evidenced in major ways, including: 

o KM needs electricity to monitor key real-time operational variables in real-time 
for its OCC controllers. These variables include: flow rate, line pressure, and 
viscosity of the different products (diesel, gasoline, and jet fuels), all of which 
require electronic measurement. 

o In particular, KM depends on electricity for pumping purposes. Its power 
sources could be disrupted by future flooding and wildfire events, even when 
these specific events do not take place at or adjacent to KM assets directly. 

In other words, while the energy sector is interconnected with the TFS, particularly when it 
comes to cross-sectorial strategic planning purposes, energy (and the same holds for water and 
refineries) is so critical and integral in real time that the TFS assets themselves would not 
function reliably without the energy sector’s inputs.  
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5: Conclusions and Future Directions 

This chapter presents the overarching conclusions of our research, discusses the implications of 
those conclusions, sets forth our suggestions for future research, and highlights the value of our 
methods. We present specific conclusions related to our development of an extensive 
conceptual model of the TFS; our statewide and fine-resolution modeling of TFS exposure to 
extreme weather-related flooding and wildfire over time and across future climate scenarios; 
and our stakeholder engagement. We discuss the implications of these conclusions for the sector 
and for policy as well as our suggestions for future research. Finally, we emphasize the value of 
our methods. 

5.1 Conclusions  

In general, we find that stakeholder interaction is critical. Input from stakeholders helped 
determine the necessity and added value of high(er) resolution modeling, helped indicate the 
necessity to also look at exposure of key interconnected infrastructure that the TFS depends on, 
and helped determine that, while our flood and wildfire modeling efforts describe exposure of 
TFS assets, they do not describe the degree of impact associated with that exposure. 

To determine the actual vulnerability of TFS assets to exposure of flooding and wildfire, 
additional stakeholder interaction is needed. For example, many pipelines are buried, and even 
though water may inundate the surface above, it might not impact them. However, 
stakeholders indicated that associated surface control facilities might be highly exposed and 
thus vulnerable to exposure. Currently there is little data about such facilities and close 
interaction with relevant stakeholders is needed to model exposure to the facilities. Most of our 
wildfire risk discussions with TFS stakeholders centered around pipelines, railways, and 
roadways, as these are the assets in the State most exposed to wildfire. From stakeholder 
discussions, we learn that grass fires do not burn with great enough heat intensity to damage an 
underground pipeline or aboveground roadways; however, they may threaten more vulnerable 
elements of railway infrastructure. 

5.1.1 TFS Conceptual Model 
We develop a conceptual organizational schematic of the TFS in order to identify the assets that 
are necessary for the reliable supply and distribution of transportation fuels in California. We 
explain the key assets as nodes and links, describe their multimodal connections, and identify 
their various dependencies on each other. We also use the conceptual model to identify TFS 
stakeholder organizations and examine the relationships and institutional frameworks that 
shape the behavior of these organizations. 

Characterization of the TFS as a Network 

Our development of a TFS conceptual model advances the understanding of the connectedness 
and complexity of California’s TFS. There is no formal definition of what constitutes a TFS, 
much less what the TFS represents at the California state level. The conceptual model we 
developed contributes to our understanding of the TFS in ways that are not described in the 
existing literature. It also enables identification of a variety of stakeholders across the sector to 
engage, many of whom, to our knowledge, have not been previously included in stakeholder 
outreach. 
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While our conceptual model connects many TFS infrastructure assets together, no one 
organization alone manages the movement of crude oil in the state from supply, to refining, to 
the end-user as a product over this highly networked system. Our stakeholder discussions 
regarding the conceptual model demonstrate that the “TFS” itself consists of multiple sub-
sectors that could each be represented by their own conceptual model, yet product flows are 
dependent on their intraconnection as a network. Contracts and agreements between members 
of the TFS effectively move crude oil and fuels through this network. Accordingly, most asset 
managers understand only the system directly up and downstream from their asset; few have a 
complete understanding of the entire TFS. With private companies making up the TFS, and 
their proprietary-market constraints, no one stakeholder can be expected to have complete 
knowledge of the entire sector. Nonetheless, product flows downstream toward final 
consumption are highly dependent on its vertical integrity. 

While not included in our conceptual model of the TFS, TFS stakeholders underscore the 
importance of interconnected external industry infrastructures that are critical to the TFS’s 
successful operation. The TFS is not a stand-alone industry and is interconnected with many 
other key external industries (e.g. electrical, gas, and water) necessary for its successful 
operations.  

Characterization of Operational Connections Within the TFS 

There is competition but also cooperation within the TFS and through discussions with TFS 
stakeholders, we are able to identify where these conditions lead to redundancy in the system 
and where the TFS is at risk of failure due to lack of redundancy (G. Schremp, personal 
communication, December 28, 2017; J. Settles, personal communication, February 8, 2018). 
Competition ensures redundancy in the network and cooperation has served the TFS well 
during emergencies. For example, gas station operators have options in suppliers. If one 
company goes offline for an extended period of time, another competitor will often take its 
place. Companies can also cooperate and purchase product from each other to fulfill a 
contractual obligation if their ability to deliver is thwarted by an asset being offline. However, 
we discover that there are critical assets where little or no redundancy exists. Here, the fixed 
costs of construction can limit competition and the specialized nature of the asset facilitates 
cooperation among TFS stakeholders. Both cooperation and competition can lead to situations 
where the TFS is resilient or to circumstances where the TFS is vulnerable in the absence of 
resilience. Those assets that lack redundancy can be considered critical assets in the TFS.  

Refined Product Pipelines Are Critical Assets in the TFS 

Our characterization of the TFS reveals that refined product pipelines are the most critical asset 
and the greatest threat to breaking the flow of fuel within the TFS network. Many of these 
pipeline assets are the singular link between refineries and intermediate transshipment nodes or 
end node terminals, with no redundancy in place. If these pipelines go out of service for an 
extended period of time, the TFS could suffer a debilitating failure. Refined fuel would need to 
be transported by road and/or rail and the number of vehicles required for this task could 
easily outnumber those available to the TFS. Although in some specific circumstances marine 
transportation might serve to reduce the impact of pipeline failure, it is highly likely the loss of 
key product pipelines would cripple the TFS (G. Schremp, personal communication, December 
28, 2017; J. Settles, personal communication, February 8, 2018). 
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Central Distribution Terminals Are Critical Assets in the TFS 

Central distribution terminals are critical assets to the operational success of the TFS as many 
refineries transport fuels to such terminals via pipeline for further distribution. The two highest 
product throughput volumes in the TFS (post-refinery) occur at the Concord terminal in 
northern California and the Watson terminal in southern California. Kinder Morgan, Inc. 
operates both and they are considered central distribution terminals. They represent fuel 
convergent nodes, one step before distribution. Here, cooperation exists between various 
companies and refined fuels from different refineries are mixed and further transported 
throughout the TFS. If one refinery goes offline for a period of time, fuels from other refineries 
can serve to make up the shortage and redundancy is achieved. However, if these individual 
terminals fail, the inability to move fuel in the system could seriously disrupt the TFS. 

5.1.2 Flood and Fire Exposure under Climate Change 
We model flooding and wildfire hazards over time under a range of future climate change 
scenarios to analyze where TFS assets are exposed to these conditions. We model these hazards 
statewide at a course resolution of 50m (~164ft) for flooding and 6.2km (3.9 miles) for fire and 
evaluate the exposure of existing TFS assets. After presenting the short- and long-term results to 
stakeholders in various meetings, their interest and expertise guided us to locations in the state 
where they wished to see their assets modeled at finer spatial resolutions. In these selected 
locations, we model flooding and fire hazards at a fine resolution of 5m (~16.4ft). Overarching 
conclusions from these modeling efforts are described below. 

5.1.2.1 Statewide Modeling 

Our statewide hazard modeling and exposure analysis reveals broad patterns of TFS asset 
exposure that vary by hazard, asset type, and region. In terms of flooding at this scale, we 
introduce a strategy of modeling coastal flooding over a range of SLR and storm surge 
projections and time horizons. Using the Fourth Assessment data (Cayan et al, 2016), we model 
coastal flooding under 24 sea level scenarios projected with two greenhouse gas concentration 
scenarios (RCPs), four climate model (GCMs), and three probabilistic SLR (50th, 95th, 99.9th 

percentiles) values for 50m (~164ft) spatial resolution tiles along the entire California Coast, San 
Francisco Bay, and the Sacramento - San Joaquin Delta. We base our statewide wildfire 
assessment on Westerling’s (forthcoming) projections. We take estimates of area burned from 
all 240 scenarios modeled by Westerling (forthcoming) into account when evaluating regional 
and sub-regional changes in California wildfire patterns over the current century and between 
specific 20-year long planning horizons. We then spatially intersect these modeled extreme 
weather event projections with TFS asset data to evaluate the potential for exposure. The results 
of this modeling are presented in Chapter 3 and Appendices C and D. Important takeaways are 
described below.  

Our Modeling Represents a Breadth of Possible Climate Change Outcomes  

We assert the outputs of our modeling represent the range of possible outcomes under the 
various climate scenarios. We find that using the full range of scenarios in our flooding and 
wildfire modeling is critical in gaining the attention of stakeholders who might otherwise 
discount results from a single specific RCP or GCM. In terms of flooding, we ranked 24 coastal 
flooding events in 20-year intervals by their highest projected sea level to identify the 
maximum, median, and minimum events to quantify the range of flooding, to the year 2100. 
The purpose of the scenarios is to reveal spatial patterns of inundation exposure and not to 
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identify any one particular inundation scenario for subsequent risk analysis. We conclude the 
maximum and minimum scenarios are most useful for revealing trends and we use median 
scenarios to describe effects on an individual operator within the TFS. In terms of fire, we 
develop a modeled wildfire threat ranking based on Westerling’s (forthcoming) forecasts across 
240 scenarios from two RCPs, four GCMs, and three LULC scenarios (with 10 stochastic 
variations each). We base our fire hazard classification of individual pixels in various time 
periods on the relationship of the median modeled pixel value for a given period to that in our 
2000-2020 reference period.  

Spatial Trends in Modeled Flooding and Wildfire 

Coastal flooding across scenarios and through time is mainly found in low lying, flat, and 
coastal regions along the California coast, in the San Francisco Bay, in the Sacramento-San 
Joaquin Delta, and in the Long Beach and Huntington Beach regions in Southern California. The 
Sacramento - San Joaquin Delta is particularly exposed to flooding in the statewide 50m (~164ft) 
spatial resolution model due to the Delta’s low-lying topography, possible overtopping of the 
levees, and to some extent because of the coarse spatial resolution of the model (i.e. smooth 
representation of the topography). 

Large (>400 ha) wildfire patterns are expected to vary throughout California over the remainder 
of the current century. Forested sub-regions of the state are expected to experience a marked 
increase in exposure to large wildfire over this same period of time. Modifications to current 
modeled wildfire patterns appear to be largely driven by changes in land cover and wildland 
fuel stocking levels, as well as by projected fluctuations in local climate conditions over time. 

Patterns of TFS Asset Exposure to Flooding and Wildfire 

Flooding 

The collective of all TFS assets (i.e. refineries, terminals, docks, airports, gas stations, oil fields, 
pipelines, roadways, and railways) are not greatly exposed to projected coastal flooding 
statewide, as only a small portion of each asset type is found in flood-prone areas. The exposure 
pattern can be explained by the assets’ locations relative to low-lying coastal zones. 

For the five 20-year periods analyzed, on average, about 5% of a TFS asset category are exposed 
to some level of coastal flooding. Gas stations are the least exposed to coastal flooding (1% on 
average over the five periods), whereas docks are most exposed (12% on average over the five 
periods).  

In general, our 50m (~164ft) spatial resolution flood modeling demonstrates that the exposure 
characteristics vary by geography (Northern versus Southern California), asset type and 
ownership (large versus small operators). For example: 

1. Most product pipelines in Northern California exposed to coastal flooding are operated 
by a single large operator with a significant length of pipeline exposure but affecting 
only a small fraction of its overall pipeline assets, whereas in Southern California 
exposure is distributed among several operators with some small operators with large 
percentages of their assets highly exposed. 
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2. While we consider the crude oil pipeline system as one statewide network, there are 
significant differences between the SF Bay/Delta and LA/Long Beach regions. In both 
areas, the largest crude pipeline operators (in terms of total kilometers of pipeline assets) 
have the longest length of assets exposed. Similar to the exposure of product pipelines, 
this exposure represents a small percentage of their total assets, while small operators 
have higher percentages of their assets exposed. Regionally considered, the LA/Long 
Beach crude oil pipeline asset exposure is six times that of Northern California (60 km 
exposed at the median flood scenario in the period 2040-2060). 

3. In Northern California, terminals tend to be more clustered around the greater Bay Area 
refineries – many of which are in shoreline locations. Most of these assets are exposed to 
coastal flooding, but only in the maximum flood scenario in the 2080-2100 period. For 
example, the terminals at Martinez (with the exception of the Plains Products 
Terminals), in the Richmond area (except the IMTT terminal), and the KM SFPP Liquid 
Petroleum terminal facility at Brisbane, are only exposed under the maximum scenario 
in the 2080-2100 period (See Figure C 17(a-c) in Appendix C). Only a few terminals in the 
Bay Area are exposed in the minimum flood scenario in the 2080-2100 period, such as 
the IMTT terminal at Richmond. Kinder Morgan, Inc. Station in Concord is not exposed 
to any projected coastal flooding.  

In Southern California, terminals are more widely scattered throughout the LA/Long-
Beach area, many of which are away from coastal locations (Figure C 18). In this region, 
11 terminals are subject to maximum 2100 flooding and 6 exposed to minimum flooding. 

4. Refineries in Northern California are predicted to be flooded as early as the 2020-2040 
period. Our scenarios indicate a 176-223 ha, (14-18%) inundation of the Chevron refinery 
at Richmond occurs by 2040 (min, max scenarios) and by 2100, a 240-697 ha, (20-57%) 
inundation occurs. At the Andeavor Martinez refinery (min, max scenarios) 0.6 – 2 ha 
(0.4 - 1%) of inundation occurs during the 2020-2040 period and by 2080-2100, the range 
increases to 4 – 117 ha (2 - 68%). Together, the area inundated at all other SF Bay/Delta 
refineries is 10 - 22 ha (1 - 2%) by 2040; and 51 - 204 ha (5-17%) by 2100 (See Table C 8 in 
Appendix C). 

In the LA/Long Beach region, the only identified refinery exposed to flooding is the 
Valero Wilmington facility located at the end of the Dominguez Channel in the Los 
Angeles Harbor. This facility’s exposure is significant in terms of area: by 2040, 33-47 ha 
(40-50%) are inundated and by 2100, 65-84 ha (77-100%) (See Table C 8 in Appendix C). 

Wildfire 

Increases, decreases, and relatively insignificant changes in wildfire frequency and magnitude 
are projected to occur within TFS asset-containing regions of the state. TFS assets located in 
many of California’s mountainous sub-regions are expected to experience a marked increase in 
exposure to large (>400 ha) wildfires between now and the end of the century. Notably, 
increases in the likelihood of large wildfires are projected to occur in the Siskiyou Mountains 
and Klamath region of Northwestern California; at mid- to high elevations of the Sierra Nevada; 
in the Transverse and Peninsular Ranges running between Santa Barbara and Baja, Mexico; and 
in the multiple Coastal Ranges that fall between Monterey Bay and Los Angeles. In contrast, 
TFS assets found in low-lying regions of the Central Valley, the Sierra Foothills, the San 
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Francisco Bay, Los Angeles County, and San Diego are expected to see little to no change in the 
likelihood of large wildfires over time. 

At the state level, TFS road, rail, and airport asset types are expected to see the greatest 
increases in exposure to the threat of large wildfires over the course of the five 20-year 
prediction periods analyzed. Statewide exposure of pipeline and gas station assets are expected 
to increase slightly from current levels (See Figure D 21 in Appendix D). TFS terminals and 
refineries face relatively little, if any, threat from large wildfires during present and future 
periods. 

Uncertainty in Hazard Modeling and Asset Exposure Increase Further in the Future 

The uncertainties in future coastal flooding and wildfire from different climate scenarios are 
relatively small at the beginning of the century (i.e. 2000-2020 period) but become much more 
pronounced by 2100. Thus, similar uncertainty patterns in TFS asset exposure to coastal 
flooding and wildfire are also observed. Moreover, given the coarse resolution of the statewide 
flooding and wildfire modeling, the results are primarily appropriate to interpret at the 
statewide level. Fine resolution modeling is more appropriate for localized asset exposure 
analysis.  

Wildfire is Presently a Major Threat to TFS Assets 

Wildfire may be the biggest immediate threat to TFS assets as short-term severity can damage 
critical infrastructure. Critical TFS assets are located and currently operate in areas at risk of 
exposure to wildfires, and in some cases, assets have existed in risky areas for years. One type 
of critical asset, refined fuel pipelines, crosses regions of California that we conclude are at high 
risk of wildfire-related disruptions. Moreover, when rainstorms follow fire they can produce 
dangerous flash floods, slope failures, and debris flows that can destroy infrastructure. 
Although operators of the TFS have an excellent record of response and repair to damaged 
infrastructure and have a history of effectively returning to operational mode, chronic 
disturbances due to climate change will only tax this ability. In addition, given the 
interconnected nature of the TFS with support infrastructure (electricity, gas, and water), 
wildfire disruption to one of these interconnected assets may also serve to interrupt the TFS. 

5.1.2.2 Fine Resolution Modeling 

We find that fine resolution modeling of flooding and wildfire allows for more accurate 
exposure evaluation for specific TFS assets at a local scale and is more effective for engaging 
stakeholders in discussions of asset vulnerability. For our fine resolution 5m (~16.4ft) 
simulations, we employ remotely sensed high spatial resolution information to improve low 
spatial resolution variables and enhance the detail of our flooding and wildfire modeling. We 
perform this modeling for selected time periods in specific areas with TFS asset concentration, 
flooding or wildfire exposure, and interest expressed by TFS stakeholders. For fine spatial 
resolution flooding, we model both coastal and inland flooding at 5m (~16.4ft), with inland 
flooding based on rainfall intensities during projected extreme rainfall events. In addition, at 
such a fine spatial resolution, blocking objects, mostly buildings, impact flooding results, so we 
alter our input surface models to include them. In terms of wildfire, we introduce an improved 
land cover classification approach, model wildfire behavior at a spatial resolution of 5m 
(~16.4ft), and derive output metrics including flame length, fire intensity, and rate of spread. 
We model future wildfire conditions driven by Fourth Assessment LOCA data representing 
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future extreme conditions of temperature and relative humidity, while we keep all other 
conditions (topography and vegetation) the same as present. 

The results of our fine spatial resolution modeling are presented in Chapter 3 and Appendices C 
and D. Key findings from this effort are described below.  

Fine Resolution Models Engage TFS Stakeholders 

At a fine spatial scale, TFS stakeholders clearly recognize specific components of their assets on 
the ground in relation to modeled flooding or wildfire conditions and can more effectively 
consider adaptation and strategic planning. Statewide prediction cell sizes (50m (~164 ft) for 
flooding and 6.2km (3.9 mile) for wildfire) are too coarse for TFS stakeholders to recognize a 
threat to their infrastructure assets. While it takes considerably more computer power, the value 
added of our fine spatial resolution flooding and wildfire modeling is quite important for future 
strategic planning and response in protecting TFS assets. Importantly, we find that stakeholders 
can recognize assets, other structures, and complex environmental conditions in areas of 
interest and thus actively engage in our analysis. We expect the demand by TFS stakeholders 
for fine spatial resolution flooding and wildfire modeling, with its enhanced utility for real-time 
operations, to increase in the foreseeable future. 

Fine Resolution Modeling More Accurately Represents Localized Asset Exposure  

In coastal flooding, the fine spatial resolution 5m (~16.4ft) model refines the results of the coarse 
resolution 50m (~164ft) model, and therefore better informs stakeholders about their flooding 
exposure in local sites. In addition, our fine spatial resolution flood model is likely a more 
accurate estimate of flooding exposure as it incorporates inland flooding, better captures 
changes in topography, and includes blocking objects such as buildings that determine realistic 
potential water flow pathways. Similarly, within wildfire prone regions, wildfire hazard to 
assets vary as different topography and vegetation pose different degrees of asset exposure. For 
example, assets in forested regions are at high risk because trees burn with the highest heat 
intensity. However, during a wildfire not all trees necessarily burn. Given this, modeling 
wildfire behavior at a fine resolution with precise landcover classification allows for more 
accurate evaluation of asset exposure. After experimenting with existing CalFire wildfire threat 
assessments, we recognize inherent limitations exist in preserving detailed information even at 
30m spatial resolution, and this led us to model and calculate present day wildfire hazard 
potential at a 5m spatial resolution. 

Fine Spatial Resolution Modeling Can Be Effective for Evaluating Impact Mitigation Actions 

As part of our fine spatial resolution fire modeling, we analyze our fire behavior results using a 
fire response characteristic chart (the Hauling Chart) to determine potential wildland firefighter 
engagement techniques and simulate mitigation procedures by modifying fuels to demonstrate 
the effect on wildfire behavior (Scott & Burgan, 2005). For example, shrubs burn with high heat 
intensity and are typically quicker to ignite than trees, so one common method to reduce 
shrubland wildfire risk is mastication, in which a bulldozer grinds shrubland vegetation. We 
simulate such mitigation measures by modifying the input fuel surface near TFS assets and find 
that fuel treatments such as mastication can greatly reduce both the rate of spread for the 
wildfire and the heat intensity emitted by the fire. 
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5.1.3 Stakeholder Conclusions 
As described in Chapter 4, we engage with TFS stakeholders to document their response to our 
modeling outputs. We discuss their assessment of our modeled exposure of assets to flooding 
and/or wildfire, as well as their impressions on the potential for consequences from such 
exposure. In addition, we ask stakeholders to discuss short- and long-term strategic planning 
they are currently undertaking or would consider undertaking to increase the resiliency of their 
assets to these hazards. We find this stakeholder interaction critical to obtaining a more 
complete picture of asset vulnerability and understanding potential adaptation strategies and 
mitigation measures. 

Stakeholder Interaction is Key to Understanding the Vulnerability of Specific Assets 

Understanding the concept of “vulnerability” is more complicated than one might suppose and 
is key to conceptualizing the significance of any exposure. Knowing only that the wildfire and 
flooding extent intersect with the spatial location of TFS assets (as we define exposure) might 
not translate directly to damage or an increase in the vulnerability of the asset. Reviewing and 
discussing the results of our exposure modeling with stakeholders deepens our understanding 
of the potential for exposure to actually cause impacts to assets and the implications of those 
impacts.  

For example, stakeholder discussions illuminated the susceptibility of TFS railways to damage 
caused by the direct exposure to heat generated during a wildfire event or water from flooding, 
specifically when wooden rail ties are present. Rails are damaged at even relatively low levels 
of exposure to heat. At 40 Fahrenheit, change in temperature can permanently damage a 
modern rail system (CORT, Personal Communication, Nov 17, 2017). Stakeholders reveal that 
only 10cm (~4 inches) of flooding is needed to disrupt rail operations. Nevertheless, rails are not 
the expensive components of a railway and can be repaired or replaced relatively quickly. On 
the other hand, wildfires and flooding can pose significant risks to unprotected assets and it can 
be costly to repair traffic signaling infrastructure. 

However, some assets may not be impacted even when they occur at the same location as our 
modeled flooding or wildfire. Underground assets, such as pipelines, are insulated by both 
pipeline material and soil, and are thereby protected from heat generated by wildfires or from 
direct impacts of flooding. Yet, TFS pipeline infrastructure is reliant upon aboveground 
appurtenances that are susceptible to being damaged during a wildfire or flooding event, 
specifically pumps and valve vaults.  

On the other hand, indirect effects associated with flooding or wildfire also have the potential to 
impact TFS assets. Stakeholders mention that TFS roadway assets can be temporarily disabled 
by wildfire smoke reducing driver visibility enough to cause road closures. Similarly, refineries 
and terminals and their associated equipment generally are not directly exposed to wildfire 
because they are near water and in urban areas. However, indirect wildfire impacts may occur 
to these assets, mostly as a result of workforce service disruption due to smoke-related air 
quality impacts or worker absence associated with personal impacts from the wildfire. Wildfire 
suppression activity can also pose an indirect threat to some TFS assets. Heavy equipment used 
during wildfire suppression and management, such as bulldozers, is consistently described by 
stakeholders as a major threat to underground pipelines due to excavation strikes. While we 
model potential direct exposure to flooding and wildfire, our modeling does not account for 
potential indirect impacts associated with these extreme weather-related events. 
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In some cases, stakeholders also highlight the general cost to their company’s resources of 
coping with impacts to assets. For instance, despite redundancy in the California road network, 
TFS trucking companies are concerned with additional costs due to increased distances and 
time associated with rerouting. Additional service costs are also associated with delays in access 
to fewer fuel terminals which reduces overall supply capacity. 

Certain Hazard Model Output Metrics are Most Significant to Stakeholders 

Wildfire and flood model outputs vary in their significance to stakeholders in assessing the 
vulnerability of their assets. During TFS stakeholder discussions, the different hazard model 
output metrics - flood extent, flood depth, and fire intensity - are most commonly referenced by 
stakeholders when assessing the vulnerability of their assets. The extent of flooding and 
wildfire exposures is intuitively the most relevant result. We find that fire intensity metrics are 
less applicable when referred to in raw BTU units. Instead, stakeholders are more responsive 
when fire intensity results are translated to firefighting suppression viability, such as describing 
how firefighters will generally attempt to put out fires when intensity is less than 1000 BTU/sq. 
ft, but their protocol is to retreat when fire intensity is close to or greater than 1000 BTU/sq. ft. 

Occurrence of Extreme Weather Events Stimulate Stakeholder Engagement 

Extreme wildfire events and subsequent debris flows in the fall of 2017 stimulated TFS 
stakeholder engagement with respect to wildfires. Wet El Niño years followed by very wet La 
Niña years, as in 2016 and 2017, lead to the rapid growth of fuels in the wildland regions of 
California. The added vegetation growth and periods of dry conditions increase the fuel base 
and amplifies the risk of increased fire intensity. The severe 2017 fires in both Northern and 
Southern California stripped the landscape of hillslope stabilizing vegetation and led to 
hazardous post-fire debris flow conditions. The rainstorms in the fall of 2017 produced 
dangerous flash floods, slope failures, and debris flows that destroyed buildings as well as 
infrastructure. These occurrences were widely reported in print and television. This public 
awareness served to enhance our TFS stakeholder engagement with respect to wildfires.  

Stakeholders Are Most Interested in Near-term Periods That Match Investment Cycles 

TFS stakeholders are focused on the immediate future and they consistently request higher 
resolution modeling of the 2020-2040 period, consistent with their near-term investment and 
asset life-cycles and in recognition of the fact that some of their critical assets are already located 
in present-day flood and fire risk areas. The time horizons for long-term strategic planning for 
extreme weather hazards do not correspond to the industries’ investment cycles and many 
stakeholders doubt the competitive capacity of petroleum sourced energy in the transportation 
fuel market in the mid- to distant- future. After modeling the period 2020-2040 at 5m (~16.4ft) 
spatial resolution for directed locations in California, we then include results from the period 
2080-2100 to show longer-term effects and re-engage with stakeholders. Despite this, we find 
stakeholders do not immediately respond to modeled scenarios that go beyond the next 10 to 20 
years. Better risk management cycles may be needed, but even here nearer term risks over their 
current planning, investment, and depreciation cycles would be the priority concern. 

Stakeholder Discussions and Specific Exposure Analysis Are Key to Obtaining Input 

The stakeholder engagement process is key to gathering information on the complexities of the 
TFS network and for the diffusion of modeling results to interested parties. TAC meetings and 
workshops are not good venues for gathering significant input from stakeholders possibly due 
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to market competition and proprietary restrictions within the industry. However, they are 
suitable for information dissemination about this research and its results. Discussions with 
individual stakeholder organizations are more productive when examining modeling results 
specific to key TFS organizations. Even then, an NDA may be required and highly useful. This 
allows the customization of modeling results to an individual organization’s unique 
requirements, especially in terms of delivering high-resolution models tailored to their assets 
and obtaining inputs of their existing information management systems, operational graphics, 
and emergency management data requirements. 

Organization-specific exposure analysis, coupled with the high-resolution modeling techniques, 
allows the incorporation of mitigation and adaption measures that are already in place (flood 
walls, levees, fire breaks, fuel treatment, etc.) but are usually less visible when dealing with 
coarse 30m resolution hazard models and satellite imagery. Our high-resolution modeling 
approach opens the door for stakeholders to tweak their mitigation measures and check how 
effectively their response reduces their vulnerability. 

Stakeholders Show Interest in Strategic Planning for Flooding and Wildfire 

Members of the TFS have traditionally been concerned with and focused on their contributions 
to emissions of criteria pollutants and toxic air contaminants. Now that clean fuels and efficient 
vehicles have driven emissions of volatile organic compounds far below their historical 
baselines and other emissions sources provide more cost-effective opportunities to mitigate 
ozone and toxic chemicals in many air basines (B. C. McDonald et al., 2018), we find through 
our workshops and discussions that several members of the TFS are adding to their focus 
adaptation of infrastructure threatened by climate change. 

We find stakeholders are, to varying extents, concerned and interested in strategic planning for 
flooding and wildfire. The most common strategic measures proposed are directly linked to 
infrastructure hardening such as floodwalls, increasing structural material quality, and the 
elevation of critical assets. Other stakeholders with assets near sea level also expressed interest 
in investment for hardening measures such as reinforcing pipelines, as well as developing 
specific impact scenarios with cost assessments. As discussed in Sections 4.3.1 and 4.3.2, 
stakeholders propose resiliency related measures, considered “soft” adaptation measures, such 
as reinforcing action plans, promoting awareness through working groups and meetings, 
creating defensible space, and the facilitation of waivers for fuel commodity transactions. Most 
of the proposed resiliency measures fit a pattern of proactive behavior change that can be linked 
to emergency response. In some instances, stakeholders argue that they have already 
implemented hardening or resiliency measures, but they still are interested in accessing new 
model scenarios and their implications. 

From our discussions, it is not possible to assess what are the overarching drivers for currently 
in-place adaptation measures, nor gauge interest in future implementation of adaptation 
measures. Current actions understandably take a no-regrets approach where possible, meaning 
there are multiple reasons to undertake them now or in the near future. Common business 
preoccupations such as rate of return and correlated operational and managerial upgrades, 
regulations, and past incidents correlated with natural hazards, are all mentioned as reasons for 
hardening infrastructure or implementing resiliency measures that can decrease vulnerability to 
flooding and wildfires among other threats. Nevertheless, it is clear that regulation working 
towards the implementation of such measures is framed under hazardous material spillage 
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concerns and not necessarily from the concern of reliably supplying and distributing fuel 
(critical infrastructure). 

5.1.3.1 Conclusions from Engagement with Kinder Morgan, Inc. 

Since KM operates the majority of the product pipelines and refined fuel transmission in 
California, there is little or no redundancy of this class of pipeline asset among the various 
stakeholders. As a result, we conducted numerous interviews with KM to further examine 
critical TFS product pipeline exposure. Our engagement focused on flooding exposure in the 
Northern California area of the Brisbane-Richmond-Concord-Martinez complex and wildfire 
exposure in Richmond moving southward along the major KM pipelines. The overarching 
conclusions from our discussions with KM generally mirror and support those of our 
discussions with other stakeholders. 

Regarding wildfires, our interaction with KM revealed that while fires can be a threat to TFS 
assets – not least of which are equipment plant fires or other mechanical-related fires – a fire 
taking place at an asset location does not inevitably indicate the asset is vulnerable. The unit of 
analysis for our research is wildfires, which typically take place outside the perimeter of TFS 
assets such as refineries or terminals. It is primarily pipelines and pipeline support 
infrastructure, such as pumps and valves located along the pipeline path, which are located in 
regions of the state at risk of wildfire. During wildfires, firefighting equipment (e.g., large 
bulldozers) can damage pipeline assets if equipment operators are unaware of buried pipeline 
locations and, for example, dig them up while constructing a fireline. Yet, a wildfire taking 
place at the asset location does not mean it poses a threat to the asset in question. Most notably 
KM informed us that their flows are by and large maintained when wildfires occur above or 
adjacent to their underground pipelines. KM pipelines have not sustained notable damage from 
a wildfire in Northern California and, to our knowledge, KM has not had to shut down or 
disrupt service indefinitely as the result of wildfires in the State. 

Our discussions with KM regarding flooding highlight that inundation can also pose a risk to 
pipeline system operation. Our coastal flood modeling shows that approximately 6% of the total 
SFPP pipeline system operated by KM in Northern California is potentially inundated by 
coastal flooding in the 2040-2060 period (under a median scenario). This low percentage could 
imply that the system may still be functional in the face of coastal flooding if there are 
possibilities to reroute product using non-exposed pipelines. However, our interviews with KM 
representatives, among other TFS stakeholders, identified cases of past inundation and flooding 
that did pose risks to the operations of individual pipeline systems. In short, no one should 
conclude that a small percentage of inundated pipeline is not a cause for concern. 

One other primary takeaway from our discussions with KM was that long-term strategic 
planning to the year 2100 for the State’s entire transmission pipeline network is unrealistic at 
this time as the TFS will likely have changed dramatically by then. However, climate-related 
impacts for the 2020-2040 period could help inform near-term planning. 

5.2 Discussion  

Our research shows the TFS is extremely complex, both physically and organizationally. The 
sector functions because of contracts and agreements between all stakeholders. Because of this 
complexity, no one stakeholder or group that has a comprehensive overview of all of TFS in 
California or has ability to respond reliably to all exposure risks and uncertainties. This 
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complexity is also amplified by the fact that the TFS depends on interconnected infrastructure 
to reliably operate and manage transportation fuel supply and distribution. 

According to our modeling, some existing TFS assets are currently exposed to flooding or 
wildfire. For assets in certain locations, exposure will occur or increase in the future under 
climate change. However, the TFS stakeholders we engaged with pointed out that modeling of 
exposure does not give full or detailed information about the actual impact of the exposure to 
the asset. The impact of flooding or wildfire exposure depends on the asset’s physical 
characteristics such as the asset type and condition. The impact of exposure on the asset also 
depends on how the asset fits into a larger organizational structure and the institutional 
framework in the area of the asset to respond to or prevent exposure from leading to long-term 
negative disruption or damage. 

Change over time makes identifying vulnerability and subsequent planning more complex. As 
the various GCMs and RCPs suggest, climate and weather are projected to change over time; 
projections suggest that extreme events such as flooding and wildfires will become more 
frequent, perhaps chronic, rather than occasional. Also, events such as flooding and wildfire 
may occur simultaneously in different parts of California.  

To add to this complexity, the age and remaining operational life of an asset changes with time 
as will the organizational network in which assets function. New companies emerge, some 
companies will merge, and assets may be abandoned, sold, or replaced. At the institutional 
level, complexity is added as markets change, supply and demand change, policies and 
regulations change, and incentives and funding change. 

The uncertainty of what the future holds suggests that, in terms of developing resiliency to 
future exposure, there should be more coordination within the TFS and with interconnected 
sectors. According to stakeholders, some coordination already exists, as a result of policy or 
existing vulnerability of assets, but increased coordination is needed. Adaptation strategies 
should take into account the present location of assets and subsequent exposure; physical 
hardening and resilience measures that are possible and feasible and those that are already 
planned for or required; and funding and incentive strategies available to the stakeholders.  

In addition, while this research does not examine directly the effect of flooding and wildfires in 
an emergency management situation, it is clear from stakeholder discussions that the effect of 
increased and intense flooding and wildfires, wherever they occur in California, will 
substantially increase pressure on emergency management infrastructure, which in turn 
depends on various TFS assets to move and supply fuel. 

In summary of the above, the broader policy implications of this research are: 

1. Long term planning requires inclusion of scientific and modeling uncertainties and 
organizational/institutional uncertainties. 

2. Multiple extreme weather events have different impacts on TFS assets due to 
distribution (or lack thereof) throughout the state. 

3. Ability to focus at finer spatial resolution allows for better alignment with existing 
depreciation, investment, and other planning cycles. 
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4. TFS stakeholders face a certain future where measures to harden or make more resilient 
their key assets are unavoidable for many different reasons, including climate change. 

5. The TFS needs to be viewed as a system that is part of a greater system. 

Given the interdependencies and the fact that the TFS is a system that is part of a greater 
system, stakeholders have indicated that each asset or location should be taken into 
consideration when making broader decisions around potential implications to the 
Transportation Fuel Sector as a whole. Making statewide policy that doesn’t take the specifics 
per location, region, or area into account can have an adverse effect on individual locations and 
on actions already been taken by municipalities, harbors, regions, etc. 

5.2.1 Methodological Implications of the Modeling Approach 
Specifically, in relation to our modeling approaches, we find the following: 

1. Flooding and Wildfire point to different models for vulnerability and/or risk proper. 
Example:  

a. In the flooding scenarios, it is easier to predict the probability and consequences 
of flooding, given the site of the asset and the specific scenario in question. 

b. In the wildfire scenarios, where the site of ignition cannot be predicted, it is 
easier to talk in terms of exposure, vulnerability, and threat (and less so in terms 
of site-specific probabilities and consequences). 

2. The value added of our 5m spatial resolution wildfire modeling beyond the underlying 
Westerling (forthcoming) coarse predictions is in the added ability to identify where TFS 
infrastructure is and where assets may be exposed to extreme wildfire behaviors. In 
addition, we differentiate wildfires with respect to their flame length, fire intensity, and 
rate of spread. This has very important implications for future planning and response 
for TFS elements. 

a. For example, KM’s Orange Control Center has developed real-time procedures 
to deal with wildfires affecting its pipeline operations. However, it may be that 
any such procedures—including those at other TFS stakeholders’ facilities— 
could be further developed in light of differentiating wildfire responses in terms 
of their flame length, fire intensity, rate of spread, and understanding what fire 
suppression strategies are expected during catastrophic fire weather conditions. 

b. Our statewide modeling focus, however, has the advantage of showing that 
some TFS elements (e.g., north and south pipeline assets, some refineries) face 
unavoidable budget and investment tradeoffs as to where to allocate funds and 
resources to their additional mitigation efforts with respect to the location, 
nature, and frequency of wildfires. 

3. Flood modeling, although starting in 2000, has the virtue of overlapping in its 2020-2040 
period with existing, longer-term cycles for TFS stakeholders. For example, findings may 
have immediate implications for rethinking current investments and/or planned 
maintenance versus replacement upgrades. 
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4. It is clear that the relevance of our modeling results to key TFS stakeholders requires 
working with them in order to customize model results to their unique requirements, 
especially in terms of each stakeholder’s existing information management system, 
operational graphics, and emergency management data requirements. 

5.3 Suggestions for Future Research  

Based on our conclusions and their broader implications, this subsection suggests avenues for 
future research in flood and wildfire modeling, as well as stakeholder engagement. 

5.3.1 Flooding 
1. Bridge the gap between flood modeling output metrics and damage to TFS assets. More 

research is needed incorporating information on how flooding exposure will result in 
damage. With this in hand, one could identify the impact (e.g. if the asset has to be taken 
offline) on the TFS infrastructure and this approach will help estimate loss related to 
damage or disruption, as well as further model the cascading impacts throughout the 
physical and organizational supply-and-distribution networks. 

2. Establish an archive of real-time and fine spatial resolution remote sensing 
images/aerial photos of existing flooding events which can be used to validate the 
flooding extent simulated by existing models and identify whether new models are 
needed. In this study, we calibrate our model against recorded water levels at gauging 
stations during historical events. While this calibration is to some extent satisfactory, it 
does not directly calibrate the model against its final projections of flooding extent and 
depth. The inability to conduct such calibration in a systematic manner is due to a lack 
of long-term, detailed flooding maps of past events. Near real time and fine resolution 
images would provide an archive of flooding events that have occurred and are 
happening, which can be used to better calibrate the flooding models. In addition, 
researchers can use these flooding maps to build statistical and machine-learning 
models that predict flooding based on environmental conditions such as topography 
and precipitation. Compared with the process-based, deterministic flooding models (e.g. 
the model used in this study), the statistical and machine learning models can easily 
scale up to large study areas and long-time periods, such as California and an 
assessment to and beyond 2100. 

3. Provide SLR and storm surge projections at more locations along the Californian coast 
and the Sacramental-San Joaquin Delta. This data is needed to produce more localized 
information about future flooding. In this study, we use hourly sea level projections at 
nine locations along the coast to drive our statewide 50m (~164ft) resolution simulation 
and proximate water level information for local tiles in the 5m (~16.4ft) resolution 
simulation. This statewide to local approximation from nine locations may cause some 
inaccuracies in the water levels used for the local tiles, and further over or underestimate 
flooding. In addition, no projection is readily available for the Delta, which limits our 
ability to conduct accurate simulation in this region.  

4. Analyze coastal and inland flooding in one model to estimate the combined inundation 
of the two. Such analysis would greatly improve exposure estimates. In this study, we 
model coastal flooding driven by the highest sea levels and inland flooding driven by 
the highest rainfall intensities as separate phenomena. The sea level and rainfall 
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projections are time-dependent and their maximums may lag over time and space. Since 
our model has the capability of modeling these two types of flooding jointly, future 
research should strive to model them together over a long period of time (e.g. 20 years) 
and identify a specific time window (e.g. a 72-hour period) that produces the maximum 
flooding extent and depth. 

5.3.2 Wildfire 
1. Bridging the gap between wildfire behavior and damage to TFS assets is an area of 

future research. Our 5m (16.4ft) spatial resolution wildfire research models wildfire 
behavior, such as heat intensity, but does not indicate if heat intensities will disrupt 
product flows. This would involve research innovations regarding both asset 
vulnerability assessments and the development of asset-specific wildfire behavior 
hazards. Pipeline-specific wildfire behavior hazards research should aim to better 
understand the relationship between wildfire residency time, heat transfer, and the 
likelihood of damage to TFS assets located belowground. For example, pipeline 
vulnerability research should model a spatially variable threshold of fire intensity that 
would damage a pipeline, varying by pipeline depth and insulation. As with flooding 
hazards, linking flooding model output metrics to asset-specific damage typologies will 
help estimate loss related to damage or disruption, as well as further model the 
cascading impacts throughout the physical and organizational supply-and-distribution 
networks. 

2. High spatial resolution wildfire behavior simulations could be improved with: 

a. Object-based simulation software, as opposed to the pixel and vector-based 
software intended for regional scale analyses; 

b. state-wide data indicating ecoregion specific wildfire fuel models, and 
corresponding fuel moisture parameter values for these models;  

c. imagery and LiDAR data flown simultaneously and more frequently to limit 
land cover classification error and discrepancy between datasets. 

3. To improve accuracy and utility of future projections of high-resolution wildfire 
behaviors, high-resolution vegetation change models driven by climate variability need 
to be developed and incorporated in wildfire behavior models. 

4. Develop process-based wildfire projections, rather than statistical projections based on 
historical data, to improve accuracy of regional wildfire likelihood estimations. 

5.3.3 Stakeholder 
1. Model the TFS's exposure beyond the sector's intraconnectivity by including its 

interconnections to, and interdependencies on, other critical infrastructures. Literature 
on the vulnerability of critical infrastructures as well as the TFS stakeholder engagement 
results consistently demand the inclusion of supporting infrastructures that TFS assets 
depend on (as vital inputs) such as power, telecommunications, water, hydrogen, 
natural gas, and other factors. 
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With more detailed information from stakeholders, a network model could be built that 
enables the modeling of the (cascading) effects of disruptions at individual sites 
throughout the entire State. More industry cooperation would be needed to identify 
such connections, to rate significance, to identify alternative pathways, etc.  

2. Develop a reporting system of damage and disruption of the different TFS nodes and 
links identified. Encourage a systemic reporting of such incidents that are not solely 
dependent on hazardous materials spillage. This will ensure that the variety of 
organization-specific incident and risk metrics of the TFS are shared with the California 
regulatory and safety agencies. Furthermore, it is essential for inter-organizational 
cooperation for procedural and policy improvement. 

3. Identify and disseminate a comprehensive review of successes and failures of different 
TFS core, dependent, and knowledgeable organizations implementing resiliency 
measures in response to extreme weather hazards (e.g. Meer, Cooper, Warner, Adams-
Morales, & Steendam, 2008).  

4. Conduct cost-benefit analyses comparing the cost of implementing resilience and 
adaptation measures to the risk-abating benefits of these investments. For flooding, this 
could involve evaluating the cost of building levees and the benefits of evading potential 
damages. For wildfire, this would weigh the potential exposure reducing benefit of 
mitigation against the cost of mitigation. Quantifying the costs and benefits would lay 
the foundations for inter-organizational collaboration, which would leverage a 
combined willingness to pay where multiple organizations have neighboring assets that 
can benefit from the same risk reducing investment. 

5. Expand the stakeholder engagement process with more in-depth discussions and 
increase the population sample size to obtain a higher coverage of TFS core, dependent, 
and knowledgeable organizations. 

5.4 Value of Our Methods 

This subsection highlights the value of the methods employed by the study and how they can 
be carried further in future research. 

5.4.1 Flooding 
Our coastal and inland flooding simulation link closely with different time periods and climate 
scenarios; therefore, our simulation shows what the flooding is like under a specific period and 
the uncertainty across different climate scenarios. This is particularly applicable in planning that 
is often associated with specific time frames. 

Previous coastal flooding studies (Barnard et al., 2014; Biging, Radke, & Lee, 2012; Knowles, 
2009, 2010; Radke et al., 2014) typically produced and adopted flooding maps under different 
return-interval storms combined with incremental SLR (e.g. every 0.5 m) that did not closely 
associate with specific climate scenarios or infrastructure planning horizons, which are often 
decadal time periods. While this incremental approach provides the flexibility to adapt itself to 
various and emerging climate scenarios, it may not sufficiently show what the flooding is like 
under a specific scenario and planning horizon, as well as the uncertainties introduced by 
different scenarios and how the uncertainties change over time. Our simulation by time periods 
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and climate scenarios overcomes these issues in the incremental approach and better informs 
planning decisions towards a specific planning horizon.  

Our fine spatial resolution simulation provides detailed flooding exposure at the asset level and 
better informs stakeholders. In coastal flooding, the fine resolution model (5m/~16.4ft), 
including buildings and other ground objects, refines the results of the 50m (~164ft) resolution 
model and therefore provides more detail for stakeholders about flooding exposure of their 
local assets. In addition, the fine spatial resolution model may more accurately estimate 
flooding as it better captures the changes in topography and potential water flow pathways. 
Moreover, combined with our fine spatial resolution (5m/~16.4ft) simulation of inland water 
flows from watersheds based on future predictions of precipitation, our results provide a more 
complete assessment of asset exposure (from inland and coastal sources).  

5.4.2 Wildfire 
The Modeled Wildfire Threat Rating system we developed from Westerling's (forthcoming) 
wildland fire futures can be further used to assess the exposure of the California TFS asset 
containing regions to hazards and threats associated with large wildfires over the remainder of 
the twenty-first century. 

For TFS asset managers, the benefits of our fine spatial resolution (5m/~16.4ft) analysis of 
potential wildfire behavior and heat exposure are that this detailed analysis allows them to 
assess their own vulnerabilities and damage scenarios, develop targeted risk mitigation 
strategies, and prepare for wildfire events where it will be difficult for firefighting resources to 
control wildfire around the asset. The model precision also enables asset managers to use the 
model as a tool to prioritize wildfire risk mitigation investments. 

5.4.3 Stakeholder 
The stakeholder engagement process is a continuous and cyclical process. The study 
disseminates information from flood and wildfire models to interested and targeted stakeholder 
organizations. It also gathers knowledge of ownership and operators of TFS assets, as well as 
regulators and researchers of this intricate sector, which in turn feeds into the quality and 
usefulness of the models. Harnessing TFS stakeholders experience and knowledge was a crucial 
step in this project for three primary reasons: 

1. It helps identify the sector’s key assets, their modes of connection, and general flow of 
fuel commodities to create a geo-physical infrastructure network that corresponds to the 
TFS supply chain. To our knowledge, this is a first-time effort to conceptualize and 
topologically model the TFS in California.  

2. It is necessary to assess stakeholder reactions to our model’s results. This is a major step 
in the engagement process as it promotes: 

a. Communication and usefulness of the climate science applied in the methods of 
this project by adapting the modeling results to sector-specific or organization-
specific issues. 

b. A better understanding of the vulnerability of the sector by assessing the damage 
or disruption propensities of TFS assets when they intersect with flooding and 
wildfire hazardous projected areas. Exposure does not automatically translate to 
damage or disruption and the stakeholders responsible for managing the 
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different parts of the sector have the richest knowledge on how these projected 
hazards might impact their operations. 

c. Voicing some of the sector’s concerns in relation to flooding and wildfire threats 
in the near- and long-term. 

From a long-term perspective, it promotes awareness of flooding and wildfire threats to the 
industry and pools knowledge and experience from different TFS stakeholders that can induce 
co-solutions to issues that affect various levels of the industry and society. 
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APPENDIX A: Transportation Fuel Sector 

A.1 Introduction: Steps Toward Conceptualization 

The TFS conceptual model that this project develops has two functions: 1.) the identification of 
key oil and transportation assets that we overlay with hazard models to map the exposure of 
the sector to wildfire and flooding; and, 2.) the identification of key organizations in the sector 
to guarantee minimum representation of the major players during our stakeholder engagement 
process. 

There is no formal definition of what constitutes the TFS, much less what the TFS represents at 
the California state level. The main sources driving our conceptualization of the TFS include 
literature on the oil supply and distribution chain in general and California specific supply and 
distribution information from our engagement with sector owners, operators, and regulators 
(Chapter 4; Appendix E). 

Section A2 describes the process of building the geophysical TFS dataset which is then used for 
the exposure modeling. The dataset elements are based on the developed conceptual model, 
which is validated with input from field specialists. Then we identify Geographic Information 
System (GIS) datasets that contain the different key TFS assets represented in the conceptual 
model (Main Report Figure 2). 

Specifics on this complex supply and demand chain in California are not easily accessible 
through the literature or open source GIS information. Thus, we obtain California TFS data 
partially through open-source government GIS datasets and partially through the National 
Pipeline Mapping System (NPMS) restricted database. This project’s stakeholder engagement 
process is another primary source of information, allowing us to understand the crucial assets 
in the sector and their connections from experts in the field. 

Based on the geophysical TFS assets database, Section A3 describes how this information can 
then be used to simulate routing possibilities between critical TFS assets. This is done to show 
how the transport of a commodity could potentially be “re-routed” in case exposure to wildfire 
and/or flooding deems a certain asset in the TFS unusable. The example given focuses 
specifically on the effect of flood inundation in the San Francisco Bay Area. 

A.2 Data Sources and Discrepancies 

The various physical TFS assets can be grouped into two essential categories, links and nodes. 
Links represent the different modes of transporting product along the network, such as 
waterways, railways, pipelines and roads. While nodes represent specific locations where 
loading, shipment, storage or processing of fuel products occur (e.g. refineries and terminals).  

To our knowledge, there have never been any attempts to model the TFS in California as an 
interconnected geospatial network. Thus, we process some of the layers in our analysis to 
respond to the needs of this project. These alterations included grouping two or more different 
data sources, filtering data by specific attributes, assessing conflicting information coming from 
different data sources, and adding or removing features from data sources. We perform most of 
the alterations to oil infrastructure node datasets because the data collection methods 
undertaken by the different agency sources were fiscally driven and did not necessarily 
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translate to the necessities of spatial modeling. The confidential nature of many of these datasets 
also added to the difficulty of assessing the discrepancies between them. 

Another complication associated with building this dataset and compiling information from 
different sources stemmed from the loose definitions of key elements such as terminals and 
commodity types. For example, depending on the data source, the distinction between crude oil 
and petroleum products can be inconsistent. The volatility in ownership and operation of these 
key oil and transportation infrastructures, also increases the difficulty of maintaining database 
consistency. Despite these complications, each asset is explained in detail in the next section to 
provide maximum transparency in terms of what data sources are used to represent the real 
world interconnected TFS infrastructure for this study.    

A.2.1 Nodes: Assets Where Commodities are Processed, Transferred and/or 
Stored 
A.2.1.1 Refineries 

The refinery layer in our model is comprised of data from two official sources: the U.S. Energy 
Information Administration (EIA) and the California Energy Commission (CEC). We processed 
the data to combine these two datasets and to include new refinery locations that were not 
spatially described by either of these sources.  

The EIA creates an open source GIS database of individual U.S. oil refineries by state. They 
collect this information based on the Annual Refinery Report (Form EIA-80). We use their GIS 
shapefile dated January 2016 to identify location and ownership information for 18 operating 
and idle refineries in California (U.S. Energy Information Administration, 2017a). 

The CEC’s Transportation Data Unit maintains tables with information on California oil 
refineries, including location, capacity, historical ownership, status (operational, idle, or closed), 
and if the operational facilities produce California Air Resource Board (CARB) compliant 
gasoline or diesel (California Energy Commission, 2016a, 2017b).  All this information is 
collected under the Petroleum Industry Information Reporting Act (PIIRA). According to the 
CEC, there are a total of 19 operational refinery facilities in the state (out of which 14 produce 
CARB diesel and/or gasoline), and three idle facilities that produce fuel products. Table A 1 
shows a list of the different refinery facilities in California based on the EIA and CEC data we 
compile for our TFS database. In total, the database counts 18 geospatial refineries that 
participate in the fuel production in California, 15 are operable and three are idle. Idle 
infrastructure is included in our database because according to the EIA, these facilities are not in 
operation but under active repair and capable of being placed in operation within 30-90 days. 

The TFS database includes operational and idle refineries that produce either fuel commodities 
or intermediary refined crude oil (gasoil) that will be processed into fuel products by their 
counterpart refineries. Alon USA Energy owns and operates three refinery facilities but are 
sometimes considered as one unit because they work together to produce fuel (Alon USA, 
2017). As this project’s goal is to model wildfire and flooding exposure to TFS assets, their 
spatial characteristic as three separate units is taken into consideration in the final count. In 
addition, Phillips66 has four operational refineries that work as two units: The “Los Angeles 
Refineries” has a facility in Carson and in Wilmington, connected by a 5-mile pipeline system. 
The “San Francisco Refinery” has a facility in Rodeo and in Santa Maria, connected by a 200-
mile pipeline system (Philliips 66, 2018). 
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Table A 1. Refinery count for California TFS database 

California Refinery Facilities Original 
Sources 

Final 
count 

EIA CEC TFS 
1 ALON USA Energy, Inc., Bakersfield Refinery* x x x 
2 ALON USA Energy, Inc., Long Beach Refinery* x x 
3 ALON USA Energy, Inc., Paramount Refinery* x x x 
4 Chevron USA  Inc., El Segundo Refinery x x x 
5 Chevron USA Inc., Richmond Refinery x x x 
6 DeMenno/Kerdoon, Compton Refinery ** x x 
7 PBF Energy, Torrance Refinery x x x 
8 Greka Energy, Santa Maria Asphalt Refinery** x x 
9 Kern Oil & Refining Company, Bakersfield Refinery x x x 
10 Lunday Thagard Oil Company (World Oil), South 

Gate Refinery 
x x 

11 Phillips 66, Carson Refinery *** x 
12 Phillips 66, Rodeo Refinery x x x 
13 Phillips 66, Santa Maria Refinery *** x x 
14 Phillips 66, Wilmington Refinery x x x 
15 San Joaquin Refining Company, Bakersfield  x x x 
16 Shell Oil Products US, Martinez Refinery x x x 
17 Tesoro Refining & Marketing Co., Carson Refinery x x x 
18 Tesoro Refining & Marketing Co., Golden Eagle 

Martinez/Avon 
x x x 

19 Tesoro Refining & Marketing Co., Wilmington 
Refinery 

x x x 

20 Valero Energy, Benicia Refinery x x x 
21 Valero Energy, Wilmington Refinery x x 
22 Valero Asphalt Refinery, Wilmington ** x x 
23 Valero Asphalt Refinery, Benicia ** x x 

TOTAL 18 22 18 
*Included idle facilities 

** Excluded facilities because they don’t produce fuel products 

***Included facilities because they half-process crude oil for their counterparts to complete the refining process  

A.2.1.2 Terminals 

The TFS terminal data layer is also composed of a variety of sources such as the EIA, the CEC, 
the California State Lands Commission (SLC) and the Excise Summary Terminal Activity 
Reporting System (ExSTAR) from the Internal Revenue Service.1 A terminal facility may have 
various meanings or functionalities depending on the organization that works with them. They 
represent a very complex TFS layer because they are distinct functionally both by the mode 
involved as well as the commodities that are being transported (Rodrigue et al., 2017). In most 

1 According to the IRS website: “ExSTARS is a fuel reporting system developed with the cooperation of the IRS, U.S. 
Department of Transportation, States, and Motor Fuel Industry. The system details the movement of any liquid 
product into or out of an IRS approved terminal. Terminal Operators and Bulk Fuel Carriers are required to file 
monthly information reports. All receipts and disbursements of liquid products to and from an approved terminal 
are reportable. This databse is renewed yearly at: https://www.irs.gov/businesses/small‐businesses‐self‐

employed/terminal‐control‐number‐tcn‐terminal‐locations‐directory 
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cases, the term terminal is used for the description of key oil infrastructures without any clear 
definition of what it really stands for.  

The variation on the definition of a terminal is rooted in organization-specific regulation and 
operation codes, for example, some organizations consider terminals as any fuel storage facility 
with a distinctive minimum capacity threshold, others consider them more as a transshipment 
facility independently of the existence of storage infrastructures, some consider only 
transloading facilities where there are a number of modes of fuel/crude oil transport available, 
also known as multimodality. 

The differences are also related to the fact that a specific terminal for some organization are 
intermediary transshipment facilities while for others they represent end points of the supply 
chain.  

For this project, we define terminals as: any facility where liquid bulk transportation fuel commodity 
originates, terminates or is handled in the supply and distribution process. Terminals can be 
transloading points within the same modal system, but in the case of the TFS, this concerns 
mainly multimodal transshipment facilities. A common characteristic of terminals is that the 
process of transferring a commodity from one mode of transportation to another usually 
requires a storage component. Which is why in most cases the TFS terminals are also depicted 
with storage tanks. 

The EIA petroleum product terminal database used for this project defines Terminal facilities as 
a storage infrastructure with a “bulk shell storage capacity of 50 thousand barrels or more, 
and/or receives petroleum products by tanker, barge or pipeline” (U.S. Energy Information 
Administration, 2017a). This means they are mostly tracking very large petroleum products 
storage facilities, which does not include a series of terminals in California such as most of the 
Kinder Morgan, Inc. Terminals. According to the EIA (as of May 2016) there are 41 petroleum 
products bulk terminal facilities in California and these were included in our TFS terminal 
layer. Nevertheless, the EIA also keeps a Crude Oil Rail Terminal database with six facilities in 
California (as of November 2014), that were also added to the TFS Terminal database. In this 
case the terminals are referred as rail transloading facilities. Our stakeholder discussions show 
inconsistencies between the EIA (2014) rail crude oil terminals database and the operational 
status of commodities handled in these locations. The only crude oil rail terminal indicated to be 
in the San Francisco TFS hub area for example, has not been handling crude oil commodities in 
the last 10 years. It is, however, maintained in our database because it is used to unload other 
vital inputs to refineries such as ethanol and sulfuric acid. There are also 12 intermodal rail 
stations included in our TFS terminal database that are not directly transporting fuel 
commodities but TFS vital inputs (see CH 2.3.) instead. These 12 terminal points were obtained 
from Caltrans website (2013) and confirmed via our stakeholder discussion sessions. 

According to the CEC there are approximately 100 terminals in the state that are represented as 
points that “receive petroleum and petroleum products by tanker, barge, pipeline, rail or truck.” 
To keep completing our TFS Terminal layer we added 10 out of 12 California Kinder Morgan 
Terminals that were not included in the EIA database. These 10 are digitized based on 
information available on Kinder Morgan, Inc.’s website (Kinder Morgan, Inc., 2017). Another 
important source of information to our TFS layer comes from the IRS Excerpt; it contained 84 
terminals with ownership information with locations that were geocoded. 
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After cross-referencing these data sources, the TFS terminal layer summed to 111 terminal 
locations in California (Table A 2). There is still some improvement that can be made based on 
data sources from the SCL for the marine oil terminals and the California Department of 
Transportation (Caltrans) for the location of the rail intermodal freight terminals that handle 
biofuels. There is scarce information on bulk plants, which are terminals that are solely linked to 
roads and are used by trucking companies for the last stretch of the fuel delivery. 

Table A 2. Terminal database sources and terminology overlaps 

Source Terminal terminology Total in CA TFS Terminal layer 
EIA Petroleum Products Bulk 

Terminals 
41 41 

EIA Crude oil Rail Terminals 6 6 
Kinder Morgan Pipeline Terminals 12 10 
CEC Terminals ~100 N/A 
IRS Terminals 83 42 
SLC Marine Oil Terminal 34 N/A 
USDOT Port (transload fuel commodities) 213 N/A 
Caltrans/ CPUC Intermodal rail terminals (ethanol 

and other TFS vital inputs/outputs) 
? 12 

Trucking companies Bulk plants (road mode fuel 
terminals) 

? ? 

Total N/A 111

 A.2.1.3 Ports or Docks 

Ports are essential transloading facilities that are added as nodes connecting the maritime and 
land domains. These points can also be where some fuel commodities terminate, as they 
represent marine fuel distribution locations for vessels and regular fuel distribution location 
smaller watercrafts that are propeller-driven by gasoline or diesel for example.  This dataset is 
from the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics’ 
National Transportation Atlas Database (U.S. Deparment of Transportation, 2017). The point 
locations within the dataset also contain a rich attribute table with information on the 
commodities that are handled in the different ports. For this project, we altered the original 
dataset to select only the ports that have commodities describes as petroleum feedstock, 
petroleum product or biofuels.  This resulted in 213 ports in California that transload fuel 
commodities.  

There is still a conceptual and geospatial overlap between our port layer and our and our 
terminal layer when referred to marine facilities. For instance, the CSL accounts for only 34 
marine oil terminals in California, although there has not been found a clear definition on how 
their regulations frame marine terminals. For now, the assumption is that their regulatory 
framework is focused on defining engineering safety inspection and maintenance criteria for the 
prevention of oil spills. Therefore, they are most likely reporting to marine oil terminals with 
subsistent shell storage capacity and not including facilities where only transshipment is 
occurring. As for the DOT port database, they include all ports independently of the existence 
of storage facilities or the volume of commodities being handled, including smaller and/or 
intermittent fuel transshipment activities that are not of interest to other regulatory agencies. 

One of difficulties inherent to the marine terminal and port layer overlap is related to 
complexity of governance forms or port management structures. These relate to the ownership 
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and operational responsibilities shared between the Port Authority and the Port holdings. The 
management structures of ports fluctuate differently from facility to facility between the weight 
of the private and public sectors. Furthermore, there is clustering of various private 
organizations in the management structures in ports that adds to the difficulty unifying 
different governmental datasets.

 A.2.1.4 Airports 

There are two types of airport location data: California public use airports and military airports 
both are created by Caltrans. Airports represent the end nodes of the jet fuel commodity 
subsystem. According to the California Department of Transportation (2016a) there are 
approximately 200 commercial airport facilities in the state that integrate the National Plan of 
Integrated Airport Systems and thus are classified for functions that require fuel storage 
facilities within its premises. Other primary jet fuel end points in the state are the 23 military 
airports in the state (California Department of Transportation, 2012). 

A.2.1.5 Gas Stations 

The locations of gas stations in the state of California are acquired through Google Places 
Application Programming Interface (as of November 2017). The method used for each query is 
center location plus search radius. Duplicate locations were removed, and the rest is converted 
to GIS point layer for future analysis and representation purposes.

 A.2.1.6 Oil Fields and Oil Wells 

The oil fields and oil wells represent one of the origins of the crude oil in the TFS. One third of 
the oil processed in California is originated from California’s own production sources. Over 
90% of this production comes from oil fields in Bakersfield. Both the oil fields (polygon layer) 
and oil wells (point layer) come from the California Department of Conservation, Division of 
Oil, Gas, and Geothermal Resources (Division of Oil, Gas, and Geothermal Resources, 2017, 
2018). The oil fields where digitized from the map index pages contained within the three 
volumes of the following documents: California Oil & Gas Fields, Volume I - Central California 
(1998); Volume II - Southern, Central Coastal, Offshore California, (1992); Volume III - Northern 
California (1982). The original DOGGR oil well layer was filtered to obtain only wells that have 
an “active”, “idle” or “new” status, excluding wells that are buried, plugged, and/or 
abandoned from our models. The original database does not allow for distinction between wells 
that produce primarily oil, primarily gas, or a mixture of the two. 

A.2.2 Links: Key Transportation Assets Along, Over, or Through Which 
Commodities are Moved 
A.2.2.1 Roadways 

The road network dataset created for this project represents the functional road network in 
California. It was created using source data from ESRI Street Map Premium for ArcGIS. It 
includes updated road restriction attributes obtained from California Department of 
Transportation (2016b), related to transporting fuel products, transporting hazardous materials, 
and trucking in general, allowing for accurate modeling of how fuel delivery trucks travel along 
the road network. 

A.2.2.2 Railways 

The railway polyline layer was acquired through ArcGIS Business Analyst (2016). We clipped 
the dataset to the state boundary to get all the railway line data within California. In addition, 
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the processed dataset was later filtered by organization name (Union Pacific, Southern Pacific 
and Burlington Northern Santa Fe or BNSF) to get the freight railways that transport crude oil 
and ethanol. 

A.2.2.3 Pipelines 

The pipeline data layer was acquired through the National Pipeline Mapping System (Pipeline 
and Hazardous Materials Saftey Administration, 2017) which is a dataset containing locations of 
and information about gas transmission and hazardous liquid pipelines and Liquefied Natural 
Gas (LNG) plants which are under the jurisdiction of the Pipeline and Hazardous Materials 
Safety Administration (PHMSA). To fit the scope of this research, this dataset was first filtered 
by selecting pipelines that only carry liquid fuels such as crude oil or jet fuel. Building on this 
selection, pipelines that are in service or inactive/idle status were filtered and added to the 
network model. 

A.2.2.4 Waterways 

The Navigable Waterways dataset is as of March 29, 2017, and is part of the U.S. Department of 
Transportation (USDOT)/Bureau of Transportation Statistics’ (BTS's) National Transportation 
Atlas Database (NTAD). Since this is a comprehensive dataset, which covers the nation’s 
navigable waterways, it was clipped to the state boundary to select out waterways within 
California. 

A.2.3 Asset Area/ Polygon Information 
The nature of the high-resolution hazard models of this project demands a richer spatial 
information for the key TFS assets. This means that the point data information needs to be 
transformed into polygon information. By having the boundaries for our TFS nodes and links 
the quality of the exposure assessment can be increased. 

For the linkage assets, we achieve this by applying a buffer for the different right of ways 
amplitudes, depending on the transport infrastructure the right of ways varies from 15.24 to 
45.72 m (50 to 150 ft.). For the node assets, the transformation process is a bit more complicated 
as the boundaries of these assets would correspond to the tax parcels in which they belong to. 
There is less homogeneity to what that translates to in terms of point to polygon 
transformations. The refineries’ boundaries were created based on approximation from aerial 
images and open street maps information. We extract the terminal boundaries from the 
intersection of our point data with the most recent tax parcel information available for each 
county. The boundary information for both terminals and refineries present a margin of error 
that is derived from digitized approximation and variation of management models for different 
facilities.  It is common to find a single tax parcel boundary that holds multiple TFS assets of 
different operators.  

A.2.4 Possibilities for Enriching the TFS Layers 
Based on our stakeholder engagement process and literature review the overview of critical 
assets of the system could be enriched by the addition of some TFS layers as key assets: 

 Pipeline pumping and valve stations or any other aboveground appurtenances; 
 Control rooms and other buildings hosting crucial system control software such as 

Supervisory control and data acquisition (SCADA); and 
 Offshore/subsea pipeline connections to mainland infrastructure. 
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These layers are not included in this study because of time constraints to find and process the 
specific data, or because they are not open-source. 

A.2.5 Summary of TFS layers 
The above descriptions of the TFS asset data are summarized in Table A 3. They are organized 
according to how we have named them for modeling purposes. We give the type of data, the 
source of the data and an URL of the source (if applicable) with the date of the data. 
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Table A 3. Summary table with TFS layers and data sources 

Layer name 
Data 
type Source 

Asset numbers 
URL Date 

Airports_Caltrans_2012_2016 point Caltrans 

213 (count) h_x0001_://www.dot.ca.gov/hq/tsip/gis/data 
library/Metadata/Airp_military.html/ 
_x0001__x0001_ 2012, 2016 

Gas_Stations_GOOGLE_2017 point Google 13,497 (count) N/A 2017 

Oil_fields_DOGGR_1998 polygon 

California Department of 
Conservation, Division of Oil, 
Gas, and Geothermal Resources 

3,570 km2  

(1,378 mi²) http://www.conservation.ca.gov/dog/pubs_s 
tats/Pages/technical_reports.aspx, 1982,1992,1998 

Oil_wells_DOGGR_Mar2018 point 

California Department of 
Conservation, Division of Oil, 
Gas, and Geothermal Resources 

103,569 (count) 
http://www.conservation.ca.gov/dog/maps/P 
ages/GISMapping2.aspx 2018 

Pipelines_NPMS_2017 polyline PHMSA 
11,819 km 
(7344 mi) Restricted 2017 

Ports_Docks_CA_USDOT_2017 point USDOT 

213 (count) http://osav-
usdot.opendata.arcgis.com/datasets?keywo 
rd=Water 2017 

Railways_BA_2016 polyline ESRI 
7,446 km 
(4,627 mi) Business Analyst - Muir 2016 

Refineries_2017 point EIA, CEC, Refineries websites 18 (count) multisource 2016-2017 

Refineries_parcels polygon 
Refineries_2017 layer and 
OpenStreet Map 

5,068 ha 
(12,523 acres) multisource 2017 

Roadways_Caltrans_2016 polyline Caltrans 
24,087 km 
(14,966 mi) 

http://www.dot.ca.gov/hq/tsip/gis/datalibrary 
/Metadata/Trknet.html 2016 

Terminals_2017 point 

EIA 2016, EIA 2014, Excise 
Summary Terminal Activity 
Reporting System 2016-2017; 
Kinder Morgan website, Caltrans 
2013 

111 (count) 

multisource 2013-2017 

Terminals_parcels polygpn 
Tax Parcels from 19 counties 
with terminals 

11,519 ha 
(28,264 acres) multisource 2017 

Waterways_DOT_2017 polyline USDOT 

30,960 km 
(19,231 mi) 

http://osav-
usdot.opendata.arcgis.com/datasets?keywo 
rd=Water 2017 
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A.3 TFS Network Model and Flooding Exposure in the San Francisco 
Bay Area 

This section is a description of 1) the purpose of creating a network model for the TFS; 2) the 
process to create one interconnected, multi-modal TFS network using data layers collected for 
the purpose of this research; 3) the calculation of network centrality based on graph theory 
metrics and 4) an example of routing simulations between critical TFS assets across various 
flood inundation scenarios. The network model presented below is an exercise focused on the 
TFS located in the San Francisco Bay Area as it has high concentration of TFS assets and high 
percentage of average flood inundation across all climate scenarios. 

A.3.1 Introduction 
There is increasing recognition of the need to assess consequences and identify priority risk- 
based solutions to increase the resilience of California’s Transportation Fuel Sector. This 
infrastructure sector is highly interconnected as a network both functionally and physically and 
has been under increasing stress from a number of factors, including aging and deteriorating 
systems and assets located in areas with growing population density and/or collocated with 
other infrastructure assets. In the context of global and regional climate change, further 
concerns include the increasing potential for impacts to infrastructure from extreme weather 
events such as flooding and wildfire. Sea-level rise (SLR), inland flooding, drought, and fire 
storms are expected to exacerbate these concerns over time and are of particular importance for 
both coastal and inland locations which may be densely populated, and which may house 
critical assets. 
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Figure A 1. Flood inundation extent overlapped on TFS assets in the San Francisco Bay area 

A.3.1.1 Goal 

The purpose of creating a network model for the Transportation Fuel Sector infrastructure in 
the San Francisco Bay Area is to assess the vulnerability of the TFS as a whole to potential 
extreme weather hazards. Utilizing GIS, the various physical assets that comprise the 
transportation fuel supply and distribution chain can be mapped onto the landscape, and 
specific locations can be identified where these assets may coincide with potential extreme 
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weather hazards. While this initial step of mapping asset locations helps identify which assets 
may be directly vulnerable to weather events, it does not allow for measurement of asset 
network criticality or identification of the indirect effects a weather event may have on the flow 
between two nodes within the TFS. Since the TFS is highly interconnected both functionally and 
physically, a data model capable of representing this connectivity is required in order to deeply 
analyze the impacts of potential extreme weather events such as flooding and wildfire on the 
sector. Geospatial network modeling facilitates this type of analysis, providing the capacity to 
identify critical assets within the network, test multiple scenarios of disruptions and measure 
their outcomes. This will help us better understand the sector from a holistic point of view. 

A.3.1.2 Literature Review 

Transportation network modeling under disruptions caused by extreme weather events is a 
growing field of study. The increase in natural disasters in the last few decades and the strong 
interconnected nature of transportation infrastructure networks have increased the need for 
transportation network modeling and resiliency studies. 

One of the main research fields in transportation resiliency analysis focuses on the resiliency of 
multimodal networks. Witnessing the adverse impact of abrupt interruptions on the 
transportation network and their impact on the supply chain, an increasing number of studies 
have been devoted to addressing disruptions and to improving the supply chain’s robustness 
and resilience (Christopher & Lee, 2004; Ponomarov & Holcomb, 2009; Trkman & McCormack, 
2009) In terms of overall framework, Rosenkrantz, Goel, Ravi, & Gangolly (2005) proposed the 
concept of a “Structure-Based Resilience Matrix” to quantify the resilience of nodes and links in 
networks. In addition, Ash & Newth (2007) recommend an evolutionary algorithm to optimize 
network design for better resilience. When it comes to more specific strategies and 
methodologies, there have been various researchers who published specific papers in 
understanding network disruptions and resiliency improvement such as agile distribution 
(Collin & Lorenzin, 2006), quick responsiveness (Klibi, Martel, & Guitouni, 2010), flexibility or 
redundancy (Naim, Potter, Mason, & Bateman, 2006; Yu, Tang, & Niederhoff, 2011), 
collaboration, operational integration, and supply chain re-engineering. 

A.3.2 TFS Network Modeling Process 
A.3.2.1 Definition of a Network 

Networks can be represented and understood in various ways. By nature, networks can be 
defined using graphs, which are mathematical structures used to model pairwise relationships 
between different elements. They consist of a set of nodes (or vertices) V and corresponding 
links (or edges) E that connect pairs of vertices. A graph G = (V, E) may be defined either 
undirected or directed with respect to how the edges connect one vertex to another. In general, 
graphs can be utilized to represent and analyze many types of relationships and processes in 
physical, biological, social and information systems. Emphasizing their application to real-
world systems, the term network is sometimes defined to mean a graph in which attributes (e.g. 
names, operators, ownerships etc.) are associated with the nodes and/or edges. 

A.3.2.2 TFS as a Network  

Continuing from the network model concept described earlier, the various physical TFS assets 
can be grouped into two essential categories, links and nodes (Figure A 2). Links represent the 
different modes of transporting product along the network, such as maritime, railway, pipelines 
and roads (Figure A 3). While nodes represent specific locations where fuel products can 
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transfer from one infrastructure type to another, such as refineries, terminals, and other facilities 
that store and transfer fuel products (Figure A 3). Interdependency among these infrastructure 
types is inherent in how the TFS functions. For example, crude oil may arrive at a maritime 
terminal, be transported to a refinery by rail, then after refining, loaded into trucks, which then 
utilize the road network for delivery to retail fuel stations. It is clear that disruptions in one part 
of the TFS supply and demand chain can affect operations in other locations indirectly. 
Therefore, it is necessary to analyze the TFS as an interconnected network/graph to help us 
better understand the sector from a holistic point of view. 

Figure A 2. Graph representation of TFS infrastructure network 
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Figure A 3. Illustration of data collected for different types of TFS assets in the San Francisco Bay
Area 
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A.3.3 TFS Network Flooding Exposure Analysis 

The analysis framework for this network model is illustrated in the flow diagram below and can 
be further divided into three steps: the first step is to collect data from public and private 
sources for all types of TFS assets within the state in order to build them into a comprehensive 
multimodal network. The process of data collection has been discussed in the first part of 
Appendix A. Building on this, all types of node and link data are integrated together into a 
comprehensive multimodal network using NetworkX, a Python language software package for 
the creation, manipulation, and study of the structure, dynamics, and function of complex 
networks (Hagberg et al., 2008). Knowledge about the connectivity across different types of 
assets (see Chapter 2) was utilized in the creation of this multimodal network. The second step 
is to calculate centrality using metrics from Graph Theory for all types of nodes within the 
network to identify critical TFS assets in terms of topological connectivity. These nodes are later 
classified into five different classes based on quantile classification of their centralities. The 
calculation results are integrated with findings from the stakeholder discussions. From this we 
identify potential critical origin and destination nodes to do network routing simulations under 
different hazard scenarios in the final step. 

The first 48 out of 120 coastal flooding scenarios, which cover all near-term climate scenarios 
from 2000 to 2040, are considered in the network model. In this process, 48 different networks 
are created respectively based on 48 coastal flooding conditions. Routing simulations between 2 
selected origin-destination examples from step two are conducted to demonstrate the impact of 
coastal flooding on TFS infrastructure network. 
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Figure A 4. Diagram of method conceptual framework 

A.3.3.1 Centrality Calculation 

In graph theory and network analysis, centrality describes how important a node is within a 
given network. Different types of centrality metrics characterize the importance of a node based 
on different criteria. In this section, we use five centrality metrics and apply them on the TFS 
network. Below is a detailed description of those five centrality metrics. 

A.3.3.2 Degree Centrality 

In the network model, degree centrality describes the number of links a given node is connected 
to. Nodes with higher degree centrality suggest that they are connected with many other nodes 
through links. In the case of the TFS network, nodes such as refineries and terminals have 
higher degree centrality in that they are usually connected to multiple types of links like 
pipelines, railways, waterways etc. However, degree centrality alone cannot fully describe how 
critical a node is in terms of topological connectivity, other types of centrality such as in-degree, 
out-degree, betweenness and closeness centrality can contribute to a better understanding. 
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Figure A 5. Map of degree centrality in San Francisco Bay area 

A.3.3.3 In-degree Centrality 

In-degree centrality of a node measures how many links is going from other nodes to this node. 
Since all links within the TFS network have directions, i.e. each link connects a ‘from node’ and 
a ‘to node’, we are able to calculate how many links does a node connect to that treats this node 
as a ‘to node’ instead of a ‘from node’. In-degree centrality is a metric that helps identify critical 
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destination nodes within the network model. The result is classified into five different classes 
using quantile classification and nodes with high in-degree centrality are selected as potential 
destination nodes for routing simulation. 

Figure A 6. Map of in-degree centrality in San Francisco Bay area 
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A.3.3.4 Out-degree Centrality 

Similar to in-degree centrality, out-degree centrality measures how many links is going from the 
node to other nodes. For a particular node within the network, we measure how many times 
does a node act as a source node, i.e. how many links does a node connect to that treats this 
node as a ‘from node’ instead of a ‘to node’. This metric is helpful in understanding critical 
origins within the network for later routing simulations. Quantile classification is also applied 
to the results of this analysis and the top tier nodes with high out-degree centrality are filtered 
out as potential origin nodes for routing simulation. 
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Figure A 7. Map of out-degree centrality in San Francisco Bay area 

A.3.3.5 Betweenness Centrality 

This metric measure how many times a node acts as a ‘bridge’ between the shortest path from 
one node to another based on the network connectivity. To calculate betweenness centrality, we 
first start with a fully connected network and generate shortest distance routes between all 
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possible pairs of nodes. We store the names of all intermediate nodes and count how many 
times a particular node appears. If a node appears many times, then this means that this node is 
on many shortest distance routes. If this node is removed out of the network (similar to an asset 
being disrupted due to coastal flooding), then many shortest distance routes within the network 
will need to be re-routed which might lead to increased cost in time and resource. The analysis 
results show that a majority of refineries and terminals near the Richmond area have high 
betweenness centrality in the San Francisco Bay Area. Therefore, in the last step, nodes with 
high betweenness centrality are chosen as potential origins and destinations for routing 
simulations under 48 flooding scenarios. 

Figure A 8. Map of betweenness centrality in San Francisco Bay area 
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A.3.3.6 Closeness Centrality 

Closeness centrality measures the sum of distances from one node to all other nodes. This 
metric reflects how far it takes to spread resources within the network and the node’s capacity 
to influence all other nodes in the network. However, the results from this calculation show that 
many gas stations in Sonoma County have high closeness centrality, which contradicts our 
expectations because these nodes are situated at the ‘edge’ of the network and therefore are 
expected to have small closeness centrality. This contradiction shows that graph theory metrics 
alone cannot fully explain the criticality of nodes within the network. This is why we 
incorporated domain knowledge and information gathered from stakeholder engagement in the 
final step to point to where the critical origins and destinations within the TFS network are 
located. 

Figure A 9. Map of closeness centrality in San Francisco Bay area 
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A.3.3.7 Routing Simulation 

The final step is to understand the impact of coastal flooding on the TFS by running routing 
simulations within the network. As is mentioned previously, only 48 scenarios are being 
considered in this analysis. A total of 48 different networks are created by overlaying different 
flood rasters on top of nodes and links within the network. Nodes that lie within a raster cell (50 
by 50 m; 164 by 164 ft) with a value of more than 1 (water depth in meters) are removed from 
the network. The six subplots below are histograms of the percentage inundation for different 
types of nodes over 48 scenarios. Results show that on average 62% of the docks are being 
inundated across all 48 scenarios, 50% of the gas stations are subject to coastal flood damage. In 
addition, based on summary statistics, it can be concluded that over 48 scenarios (2000-2040), 
the impact of coastal flooding on the TFS network in terms of average percentage asset damage 
has little variation.  

Figure A 10. Diagrams of percentage inundation of nodes by type 

One pair of nodes is illustrated here as an example to show the impact of coastal flooding on the 
petroleum fuel flow from the Chevron Martinez terminal to the Phillips 66 Richmond terminal. 
On the right is the “new” potential route due to coastal flooding which has mainly flooded the 
last leg of the route near Richmond. The model indicates that an alternative route could be used 
to deliver petroleum product first to a marine terminal and then to the destination via an extra 
marine route. This would mean that, in the future, there could be extra desire to use an already 
busy marine terminal for oil product transfer. In addition, it would mean that waterways that 
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are not now being utilized will need to be utilized in future emergency scenarios to successfully 
complete the oil product transport to the Phillips 66 terminal. 

When we run routing simulations between these two nodes across 48 scenarios (2000 - 2040), 
the results show that over 40 runs generated the same alternative route (in red). This suggests 
that although the flooding scenarios are different, the impact on the flow between these nodes 
can be very similar. This also coincides with the summary statistics of average inundation 
percentage of all types of nodes across 48 scenarios. 

Figure A 11. Routing simulation before-after illustrations 
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APPENDIX B: SELECTION OF SCENARIOS, SITES, 
AND ANALYSIS PERIODS 

B.1 Deriving Estimates of Future Conditions 

We obtained various climate and hazard projections from the Fourth Assessment to estimate the 
exposure and vulnerability of TFS to extreme weather events into the future. These climate and 
hazard projections were derived based on a range of Representative Concentration Pathways 
(RCPs), General Circulation Models (GCMs), probabilistic sea level rise (SLR) projections, and 
changes in Land Use and Land Cover (LULC). The combination of these components formed 
the scenarios used in this study. This section is intended to explain the components forming the 
scenarios in this study. 

B.1.1 Climate Projections Based on RCPs and GCMs 
This study’s climate projections, such as precipitation and temperature, are produced globally 
through RCPs and GCMs. RCPs are scenarios of future climate, which provide inputs for 
climate models (e.g. GCMs) that generate a range of weather variables such as precipitation and 
temperature. While there exist four RCPs and many GCMs, the Fourth Assessment 
recommends research groups use data from four priority GCMs (i.e. CanESM2, CNRM-CM5, 
HadGEM2, and MIROC5). 

RCPs, or representative concentration pathways, are spatially and temporally explicit 
representations of a broad range of possible future climate scenarios (Bjørnæs, 2013; Moss et al., 
2010). The RCPs are the newest set of scenarios used in the Intergovernmental Panel on Climate 
Change (IPCC) 5th Assessment (Moss et al., 2008), replacing the scenarios in previous IPCC 
assessments. Scenarios are sound descriptions about how future will be in terms of 
socioeconomy, technology, greenhouse gases (GHG) emissions, and climate. Scenarios are not 
to predict the exact future, but to show a wide range of possible futures (Moss et al., 2010). Four 
types of RCPs, namely RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 (Table B 1) were selected 
through several expert meetings to represent scenarios developed after the IPCC 4th 
Assessment (Moss et al., 2010). These four RCPs together cover a broad spectrum of GHG 
concentration and radiative forcing (i.e. additional energy taken up by the Earth due to the 
greenhouse effect) affecting global mean temperature (Bjørnæs, 2013) reported by the scenarios 
(Figure B 1). For every RCP, a modeling group further developed related data products that 
were spatially and temporally explicit, providing information such as emission and 
concentration of greenhouse gases, air pollution, and LULC change (Vuuren et al., 2011). These 
data products are used as inputs for climate modeling. 

A given RCP could be achieved through different socioeconomic and policy interventions 
(Bjørnæs, 2013; Moss et al., 2010), as different interventions could lead to the same radiative 
forcing characterizing a RCP. Here we list some assumptions underlying each RCP to show 
how its future will be like. RCP 8.5 is with high GHG emissions compared to the scenario 
literature. This RCP generally assumes high population, slow income growth, along with 
modest improvements in technological change and energy intensity, resulting in high energy 
demand and GHG emissions under no climate change policies (Riahi et al., 2011). RCP 6 is a 
climate-policy intervention scenario with intermediate emissions. This RCP could be realized 
with heavy reliance on fossil fuels, intermediate energy intensity, increased use of croplands 
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and decreased use of grasslands, stable methane emissions (Bjørnæs, 2013; Masui et al., 2011). 
RCP 4.5 requires energy systems to shift to electricity and lower emission technologies, and to 
implement carbon capture and geological storage (Thomson et al., 2011). This RCP also assumes 
strong reforestation, decreases in croplands and grasslands, and strict climate policies (Bjørnæs, 
2013). RCP 2.6 is at the low end of GHG emissions reported in the scenario literature. This RCP 
represents the scenarios aiming to limit the increase of global mean temperature to 2°C. 
Achieving such goal requires substantial changes in energy use and emissions of non-CO2 gases 
(Vuuren et al., 2011). 

Table B 1. The four RCPs (adapted from Moss et al., 2008) 

Name Radiative 
forcing 

Concentration1 Pathway 

RCP 8.5 >8.5Wm-2 in 2100 > ~1370 CO2-eq in 
2100 

Rising 

RCP 6.0 ~6Wm-2 at 
stabilization after 
2100 

~850 CO2-eq 

(at stabilization after 
2100) 

Stabilization 
without 

overshoot 

RCP 4.5 ~4.5Wm-2 at 
stabilization after 
2100 

~650 CO2-eq 

(at stabilization after 
2100) 

Stabilization 
without 

overshoot 

RCP 2.6 Peak at ~3Wm-2 

before 2100 and 
then declines 

peak at ~490 CO2-eq 
before 

2100 and then 
decline 

Peak and 
decline 

1 Approximate CO2 equivalent (CO2-eq) concentrations, which is a simple transformation from radiative forcing. 
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Figure B 1. Representative concentration pathways (Source Moss et al., 2010). a, changes in 
radiative forcing relative to pre-industrial conditions. Bold colored lines show the four RCPs; thin lines 

show individual scenarios represented by their respective RCPs. b, energy and industry CO2 emissions. 
The range of emissions in scenarios after IPCC 4th Assessment is shown for the maximum and minimum 

(thick dashed curve) and 10th to 90th percentile (shaded area). Blue shaded area is for mitigation 
scenarios; grey shaded area is for reference scenarios; pink area is the overlap between mitigation and 
reference scenarios. MESSAGE 8.5: the model for RCP 8.5 data products, AIM 6.0: the model for RCP 

6.0 data products, GCAM: the model for RCP 4.5 products, IMAGE 2.6: the model for RCP 2.6 products. 

Four GCMs, namely, CanESM2, CNRM-CM5, HadGEM2, and MIROC5 were recommended by 
the Fourth Assessment as priority models to obtain climate projections under RCP 4.5 and 8.5. 
The four priority GCMs were selected from the GMIP5 archive (i.e. Climate Model 
Intercomparison Projection, version 5, a collection of most recent GCMs), through a three-step 
screening process developed by (DWR & CCTAG, 2015) and consensus reached by the Climate 
Action Team Research Working Group (i.e. the steering committee for the Fourth Assessment). 
The three-step screening process evaluates a GCM’s historical performance at the global scale, 
across the Southwestern United States, and for California's water resource planning (DWR & 
CCTAG, 2015; D. Pierce et al., 2016). The 32 CMIP5 GCMs providing daily data were selected as 
the input of this screening process and were reduced to 10 Californian GCMs after the 
screening. However, the 10 GCMs could still be too much in some cases. Therefore Pierce et al., 
(2016) applied an additional filter to reduce the 10 GCMs to 4 GCMs representing a ‘warm/dry’ 
scenario, a ‘average’ scenario, a ‘cool/wet’ scenario, and a ‘complementary’ scenario (i.e. be 
most unlike the other three scenarios). This filter used seven metrics to score the GCMs in terms 
of the climate patterns they generated. The resulting ‘warm/dry’ GCM tends to simulate higher 
temperature and less precipitation, which is contrary to the ‘cool/wet’ GCM. The ‘average’ 
GCM tends to give the average climate estimations among the 10 GCMs. The ‘complementary’ 
GCM tends to be most unlike the previous three GCMs regarding the seven metrics. Therefore, 
these four GCMs can have a full spectrum of the 10 Californian model’s results. Based on this 
filtering and consultation with other experts and government agencies, the Fourth Assessment 
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recommend the following four GCMs as its priorities (Table B 2). These GCMs provide daily 
estimates such as temperature and precipitation. 

Table B 2. The four priority GCMs recommended by the Fourth Assessment 

Climate pattern Description GCM 

Warm/dry Higher temperature and 
less precipitation 

HadGEM2-ES 

Cool/wet Lower temperature and 
more precipitation 

CNRM-CM5 

Average Close to average estimates 
of the 10 Californian GCMs 

CanESM2 

Complementary Most different from the 
above three GCMs in 
estimated climate pattern 

MIROC5 

B.1.2 Bias Correction and Downscaling GCM Projections 
Pierce et al., (2016) applied bias correction and downscaling techniques to the GCMs so that the 
results could be applied to a California-wide analysis. GCMs are meant for global scale 
estimates of climate, which limits their capabilities to regional level (e.g. California) studies 
(Pierce et al., 2016). First, GCMs may have bias, such as continuous over/under estimations, in 
their results for certain geographies around the globe. Second, GCMs’ spatial resolutions are too 
coarse for regional analysis. Pierce et al., (2016) accounted for the bias issue using a technique 
called bias correction. Next, they implemented a downscaling procedure, Localize Constructed 
Analogs (LOCA), to refine bias-corrected GCM results to a 1/16th degree (about 6.2 km) spatial 
resolution. Their resulting dataset, referred as LOCA in this document, provides a limited set of 
weather variables such as precipitation, temperature, wind speed, and humidity. Since these 
variables are limited to meet the needs of some studies, Pierce et al., (2016) used these variables 
to drive a Variable Infiltration Capacity (VIC) land surface model to obtain additional variables 
including as rain, runoff, snow cover, soil moisture, etc. 

B.1.3 Hourly Sea Level Projections 
We obtained hourly sea level projections from Cayan et al. (2016) to model coastal flooding 
induced by sea level rise and storm surge. The projections are made at nine locations with 
reliably continuous coastal tide gauge data since before 1984, and provide hourly sea levels that 
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combinations of long-term SLR and short-term sea level fluctuations under RCP 4.5 and 8.5 and 
different GCMs (Cayan et al., 2016). 

The long-term SLR is projected probabilistically for both RCP 4.5 and 8.5 by Cayan et al. (2016) 
based on a method of Kopp et al. (2014), with additional SLR contributions from loss of 
Antarctica ice sheets modeled by DeConto & Pollard (2016). The Kopp et al. (2014) method 
calculates SLR probabilities using a Latin hyper-cube to sample time-dependent probability 
distribution of five primary global SLR components including land surface water contributions, 
contributions from glaciers and ice caps, oceanographic process, and contributions from 
Greenland ice sheets. Under RCP 8.5, contributions from Antarctica ice sheets projected by 
DeConto & Pollard (2016) were included as an additional component. After the sampling, 50th 
percentile, 95th percentile, and 99.9th percentile SLR values under RCP 4.5 and 8.5 respectively 
were incorporated in the final hourly sea level projections. The short-term sea level fluctuations 
are resulted from astronomical tides, storm surges, and El Nino Southern Oscillation events 
(ENSO) (Cayan et al., 2016). Eight selected GCMs, including the four priority models in the 
Fourth Assessment, were used to provide data for estimating these short-term fluctuations. The 
short-term fluctuations were then combined with the long-term SLR to obtain the hourly sea 
level projections. 

B.1.4 Land Use and Land Cover Projections 
Wildfire futures used in assessments of near and longer wildfire threats posed to TFS asset 
containing regions included estimates of total area vegetated during each time step evaluated 
(Westerling, forthcoming). Projections of the vegetated fraction of each area modeled for the 4th 
Assessment were derived from empirical data, demographic trends, and the outputs of Land 
Use and Carbon Scenario Simulator (LUCAS) model runs that produced estimates that 
described how land use and land cover (LULC) conditions were expected to change throughout 
California and Nevada for the 2001-2100 period (Sleeter et al., 2017). To account for the 
stochastic nature of land use change in response to population growth over time, 10 Monte 
Carlo replications of each population growth scenario selected for simulation were run. The 
LUCAS model runs produced outputs that were based on NLCD land-use/land cover thematic 
classifications and changes that were likely to occur over time due to these changes (Figure B 2). 
The amounts and types of land cover classification changes expected to take place over the one-
hundred-year prediction period were based on historical trends in the rates at which 
agricultural lands in California have expanded and contracted, the rates of forest harvest have 
occurred in the state, as well as the process of urbanization that tended to increase the 
developed fractions of areas modeled.  
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Figure B 2. Example of LUCAS model land use land cover state change pathways and the 
statewide totals for the NLCD coverage types during the 2001 period in which the models were 

initiated. Figure reproduced from Sleeter et al. (2017). 

Expected rates of urbanization and subsequent future changes in land cover classifications were 
based on county-scale population growth projections produced by the Demographic Research 
Unit of the California Department of Finance. The population projections are produced using a 
variation of the cohort component projection method which incorporated random elements that 
caused birth and death rates to vary over time, in a probabilistic fashion (Sharygin, 2017). 
Factors used to determine net migration rates for each cohort had county-level resolutions and 
the projections of total population changes were based on historical data collected during a 
period that represented a typical post-demographic-transition society (Lesthaeghe, 2014; 
Sharygin, 2017). High, central (also referred to as business-as-usual), and low projected 
demographic change rates were included in the modeling of land cover changes in California 
and estimates of wildfire futures in the State. In the high growth scenarios, current (2015) birth 
rates were expected to remain unchanged until the end of the century and life expectancies 
were predicted to increase throughout most of the state by seven years. Net migration under 
high population growth scenarios was expected to increase 30% by the end of the period 
analyzed. Central and low scenarios assumed that total fertility rates declined over the same 
period while net migration rates decreased by 30% and life expectancy remained either 
unchanged or increased to a lesser degree than was predicted to occur under the high 
population growth scenarios (Sleeter et al., 2017). 

B.1.5 Defining Scenarios to Model 
Since our modeled hazard exposure used the climate, sea level, and LULC projections listed 
from section B.1.2 to B.1.4, our modeled scenarios were derived based on how these projections 
were generated. Coastal flooding used the hourly sea level projections by Cayan et al. (2016), 
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and contained 24 scenarios that were combinations of the two RCPs, four GCMs, and three 
probabilistic SLR estimates. Inland flooding was driven by rainfall projections from the LOCA-
VIC outputs (Pierce et al., 2016), therefore contained eight scenarios produced by the two RCPs 
and four GCMs. Statewide wildfire exposure by (Westerling, forthcoming) utilized both GCM 
derived climate projections (Pierce et al., 2016) and LULC projections (Sleeter et al., 2017), 
therefore contained 240 scenarios by the two RCPs, four GCPs, and three LULC scenarios (each 
with 10 stochastic variations). The flooding and wildfire scenarios, and how they were 
generated, are illustrated in Figure B 3. 

(a) 

(b) 

2 Emissions Scenarios 4 GCMs 240 FutureScenarios 
30 Population Growth 

Trajectories 
(c) 

RCP 4.5 
(Medium) 

RCP 8.5 
(High) 

Warm/Dry 
(HadGEM2‐ES) 

Cool/Wet 
(CNRM‐CM5) 

Average 
(CanESM2) 

Complement 
(MIROC5) 

High 
(10 Stochastic Variations) 

Central 
(10 Stochastic Variations) 

Low 
(10 Stochastic Variations) 

Scenario #1 

Scenario #240 

Scenario #238 

Scenario #239 

Scenario #2 

… 

Figure B 3. Scenarios implemented by this study. (a) the 24 coastal flooding scenarios, (b) the eight 
inland flooding scenarios, (c) the 240 wildfire scenarios. 

B.2 Selecting Periods of Analysis 

We analyzed flooding and wildfire exposure every 20 years between 2000 and 2100 to fit with 
different planning and investment circles of TFS stakeholders. All the projections used in our 
study (i.e. hourly sea level, rainfall intensity, temperature, wildfire exposure) provide hourly to 
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monthly data from present time to 2100, providing us with the flexibility to select different time 
periods of analysis to match with TFS stakeholder’s needs and to address the longer-term 
hazard exposure. Given such flexibility, we arbitrarily defined 20-year intervals between 2000 
and 2100 (i.e. 2000-2020, 2020-2040, 2040-2060, 2060-2080, 2080-2100) as our periods of analysis 
for flooding and wildfire models. The 2020-2040 period was recognized by many stakeholders 
as their near term which drew the most interest. While only few stakeholders involved in 
discussions were looking beyond 2040, we still included the periods after 2040 to address the 
long-term exposure to flooding and wildfire. 

In addition, near-term assessments of wildfire were also of greater interest to stakeholders than 
ones further away from the present time. This drove our decision to focus on the current period 
conditions when modeling wildfire behavior at local scales with fine spatial resolution. While 
we incorporated long-term trends in wildfire by Westerling (forthcoming) into this study, these 
trends far out from the present introduced a substantial amount of uncertainty (e.g. changes in 
fuel complexes and abundances over time) and thus the decision was made to only model 
potential wildfire behavior using present-day fuel conditions at local scales. 

B.3 Selecting Events to Model at Local Scales 

We model flooding exposure in extreme events during each period of analysis. In each period, 
we identified one extreme per scenario (i.e. from the combinations of RCPs, GCMs, and 
probabilistic SLR). An extreme event for coastal flooding was a 72-hour window with the 
highest sea level during a 20-year period under a scenario. For a modeled area, a total of 120 
events were identified for the 24 coastal flooding scenarios and 5 periods of analysis. We model 
an extreme event for inland flooding as a day with the highest daily rainfall intensity during a 
20-year period under a scenario. For a modeled area, a total of 40 events were identified for the 
8 inland flooding scenarios and the 5 periods of analysis. 

Local, or asset-scale modeling of wildfire related hazards focused on wildfires that had 
potential to occur under the most extreme weather conditions.  We used observed weather and 
fuel bed conditions during large, high severity wildfires that had occurred in California in the 
past. Extreme wildfire weather conditions incorporated into our local-scale modeling included 
low relative humidifies, hot temperatures, fast wind speeds, and, where it was appropriate to 
do so, foehn wind directions. Live and dead fuel moistures were set to the lowest observed 
values in different fuel types. The local-scale wildfire modeling did not use the dynamic 
elements (e.g. hourly sea level) that were incorporated into the inland and coastal flooding 
models. 

B.4 Selecting Regions to Model at Local Scales 

While we obtained and modeled flooding and wildfire exposures statewide, we also selected 
certain areas to model at local scale, mainly based on their hazard exposure and TFS asset 
concentration, the TFS stakeholders’ advice, and fine-resolution data availability. The statewide 
models were at spatial resolutions between 50 m (164 ft) and 6.2 km (3.85 miles), which were 
still too coarse for identifying asset level exposure. The local or asset scale models were 
conducted at 5 m (16.4 ft) spatial resolution, allowing more detailed analysis of flooding and 
wildfire exposure. 

B-8 



 

  

 

 

Locally modeled areas for flooding exposure were mainly located in flat areas along the 
California Coast. We found concentrations of TFS assets, particularly refineries, terminals, and 
some pipes, along the Coast. The coast was also found exposed to flooding mainly from sea 
level rise and storm surge. With additional inputs from the TFS stakeholders, we selected areas 
in Brisbane, Richmond, Concord and Martinez in Northern California, and Port of Long-Beach 
in Southern California to conducted local-scale modeling for both coastal and inland flooding. 
Results of these areas are included in Appendix C. 

Wildfire events have been well distributed throughout California since times that predate the 
arrival of Euro-Americans, and this pattern is not expected to change between the present time 
and 2100. Local scale wildfire model focused on the immediate vicinity of TFS assets that 
transported and delivered sector inputs and outputs to production, storage, and distribution 
facilities located throughout the State. Specifically, the model was conducted in asset-containing 
areas that were identified as critical to the TFS during stakeholder outreach. In addition to the 
stakeholder identified areas of interest, selected areas were modeled at local scales to 
demonstrate the range of potential wildfire behaviors in all land cover types in California (i.e. 
forests, woodlands, shrublands, and grasslands). Results of the local scale wildfire model are 
included in Appendix D. 
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APPENDIX C: FLOODING DATA, METHODS, AND 
RESULTS 

C.1 Introduction 

In this study, we modeled flooding induced by climate drivers including sea level rise (SLR), 
intensified storms, increased precipitation and runoff (Figure C 1), and produced maps of 
inundation extent and depth as our metrics for flooding exposure. Taking the Fourth 
Assessment sea level and climate projections between 2000 and 2100 as the inputs, we modeled 
over multiple planning horizons and climate scenarios. First, we modeled every 20 years 
between 2000 and 2100, allowing our results to inform TFS stakeholders’ near-term and long-
term planning. Second, the inclusion of multiple climate scenarios, including two emission 
scenarios (i.e. Representative Concentration Pathways (RCP) 4.5 and RCP 8.5), four General 
Circulation Models (GCMs, i.e. HadGEM2-ES, CNRM-CM5, CanESM2, MIROC5; see Table B 2 
in Appendix B), and three percentile estimates of SLR (i.e. 50%, 95%, 99.9%), provide the basis 
to understand the range of long-term climate projections and environmental disaster exposure. 
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Figure C 1. Flood Model Schematic. We model coastal flooding exposure due to SLR and storm surge, 
and inland flooding from rainfall and surface runoff.  Coarse resolution models were first conducted to 
assess statewide, long-term, multi-temporal, and multi-scenario flooding exposure, while fine resolution 
models were only conducted in areas, planning horizons, and climate scenarios with severe flooding 
exposure and TFS concentration informed from the coarse resolution model. 

The overview of the flooding models is illustrated in 
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Table C 1. We modeled two types of flooding (i.e. coastal and inland) and at two spatial scales 
(i.e. regional versus local). In each combination of study areas and spatial scales, we identified a 
suitable approach and specifications that could feasibly and accurately perform the modeling: 
(1) For the regional coastal model, we employed a process-based, hydrodynamic approach, and 
modeled flooding during the highest storm events from the hourly sea level projections 
produced by (Cayan et al., 2016); (2) For local coastal and inland flooding models, we employed 
the same hydrodynamic approach as for the coarse-resolution coastal model. Due to the high 
computational cost, the fine resolution model was only conducted in areas with high TFS 
concentration and severe flood exposure identified from (1). 
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Table C 1. The overall flood-modeling framework. This table illustrates the areas of interest, model 
resolution, and the corresponding modeling approach including the model, input, and output. 

Areas of interest 

Coastal Inland 

Climate 
drivers  

● SLR, storm, and tide ● Rainfall and runoff 

Regional ● Hydrodynamic modeling (3Di, TU 
(coarse) Delft); 
resolution ● 50 m spatial resolution; 
model ● Iterated over 24 scenarios from a 

combination of 2 RCPs, 4 GCMs, and 3 
percentile SLR projections 
● For each scenario: 

o Modeled coastal flooding during the 
highest sea level events (i.e. a 72-
hour window) every 20 years, 
between 2000 and 2100; 

o Produced a map of maximum 
flooding extent and depth during the 
event. 

(not modeled) 

Local (fine) ● Hydrodynamic modeling (3Di, TU Delft) of SLR, storm surge, rainfall, and runoff; 
resolution ● 5 m spatial resolution; 
model ● Modeled coastal flooding during the highest sea level events (i.e. 72-hour windows) 

informed from the regional coastal model, and inland flooding under the highest daily 
rainfall events (i.e. 24-hour windows) from Localized Constructed Analogs (LOCA). 
● To reduce computation cost:  

o The model was only conducted in selected areas with high TFS infrastructure 
concentration and flooding exposure. Examples of such areas include Port of 
Long Beach, Concord-Martinez, Richmond, and Kinder Morgan, Inc. Brisbane 
terminal; 

o The model was conducted for the period between 2020 and 2040 to measure 
near-term flooding exposure, and the period between 2080-2100 for the long 
term; 

o The modeled was iterated over events under high, medium, and low scenarios 
informed from the regional models. 

o Produced a map of maximum flooding extent and depth during the event. 

In this appendix we first introduce the datasets, including climate scenarios, topography and 
bathymetry models, and other environmental datasets used by both coastal and inland flood 
modeling in section C.2. Section C.3 describes the methods for coastal and inland flood 
modeling respectively. In section C.4, we show results from coastal and inland models at both 
regional and local scales. Finally, section C.5 discusses the implications of our results for the TFS 
sector, uncertainties from multiple climate scenarios, and possible directions for future work. 
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C.2 Data 

Various datasets have been used in this project for different modeling purposes. This section 
divides the datasets into three categories: (a) climate scenarios including sea level and weather 
variable projections, (b) topography and bathymetry models, and other environmental datasets 
including land cover, soil, streams, and (c) historical weather observations. 

C.2.1 Climate Scenarios 
Projections of sea level and weather variables drive our model to simulate future flooding 
exposures. These projections were made for multiple climate scenarios derived from 
combinations of different RCPs, GCMs, and percentiles of SLR.  

C.2.1.1 SLR and Coastal Storm Scenarios 

To simulate coastal flooding driven by rising sea level, intensified storms, and tides, we 
modeled high sea level events from the hourly sea level projections by (Cayan et al., 2016).  
These projections by Cayan et al. (2016) provide hourly sea level continuously between 1950 
and 2100 at nine locations with long-term, reliable, and continuous tide gauge data. The nine 
locations are highlighted with red dots in Figure C 2. The hourly sea level projections were 
generated respectively for 24 climate scenarios that were combinations of two RCPs, three SLR 
scenarios, and four GCMs (Figure C 3). These projections are relative to the stations’ mean sea 
levels measured under the most recent national tidal datum epoch (1983-2001). We made 
conversions between the mean sea levels and the National Elevation Dataset 88 (NAVD 88) for 
these projections to make them comparable with other datasets under NAVD 88. 
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Figure C 2. NOAA tidal gauges with hourly sea level projections, virtual tidal gauges, validation 
tidal gauges, and regional and local simulation tiles. Most regional tiles take hourly sea level 

projections from their closest NOAA gauge, while the Sacramento – San Joaquin tile takes hourly sea 
level recorded at the Port Chicago virtual tidal gauge during the San Francisco Bay tile simulation. 

Validation gauges were used to validate the model with historical flooding events. The regional tiles are 
outlined in black and the color fill shows the adjacent tiles taking inputs from the same NOAA/virtual 

gauge. The zoom-in maps show the local simulation tiles within the regional tiles. 
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Figure C 3. SLR and coastal storm scenarios used in this study 

The hourly sea level projections are combinations of short-term sea level fluctuations and long-
term SLR (Cayan et al., 2016). The long-term SLR is projected probabilistically by Cayan et al. 
(2016) based on a method proposed by Kopp et al. (2014) with additional SLR contributions 
from loss of Antarctica ice sheets modeled by DeConto & Pollard (2016). The Kopp et al. (2014) 
method uses the Latin hyper-cube to sample time-dependent probability distribution of five 
primary global SLR components including land surface water contributions, contributions from 
glaciers and ice caps, oceanographic process, and contributions from Greenland ice sheets. 
Under RCP 8.5, contributions from Antarctica ice sheets projected by DeConto & Pollard (2016) 
were included as an additional component. After the sampling, 50th percentile, 95th percentile, 
and 99.9th percentile SLR projections were incorporated in the final hourly sea level projections 
for the Fourth Assessment.  The SLR projections are relative to the year 2000 sea level. In 
addition to the long-term SLR, Cayan et al. (2016) combined tide, El Nino Southern Oscillation 
(ENSO) influence, and climate and weather inputs from the four GCMs to produce the short-
term fluctuations. Finally, Cayan et al. (2016) added the short-term fluctuations to the long-term 
SLR to create the hourly sea level projections.  

C.2.1.2 Rainfall Scenarios 

We modeled inland flooding using rainfall estimates from the climate projections by Pierce, 
Cayan, & Dehann (2016). The projections provide daily, 1/16-degree (about 6.2-km or 3.85-mile) 
spatial resolution estimates of various climate variables over the entire state of California. These 
projections were made daily under both RCP 4.5 and RCP 8.5, for each of the 32 GCMs selected 
from the Climate Model Intercomparison Projection, version 5 (CMIP5) archive. We used 
rainfall projections from the four priority GCMs recommended by the 4th Assessment. For each 
variable, we obtained the values in eight scenarios that were combinations of the four GCMs 
and the two RCPs to represent future weather and climate conditions Figure C 4. 
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Figure C 4. Rainfall scenarios used in this study 

The climate projections by Pierce et al. (2016) utilize two models. The first is a downscaling and 
bias correction model, LOCA, which transforms the GCM’s projections from the global scale to 
the regional scale. While the GCMs provide fundamental information about the future global 
climate, they cannot be used directly for the state of California due to their systematic errors (i.e. 
bias, or systematic over/under-estimations for a particular geography such as California) and 
coarse spatial resolutions. Therefore,  Pierce et al. (2016) applied the LOCA method to correct 
the bias and to refine the spatial resolution to 1/16 degree. However, GCMs and their outputs 
through the LOCA only provide a limited set of meteorological variables, including 
precipitation, daily maximum temperature, and daily minimum temperature, which are 
insufficient for some impact studies. Therefore, Pierce et al. (2016) used the LOCA outputs to 
drive a second model, Variable Infiltration Capacity (VIC) land surface model, to simulate 
additional climate variable such as rain, runoff, snow cover, soil moisture, etc. In this study, we 
used rainfall from the VIC outputs. 

C.2.2 Topography and Bathymetry Data 
Topography and bathymetry data were used as primary inputs for flood models. In this project, 
we used several topography and bathymetry models to build a continuous surface from the 
ocean to the inland. Finer-resolution datasets were used wherever they were available, and 
coarser-resolution datasets were used where fine-resolution datasets were absent. Depending 
on the spatial resolutions of the regional and local models, the fine and coarse resolution 
datasets were aggregated or resampled to achieve the target resolution. 

Topography and bathymetry models in this project are listed in Table C 2, and their spatial 
coverages are illustrated in Figure C 5. The fine-resolution topography datasets are derived 
from Lidar (Light Detection and Ranging, which uses laser beams to scan the topography). The 
Lidar datasets cover the coastal landscape of the San Francisco Bay Area (i.e. USGS South Bay 
Lidar and NOAA North Bay Lidar), the majority of the Sacramento-San Joaquin Delta (i.e. DWR 
Sacramento - San Joaquin Delta Lidar), and the entire Californian coast (i.e. Coastal 
Conservancy Lidar and NOAA coastal topobathy merge that uses the Coastal Conservancy 
Lidar for the topography). We also included several fine resolution bathymetry datasets, 
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including DWR Bay-Delta bathymetry for the San Francisco Bay and the Sacramento – San 
Joaquin Delta, and NOAA coastal topobathy merge covering the near-coast bathymetry for the 
Californian coast. In addition, we included several coarser resolution datasets to fill the gaps in 
the finer resolution datasets. We used 10-m (33-ft) National Elevation Dataset and 90-m (295-ft) 
SRTM datasets as supplementary topography datasets, and a 200-m (656-ft) CDFW bathymetry 
as the supplementary bathymetry dataset. 

Table C 2. Topographic and bathymetric datasets used in this study 

Data Use in this project Spatial resolution Source 

USGS South 
Bay Lidar 

Fine resolution building 
heights and DEM in the 
coastal Bay Area 

1 m USGS California 
Coastal LiDAR 
Project 

NOAA North 
Bay Lidar 

Fine resolution building 
heights and DEM in the 
coastal Bay Area 

1 m NOAA 
California 
Coastal LiDAR 
Project 

DWR 
Sacramento - 
San Joaquin 
Delta Lidar 

Fine resolution building 
heights, DEM, and 
bathymetry, in the Delta 

1 m California Department of Water 
Resources 

DWR Bay-
Delta 
bathymetry 

Fine resolution 
bathymetry for the Bay 
and the Delta 

2 m - local 
10 m - regional 

California Department of Water 
Resources 

NOAA coastal 
topobathy 
merge 

Fine resolution DEM 
and bathymetry mosaic 
along the Coast 

1 m 2013 NOAA Coastal California 
TopoBathy Merge Project Digital 
Elevation Model (DEM) 

Coastal 
Conservancy 
Lidar 

Fine resolution building 
heights along the Coast 

1 m 2009-2011 CA Coastal 
Conservancy Lidar Project 

National 
Elevation 
Dataset (NED) 

Supplement dataset 
where finer resolution 
DEM not present 

10 m USGS National Elevation Dataset 

SRTM 
elevation data 

Alternative dataset to 
NED 

90 m The Shuttle Radar Topography 
Mission (SRTM) digital elevation 
dataset 

CDFW 
bathymetry 

Supplement dataset 
where finer resolution 
bathymetry not present 

200 m California Department of Fish and 
Wildlife (CDFW) Marine GIS Unit 
(2007) bathymetry 
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 Figure C 5. Map of various topographic and bathymetric data used in this study 
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We generated continuous surfaces containing bathymetry and topography at 5 m (16.4 ft) and 50 m 
(164 ft) spatial resolutions. The 5‐m (16.4‐ft) surface contains bare ground elevations (i.e. digital 
elevation model, DEM), bathymetry, and aboveground object elevations (i.e. built structures such as 
buildings). The 50‐m (164‐ft) surface is like the 1‐m (3.3‐ft) surface, except that the 50‐m (164‐ft) surface 
doesn’t include building objects. We excluded buildings as they could be too granular to be represented 
in a 50‐m (164‐ft) surface. However, flooding prevention features such as levees were preserved in the 
50‐m (164‐ft) surface. Before building these two surfaces, we mosaic fine resolution topography and 
bathymetry data in the San Francisco Bay Area and Sacramento‐ San Joaquin Delta to generate a 1‐m 
(3.3‐ft) Bay‐Delta topobathy merge that was equivalent to the 1‐m (3.3‐ft) NOAA coastal topobathy 
merge. The workflow for generating the 5‐m (16.4‐ft) and 50‐m (164‐ft) surfaces is illustrated in Figure C 
6 

Figure C 6and described in the subsequent paragraphs. 

Figure C 6. The workflow to generate fine (5-m; 16.4-ft) and coarse (50-m; 164-ft) topography-
bathymetry surfaces in this study 

To build the 50-m (164-ft) surface, we aggregated the two 1-m (3.3-ft) topobathy merge and 10-
m (33-ft) National Elevation Dataset individually using a mean aggregation and resampled the 
200-m (656-ft) CDFW bathymetry using a cubic resampling to bring these surfaces to the same 
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50-m (164-ft) resolution. These aggregated and resampled surfaces were combined based on 
their original spatial resolutions where finer resolution surfaces were placed on top of coarser 
resolution ones. In this way, we ensured better quality data in terms of their resolution and 
accuracy were preserved in the final surface.  

To build the 5-m (16.4-ft) surface, we first resampled the coarser resolution datasets including 
10-m (33-ft) National Elevation Dataset and 200-m (656-ft) CDFW bathymetry to 5-m (16.4-ft) 
resolution. We then aggregated the two 1-m (33-ft) topobathy merge to 5-m (16.4-ft) resolution 
using the mean aggregation. Finally, we put the aggregated topobathy on top of the resampled 
Nation Elevation Data and CDFW bathymetry and produced a continuous 5-m (16.4-ft) surface. 
In addition, we added building elevations to the 5-m (16.4-ft) surface as we considered these 
objects would affect water flow in the flooding simulation.  

Building elevations were extracted using LiDAR data from a dataset of building footprints that 
we developed. We defined low-lying watershed areas within which we needed to produce 
building footprints by using the flooding extent of the coarse resolution flood modeling. For 
certain areas within this extent, local municipal authorities provided building footprints to us. 
For other areas building footprints were not readily available and we had to extract them from 
survey data, such as imagery, raster elevation models, and LiDAR scans. We delineated some 
building footprints by digital image processing, by hand, or by a combination of both. We 
produced most of building footprints in areas not covered by local municipal datasets by 
extracting them from lidar scans using a parameter-based tool called "Feature Extractor." 

Within a given extent where we sought to produce building footprints, applicable 1m (3.3-ft) 
Lidar data acquired for the project (Table C 2) was imported into the Feature Extractor along 
with a configuration file containing pre-set parameters. Shapes of the buildings were extracted 
from the lidar point cloud based on the parameter specifications given to the tool. These 
parameters included smoothness of the building roof, maximum and minimum angles that 
building walls can assume, how much of the building edges could tolerate overhanging trees, as 
well as several optional parameters such as minimum and maximum building height, or the 
building’s area. To create object polygons most accurately represented the true shape and form 
of the buildings represented, we adjusted these parameters and applied one set of parameters 
for urban areas and a separate set for residential areas. We separated these types of regions and 
assigned specific parameter values to each because these areas tend to have buildings with very 
different characteristics from one another. The primary individual parameters that differed 
between the parameter sets used for these two types of regions included the slope of building 
roof and degree to which a vertical edge could extend without changing its slope value.  

Using the specified parameters and based on the characteristics of the input Lidar points, the 
Feature Extractor program then generated a shapefile of extracted building footprint polygons, 
which could be loaded into geographic information system software. The resultant building 
footprint polygons were close approximations of the actual building outlines. They did not 
match the exact footprint of the building, however (Figure C 7). These object polygons were then 
combined with a DEM to extract the height of each building. Finally, the building elevations 
were incorporated into a digital surface model (DSM) of the analysis area for input as 
topography into the fine resolution inundation modeling. Generating building footprints for the 
necessary flooded extent along entire coast of California took approximately ten weeks to 
complete. 
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Figure C 7. Building footprints generated by “Feature Extractor” from LiDAR data. LiDAR points 
alone are shown over an aerial image in the left figure; building footprints generated by the feature 

extractor from the LiDAR points are shown in blue outline in the middle figure; and the footprints are 
shown over the aerial image alone in the right figure. 

C.2.3 Other Environmental Datasets 
In addition to the climate scenarios and topography-bathymetry datasets above, we acquired 
datasets describing land cover, soil texture, and watershed boundaries for the entire state of 
California, which are summarized in Table C 3. 

Table C 3. Other environmental datasets used in this study 

Dataset Description Source 

Land cover Physical material that covers the earth surface, 
including grass, tress, bare earth, development, 
water, etc. The dataset was used to derive other 
variables such as infiltration rate and Manning’s 
roughness coefficient. 

National Land Cover Database 
2011, United States Geological 
Survey (Homer et al., 2015) 

Hydrological soil 
group 

Assigns soils into groups based on runoff and 
infiltration potential. 

SSURGO database, National 
Cooperative Soil Survey, 
United States Department of 
Agriculture (Soil Survey Staff, 
n.d.) 

Hydrological 
units code, 12 
digits (HUC-12) 

Sub watershed boundaries Natural Resource 
Conservation Service, United 
Sates Department of 
Agriculture (Natural Resource 
Conservation Service, 2017) 
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C.3 Methods 

C.3.1 Regional-scale Coastal Flooding Model 
C.3.1.1 Models for SLR and Storm Flooding 

Several models have been developed to simulate inundation from SLR, storm surge, and coastal 
flooding. These models can be generally divided into two categories: static and hydrodynamic. 
Earlier models tend to be static, which treat the inundation as a snapshot produced by a certain 
water surface that does not vary by time. The static models are computationally feasible, 
therefore can be easily applied to large scales and with fine resolution datasets. However, these 
models ignore the temporal dynamics where water level changes over time due to storms and 
tides. One popular static model is the ‘bathtub’ model that simply finds areas below the 
projected water surface (Dasgupta, Laplante, Meisner, Wheeler, & Yan, 2008). Often, projected 
water levels from gauges are used to interpolate this water surface. However, this ‘bathtub’ 
model tends to overestimate the inundation, as the model considers no hydrologic connectivity 
and may cause some low-lying but isolated (i.e. not connected to any water body) areas be 
inundated. A further step from the ‘bathtub’ model is the ‘pathway’ model that uses 
connectivity rules to identify water flow pathways and then corrects for the low-lying but 
isolated areas (Poulter & Halpin, 2008). Several studies, such as NOAA’s SLR Viewer (Marcy et 
al., 2011), Climate Central’s tidally adjusted SLR and flooding map (Strauss, Ziemlinski, Weiss, 
& Overpeck, 2012), Climate Central’s tidally adjusted SLR and flooding map (Biging et al., 
2012), have adopted the ‘pathway’ model. 

More recent research has employed process-based, hydrodynamic, 2-dimensional (2D) models 
that simulate flooding during storm events combined with SLR. However, 2D hydrodynamic 
models are computationally expensive and therefore difficult to be implemented at regional 
scales. Two studies have conducted 2D hydrodynamic models for the State of California. The 
Coastal Storm Modeling System (CoSMoS) (Barnard et al., 2009, 2014) use a combination of 1D 
X-Beach model and 2D Delft3D model to simulate flooding from incremental SLR every 0.5 m 
(1.64 ft) between 0 (0 ft) and 5 m (16.4 ft) combined with different return-interval storms and 
King tides. The CalFloD-3D model, by Radke et al. (2014), used a hydrodynamic model 3Di 
(Stelling, 2012a) to simulate a near 100-year storm combined with 0 m (0 ft), 0.5 m (1.64 ft), 1.0 m 
(3.28 ft), and 1.41 m (4.63 ft) SLR. While these efforts have provided valuable information on 
SLR and coastal flooding, their incremental SLR scenarios do not exactly match with the Fourth 
Assessment scenarios characterized by specific time horizons, RCPs, GCMs, and percentile SLR. 

In this study, we modeled SLR and coastal flooding mainly based on the CalFloD-3D model by 
Radke et al. (2014), but updated the model with the Fourth Assessment scenarios. Particularly, 
we modeled extreme events from the hourly sea level projections by Cayan et al. (2016) over the 
24 SLR and coastal storm scenarios described in section C.2.1. We iterated the 24 scenarios over 
five planning horizons (i.e. 2000-2020, 2020-2040, 2040-2060, 2060-2080, and 2080-2100). For each 
iteration defined by planning horizons and climate scenarios, we produced a composite surface 
of maximum flooding depth and extent during the event as the output. The ensemble of these 
surfaces from different events and scenarios shows the potential flooding exposure in 
Californian coast due to climate changes.  

Since the entire Californian coast is too vast to be hydrodynamically modeled with the 3Di in a 
single simulation, we employed a ‘two-stage, tile-by-tile’ modeling approach. The ‘tile-by-tile’ 
reference captures the fact that the modeling was conducted by tiles, and ‘two-stage’ refers to 
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the fact that we used a regional model and a local model. We delineated the tiles to cover low 
elevation coastal areas, with additional considerations on watershed boundaries, model 
resolution, tile size, and computational time. In the regional model (i.e. the first stage), we 
defined 16 tiles (outlined in black in Figure C 2) along the coast, with 15 of them taking the 
extreme events from the nearest gauges with the Fourth Assessment’s hourly sea level 
projections (outlined as red dots in Figure C 2). The 16th tile covering the Sacramento – San 
Joaquin Delta took water levels recorded at a Port Chicago virtual gauge (outlined as a white 
dot in Figure C 2) during the San Francisco Bay tile simulation. We used separate tiles for the 
Bay and the Delta as the combined region was too large even for the regional model. In the local 
model (i.e. the second stage), we defined local simulation tiles within the regional tiles 
(examples are outlined in orange for the San Francisco Bay and Los Angeles tile in Figure C 2). 
The regional model simulated the extreme event water levels for the local model tiles. Section 
C.3.1.2 documents the regional model, while section C.3.2 documents the local model. 

C.3.1.2 Regional Coastal Flooding Model with 3Di 

We used the 3Di model (Stelling, 2012a), the core model in the CalFloD-3D (Radke et al., 2014), 
to simulate both regional and local scale coastal flooding. The 3Di model is a hydrodynamic 
model developed in the Netherlands by Delft University of Technology, Deltares, with Nelen & 
Schuurmans Consultants, and it dynamically simulates the movement of tides and flood events 
over digital representations of low-lying land surfaces. Model inputs mainly include time-series 
water levels as boundary forcing, and surface data containing land surface elevation, 
bathymetry, and/or aboveground objects elevations. The model can simulate a storm event, in a 
series of time steps, the flow direction, velocity and water depth as the event progresses. The 
user defines the time step of the outputs and post-processing to combine the results.  In this 
study, we defined an hourly time step and combined the output from each time step to generate 
the maximum extent and depth composite map as flooding exposure during the event. 

Extreme Storm Events as Boundary Forcing 

For every 20 years between 2000 and 2100, we modeled extreme storm events from the hourly 
sea level projections by Cayan et al. (2016) in each of the 24 climate scenarios (i.e. combinations 
of 2 RCPs, 4 GCMs, and 3 percentile SLR, as identified in section C.2.1). We used these 20-year 
planning horizons to match with TFS sector’s planning and investment circles. An extreme 
event is a 72-hour period containing the highest sea level during a 20-year interval in a climate 
scenario. We identified for every gauge in Figure C 2, 120 events for the 24 climate scenarios and 
5 planning horizons. The highest sea levels vary between different climate scenarios, as 
illustrated with the example for the San Francisco gauge (Figure C 8). At the San Francisco 
gauge, the highest sea levels under RCP 8.5 tend to be higher than those under RCP 4.5, which 
were likely due to stronger emissions under RCP 8.5. The range of the highest sea levels 
between different events also increases with time. For example, under RCP 8.5, the range 
between the highest and lowest estimates is 0.14 m or 0.46 ft (i.e. 2.63 m (8.63 ft) versus 2.49 m 
(8.17 ft)) during the 2000-2020 horizon, and the range increases to 1.72 m or 5.64 ft (5.50 m (18.04 
ft) versus 3.78 m (12.40 ft)) between 2080 and 2100. A supplementary table is attached to see the 
range of the highest sea levels being modeled in this study. 
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Figure C 8. Peak sea levels projected at the San Francisco gauge. Each dot represents the peak sea 
level by a RCP, GCM, and percentile SLR (shown by color) during a planning horizon. (a) shows peak 

sea levels under the RCP 4.5 scenario. (b) shows peak sea levels under the RCP 8.5 scenario. 

To model the regional tiles along the Californian coast, we would ideally obtain the extreme 
event water levels for each tile’s boundaries. However, water level projections are only 
available at the nine NOAA gauges.  Therefore, we assigned most tiles to their nearest gauge 
(the assignment is shown by color in Figure C 2) to simply approximate each tile’s water levels 
during the events.  The Sacramento-San Joaquin Delta tile, however, was assigned to the Port 
Chicago virtual gauge, which recorded water levels during the adjacent San Francisco Bay tile 
simulation. In this way, we separated the Bay and the Delta into two tiles as we considered the 
combined Bay-Delta region was too large for the regional model. To estimate the uncertainties 
from this simple approximation, we first modeled historical events and validated the model by 
comparing simulated water levels against tidal gauges’ observations. These validation tidal 
gauges are outlined as squares in Figure C 2. The validation (Figure C 9) showed that the 
approximation and model setup could in general accurately simulate water level during 
historical events, with the correlation (calculated as equation (2)) between simulation and 
observation no less than 0.79 and root mean square error (RMSE, calculated as equation (2)) no 
greater than 0.69. We also noticed the differences between simulated and observed water levels 
were likely to increase when moving to inland areas. For example, in the San Francisco Bay 
Area, the difference between simulated and observed water levels were smaller for the near 
coast Alameda gauge (correlation = 0.92, RMSE = 0.31) than the ones further inland, such as 
Port Chicago gauge (correlation = 0.81, RMSE=0.57) and Coyote Creek gauge (correlation = 0.82, 
RMSE = 0.69).  We also noticed time lags between the simulation and the observation, as it 
required a certain amount of time for the simulated high sea levels to pass through the gauges. 
When a 30-min lag was added, the differences between the simulation and the observation were 
reduced for most locations, and the lowest correlation increased from 0.79 (without lag) to 0.84 
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(with 30-min lag) and the highest RMSE decreased from 0.69 (without lag) to 0.54 (with 30-min 
lag). 

Figure C 9. Observed and simulated water levels during historical flooding events. Observation and 
simulation were compared using correlation and root mean square error (RMSE). Correlation and RMSE 

were calculated with and without a 30-min time lag. 
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where xt is the observed value at time step t, and xෝt is the simulated value, Xഥ is the average value of the 

observations, Xഥ෡ is the average value of the simulations, n is the total number of time steps. 

Surface Model 

We used the 50-m (164-ft) surface described in Section C.2.2 as the surface data input. The 50-m 
(164-ft) surface incorporated both topography and bathymetry data but did not include 
aboveground objects such as buildings (shown in Figure C 10(c) where the buildings were 

C-28 



 

 

 

 

 

 
 

omitted) as they were often too granular to be represented at 50-m (164-ft) resolution. The 50-m 
(164-ft) surface might also sometimes insufficiently identify levees (shown in Figure C 10(f) 
where some levee segments seem ‘broken’), particularly in areas where a levee segment and its 
surroundings had very contrasting elevations. Since the 50-m (164-ft) surface used the mean 
aggregation that took mean values in a series of 50 by 50 m (164 by 164 ft) moving windows 
across the finer resolution elevation surfaces, the lower elevation surroundings could bring 
down the levee segment’s elevation in the final surface.  One area with high concentration of 
such issue was the Sacramento-San Joaquin Delta, which had extensive levee structures 
protecting the low-lying land. In this region, we noticed some levee segments disappeared in 
the 50-m (164-ft) surface and created water flow pathways in the modeling. 

Figure C 10. Coarse and fine resolution elevation surfaces used in this study. (a) – (c) zoom to an 
urban area, whereas (d) – (f) zoom to a natural/rural area. (a) and (d) show the aerial images, (b) and (e) 

show the fine resolution, 5 m surfaces that include both land surface elevation, bathymetry, and 
aboveground objects such as buildings. (c) and (f) show the coarse resolution, 50 m surfaces that include 

only land surface elevation and bathymetry. 
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Parallel Processing 

One run using the 3Di software produces results for a small spatial region. This analysis 
required many runs of 3Di to cover the extent of the State involved. Due to many such runs, it 
would be unnecessarily tedious and error-prone if the input data for each run were prepared by 
hand. To reduce human error and to handle launching multiple runs in parallel, we used a 
system called "Compute Farm." This system can maintain a group ("farm") of computers, 
assemble input data, perform pre-run checks and dispatch simulation runs to be executed on 
several computers at the same time.  

Compute Farm can be operated from a web-based interface via the Internet. A computer that is 
recruited to be part of the Compute Farm communicates with the rest of the system in short 
sessions and, therefore, does not require network connectivity all the time. When a 3Di 
simulation is dispatched to a computer for execution, all necessary parts of the 3Di software, as 
well as all input data and other required files, are sent to that computer during the initial 
session. During the execution of a 3Di run, the computer can be queried for the status, progress, 
screenshots, available resources and so on. Once the execution is completed, the computer will 
send the results to a designated location, which may be a location on any other participating 
computer.  

Depending on the input data, the 3Di simulation of one tile could take between several hours to 
several days. To meet our schedule, we built computers that have powerful CPUs with multiple 
cores. This allows us to run as many as 16 simulations on a single computer at the same time. 
Since the 3Di software runs are CPU-intensive and utilize multiple threads of execution per 
process (one simulation), the overall performance can be severely impacted by the wasteful 
context switches between multiple threads. To combat this problem, we had to achieve a 
balance between the physical processor cores and the number of threads in a 3Di process.   

When started manually, a 3Di process will spawn as many threads as the number of cores 
available on a given computer. For this reason, if more than one 3Di process is started this way, 
several worker threads will compete for the same physical CPU core and will incur unwanted 
context switches. The Compute Farm system solves this problem by adjusting a process thread 
affinity before the process has had a chance to execute and decide regarding the number of 
threads to spawn. As a result, we were able to achieve nearly one to one ratio between the 
number of worker threads and CPU cores, thereby significantly improving performance and 
resource utilization. To set up a Compute Farm group of computers, we simply copied one 
executable file, a private key and a certificate to every participating Windows computer. Our 
choice of Windows as an operating system was imposed by the 3Di software requirements. In 
addition to Windows computers, we recruited several Unix/Linux computers, whose role was 
to host input data or receive simulation results. Compute Farm can take advantage of additional 
computers and use them as a fallback destination when a primary destination computer is not 
available.   

Many of our computers were virtual machines. Due to a limited number of the Internet IP 
addresses, we set up a fast local network and created an access to individual computers via the 
network address translation (NAT). By doing this we could achieve a fully operational system, 
with the exception that when a fast local network link is available between two computers, the 
traffic still had to go through the gateways and the NAT system. This happened because every 
participating computer is known to the system by a unique IP address and that address is 
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different when a given computer is accessed from within a local network as opposed to 
accessing it from the Internet. 

To prepare 3Di input data for every run of simulation, we wrote scripts that produced a 
comma-separated values (CSV) file that contains a set of file names and input parameters for 
one 3Di run per CSV file record. Creating the input data programmatically allowed us to 
achieve consistency and reduce human error as well as tedious work. Compute Farm can accept 
CSV files from its web-based interface and load them into a small built-in database. We used 
this database to automatically generate 3Di runs (we call them "tasks") and queue them for 
execution in the park of participating computers. 

Model output 

The model produced hourly flooding extents and depths during the 72-hour extreme events. 
We then combined the 72 hourly outputs from one extreme event to make a maximum flooding 
extent and depth composite. The composites from different events were then grouped by 
planning horizon, RCP, GCM, and percentile SLR to represent coastal flooding exposure in 
different time periods and climate scenarios. 

We obtained from the regional model a second output that is the simulated water levels at the 
local tile boundaries. The water levels were used to represent local water levels during the 
extreme events and used as boundary forcing for the local model in section C.3.1.3.  As 
previously discussed, the San Francisco regional model also simulated water level at the Port 
Chicago virtual tidal gauge, providing boundary forcing for the Sacramento-San Joaquin Delta 
regional tile’s simulation. 

C.3.2 Local-scale Models 

We conducted local-scale models at 5-m (16.4-ft) spatial resolution only in certain areas of 
interest. We determined these areas by considering TFS assets concentration, flooding exposure 
in the regional-scale models, and suggestions from TFS stakeholders. The local models 
contained a coastal flooding model and an inland flooding model. Like the regional-scale 
coastal flooding model described in section C.0, both local-scale models (i.e. coastal and inland) 
used the 3Di (Stelling, 2012a) to dynamically simulate hourly flooding extents and depths 
during extreme events. Extreme events in the local-scale coastal flooding model were driven by 
SLR, storm, and tide, whereas the events in the inland flooding model were driven by daily 
rainfall. For each event, we made one maximum flooding extent and depth composite map from 
the hourly results to represent the flooding exposure. 

C.3.2.1 Coastal Flooding Model 

The local-scale coastal flooding model is similar to the regional-scale model (section C.3.1.2), as 
both models simulate extreme SLR and storm events over a continuous surface using the 3Di 
hydrodynamic model. For an area of interest, we identified the local tile (examples outlined in 
Figure C 2) where the area of interest is located and then conducted the simulation. Unlike the 
regional-scale model, the local-scale model used the 5-m (16.4-ft) surface model containing 
topography, bathymetry, and buildings as the continuous surface. This 5-m (16.4-ft) surface 
more accurately depicted the surface condition than the 50-m (164-ft) surface used by the 
regional-scale model. The differences between the two surfaces are illustrated in Figure C 10. 
However, the 5-m (16.4-ft) surface required more computation and therefore was only 
implemented in certain areas of interest. In addition, the local-scale model took water levels 
simulated by the regional-scale model during the extreme events as the local boundary forcing. 
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C.3.2.2 Inland Flooding Model 

Delineating the Watersheds for Analysis 

We modeled inland flooding in watersheds that overlapped with an area of interest, to capture 
the complete rainfall-runoff process draining to that area. Both Streamstats 
(https://streamstats.usgs.gov/ss/) and ArcGIS hydrology analysis (ESRI, 2016) were used for 
initial watershed delineations. Based on the initial delineations, we chose sub watershed from 
the Hydrologic Unit Code-12 (HUC-12) dataset to define the final watershed boundaries for 
modeling. 

We defined the final watershed boundaries for areas of interest using the following steps. We 
first identified the main rivers and streams, as well as their discharge points, in that area. Since 
most of our areas of interest were located on the coast, the discharge points were mainly where 
the rivers/streams met the ocean. Second, we generated watersheds (or drainage areas) from 
the discharge points using both Streamstats and ArcGIS hydrological analysis and compared 
between them and HUC-12 sub-watersheds. In most cases, the two generated watersheds and 
HUC-12 sub-watersheds were consistent with each other, but their boundaries did not match 
exactly. Such mismatch could result from different input data and specifications used by the 
three data products. Since HUC has been used as a standard data product for many 
applications, we used the HUC-12 sub-watersheds as the final watershed boundaries. 

Extreme Rainfall Events as Boundary Forcing 

We retrieved extreme daily rainfall events from the LOCA projections (D. Pierce et al., 2016) as 
the model forcing in each of the watersheds identified above. For every climate scenario (i.e. one 
of the eight combinations of two RCPs and four GCMs) and 20-year interval (i.e. every 20 years 
between 2000 and 2100), we intersected the corresponding LOCA daily rainfall intensity 
projection surface with a watershed to calculate average rainfall daily intensify in that 
watershed. The highest average daily rainfall intensity was then used as the extreme event to 
feed the inland flooding model. 

Surface Model 

In addition to the 5-m (16.4-ft) topography, bathymetry, and aboveground objects surface used 
in the local-scale coastal flooding model, we incorporated detailed layers describing surface 
roughness and infiltration rate that could affect the rainfall-runoff process. We used Manning’s 
coefficient to account for changes in surface roughness in the model. Manning’s coefficient 
measures the amount of frictional resistance water experiences when passing over land and 
channel features (Vieux, 2001), and the coefficient’s value is often assigned by land cover types. 
We used the land cover dataset from National Land Cover Database 2011 (USGS, 2014) , and 
assigned Manning’s coefficient accordingly. Table C 4 shows Manning’s Coefficients for the 
land cover types in this study. 
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Table C 4. Manning’s Coefficients based on land cover types 

Land cover type Manning’s 
Coefficient 

Land cover type Manning’s 
Coefficient 

Open water 0.0250 Evergreen forest 0.3200 

Developed, open space 0.0404 Mixed forest 0.4000 

Developed, low intensity 0.0678 Shrub/scrub 0.4000 

Developed, medium intensity 0.0678 Grassland/herbaceous 0.3680 

Developed, high intensity 0.0404 Pasture/Hay 0.3250 

Barren land 0.0113 Woody wetlands 0.0860 

Deciduous forest 0.3600 Emergent herbaceous 
wetlands 

0.1825 

Infiltration rate surfaces were also used to describe the velocity at which water entered the soil. 
In non-developed areas, infiltration rate is dependent on soil texture (% sand, silt, and clay) and 
clay mineralogy. We assigned infiltration rates based on the U.S. Department of Agriculture’s 
(USDA’s) hydrological soil groups. However, impervious materials with low infiltration rate 
mainly cover developed areas. Therefore, using land cover data from NLCD 2011, we assigned 
a separate set of infiltration rates to developed areas based on their development intensity. 
Finally, we merged infiltration rates from developed and non-developed areas to get a 
continuous layer as the model’s input.  Table C 5 shows the infiltration rates used in the study 
for developed and non-developed areas. 

Table C 5. Infiltration rate based on hydrological soil group and developed land covers 

Non-developed areas Infiltration Rate 
(mm/day) 

Developed areas Infiltration Rate 
(mm/day) 

Hydrologic Soil Group A 243.80 Developed, open space 106.68 

Hydrologic Soil Group B 137.20 Developed, low intensity 64.01 

Hydrologic Soil Group C 61.00 Developed, medium intensity 34.48 

Hydrologic Soil Group D 15.20 Developed, high intensity 21.34 

C.4 Flooding Exposure Analysis 

In addition to the exposure analysis in Section 3.1.1 in the main report and supplementary table 
2 and 3 in this appendix, we conducted a more detailed analysis of TFS’s exposure to flooding 
and demonstrated the uncertainties in the exposure introduced by the various climate 
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projections. To assess the impact of future coastal flooding associated with climate change, we 
overlaid the TFS assets with the flood depth layers generated by our flood models and 
calculated flooding exposure (lengths or areas of flooded assets) for the 20-year periods 
between 2000 and 2100. One distinction is to be made immediately: what we were analyzing 
here was the potential exposure of infrastructure to flooding, which was only the starting point 
of a risk assessment.  A risk assessment would require the further analysis of probabilities and 
consequences (cost) of such flooding, which is affected by yet-to-be-determined management 
responses such as changes in operation, flood hardening, re-routing, or abandonment.  Thus, 
this analysis was an evolutionary first step towards a better understanding of future flood risks. 

C.4.1 Selection of Scenarios for Detailed Analysis 
The coarse-scale model output for each of the climate scenarios analyzed (i.e. combinations of 2 
RCPs, 4 GCMs, and 3 percentile SLR, as identified in section C.2.1.1) was an inundation depth 
surface for each 20-year period. These surfaces had 50-m (164-ft) spatial resolution, with each 
pixel having an elevation (Z) value of the maximum flooding depth in meters. We choose flood 
scenario inundation surfaces for subsequent more detailed exposure analysis by considering the 
range of flood severity effects produced by the 24 different model runs (corresponding to the 24 
different climate scenarios) in a given 20-year time period between 2000 and 2100.  Depending 
upon the purpose of the analysis, we selected minimum, median or maximum flood 
simulations as measured by the highest tidal heights produced by each of the 24 runs for the 
period. A simple sorting by predicted maximum tidal heights (Table C 6) allows us to identify 
the maximum, median, and minimum output flood surfaces for subsequent overlay with the 
transportation fuels infrastructure. 
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Table C 6. Example for the San Francisco Bay Area, 2080-2100: Sorted maximum tidal heights 
from all 3Di model runs. 

RCP GCM SLR 
percen

tiles 

Peak  
sea 
level 
(m) 

Mean sea 
level (m) 

of the 
event 

Time of the 
peak

(start of the 
event) 

End of the 
event 

Scenario 
Rank 

8.5 CanESM2 99.9 5.505 3.923 
2098-02-14 

18:00:00 
2098-02-17 

17:00:00 
Max. 

Scenario 

8.5 MIROC5 99.9 5.331 4.066 
2099-02-10 

11:00:00 
2099-02-13 

10:00:00 

8.5 
CNRM-
CM5 99.9 5.268 3.936 

2099-01-07 
19:00:00 

2099-01-10 
18:00:00 

8.5 
HadGEM2 
-ES 99.9 5.243 4.211 

2099-02-17 
17:00:00 

2099-02-20 
16:00:00 

8.5 CanESM2 95.0 5.045 3.464 
2098-02-14 

18:00:00 
2098-02-17 

17:00:00 

8.5 MIROC5 95.0 4.862 3.597 
2099-02-10 

11:00:00 
2099-02-13 

10:00:00 

8.5 
CNRM-
CM5 95.0 4.800 3.469 

2099-01-07 
19:00:00 

2099-01-10 
18:00:00 

8.5 
HadGEM2 
-ES 95.0 4.774 3.742 

2099-02-17 
17:00:00 

2099-02-20 
16:00:00 

4.5 MIROC5 99.9 4.401 3.026 
2098-02-01 

19:00:00 
2098-02-04 

18:00:00 

4.5 CanESM2 99.9 4.259 2.953 
2099-02-04 

18:00:00 
2099-02-07 

17:00:00 

4.5 
CNRM-
CM5 99.9 4.221 3.051 

2096-01-24 
18:00:00 

2096-01-27 
17:00:00 

4.5 
HadGEM2 
-ES 99.9 4.061 2.886 

2097-01-25 
17:00:00 

2097-01-28 
16:00:00 

Median 
Scenario 

8.5 CanESM2 50.0 4.048 2.467 
2098-02-14 

18:00:00 
2098-02-17 

17:00:00 

4.5 MIROC5 95.0 4.044 2.668 
2098-02-01 

19:00:00 
2098-02-04 

18:00:00 

4.5 CanESM2 95.0 3.895 2.589 
2099-02-04 

18:00:00 
2099-02-07 

17:00:00 

4.5 
CNRM-
CM5 95.0 3.876 2.707 

2096-01-24 
18:00:00 

2096-01-27 
17:00:00 

8.5 MIROC5 50.0 3.841 2.577 
2099-02-10 

11:00:00 
2099-02-13 

10:00:00 

8.5 
CNRM-
CM5 50.0 3.781 2.450 

2099-01-07 
19:00:00 

2099-01-10 
18:00:00 

8.5 
HadGEM2 
-ES 50.0 3.778 2.427 

2096-01-08 
18:00:00 

2096-01-11 
17:00:00 

4.5 
HadGEM2 
-ES 95.0 3.710 2.535 

2097-01-25 
17:00:00 

2097-01-28 
16:00:00 

4.5 MIROC5 50.0 3.402 2.026 
2098-02-01 

19:00:00 
2098-02-04 

18:00:00 

4.5 
CNRM-
CM5 50.0 3.264 2.095 

2096-01-24 
18:00:00 

2096-01-27 
17:00:00 

4.5 CanESM2 50.0 3.238 1.932 
2099-02-04 

18:00:00 
2099-02-07 

17:00:00 

4.5 
HadGEM2 
-ES 50.0 3.083 1.908 

2097-01-25 
17:00:00 

2097-01-28 
16:00:00 

Min. 
Scenario 
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From tables like Table C 6, we select scenarios for subsequent infrastructure exposure 
calculation for each region and two-decade period.  To effectively illustrate the range of flood 
predictions and to offer a vivid picture of uncertainty in the flood model outcomes, we use the 
minimum (Min), median and maximum (Max) scenarios selected by their “peak_SL_navd” 
values (peak sea level tide heights) from the table (e.g. Table C 6). In some cases when we want 
to describe more typical scenarios, particularly for individual operator infrastructures, we may 
use Median scenarios.   

C.4.2 Calculating Exposure 
We used the output raster datasets of predicted inundation depths for the Min, Median, and 
Max scenarios for each region and the bi-decadal period for overlay analysis with the TFS 
infrastructure. With the raster inundation layers, we first classified inundation depths into 
discrete groups. The overlay of the classified raster with infrastructure, for example, liquid 
product terminals, produced a table of operators, inundation depth classes, and areas of 
pipeline exposed to coastal flooding at various depths of inundation (Table C 9). 

C.4.3 Flooding Exposure by Asset Operator and Geography 

In terms of assets of interest, we focused on product pipelines, crude oil pipelines, refineries, 
and terminals in our detailed analysis. 

C.4.3.1 Product Pipelines and Crude Oil Pipelines 

In California, product pipelines are clustered in two geographic areas, Northern California 
(NorCal) around the San Francisco Bay Area and Sacramento-San Joaquin Delta, with one 
segment extending to Reno, NV; and Southern California (SoCal), around the Los Angeles area 
with segments extending to Nevada and Arizona (Figure C 11). We calculated inundated 
pipelines relative to assets in the northern or southern pipeline areas separately because two 
pipeline clusters did not connect. The two geographic areas had some similarities and some 
distinct inundation exposure characteristics according to our results. 

When we charted product pipeline inundation exposure totals for each scenario (i.e. Min, 
Median or Max) over the two-decade periods between 2020 and 2100, the differences between 
the Min and Max scenarios in terms of total inundated pipelines, were similar in Northern and 
Southern California. For example, the Min-Max differences were relatively small in the near 
future for Northern California (e.g. 2020-2040) but diverged sharply in the later decades. For 
Southern California, the rate differences were similar even though inundation totals overall 
were significantly less than in Northern California (see Figure C 19). 

C-36 



 

 

 

 

 

  

Figure C 11. Product and crude-oil pipelines have different geographic footprints.  Fuel product 
pipelines tend to cluster at refineries and radiate outwards (note that the two fuel product pipeline clusters 

to not connect) while crude oil pipelines tend to connect crude source to refinery locations. 

Product pipelines were mainly exposed to flooding in the San Francisco Bay Area and 
Sacramento-San Joaquin Delta in the north, and in Long Beach Harbor Area in the south. 

Exposed product pipeline length in the north was about twice the length of that in the south 
under the median scenario high sea level event from the 24 scenarios covering RCP 4.5 and 8.5 
(Figure C 12 (a) and (b)). One northern operator, Kinder Morgan, Inc. (KM) has a pipeline 
system referred to as SFPP, which is the most exposed (Figure C 12 (a)), suffering 
approximately twice as much inundation as the sum of all the other SF Bay operators. Such 
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extensive exposure is because Kinder Morgan has very long pipelines along the Bay and Delta 
margins. The exposure is more distributed among southern operators, with five operators 
owning more than 65% of the exposed product pipelines (Figure C 12 (b)).  The exposed 
pipeline is only a small percent (i.e. about 6% on average over the five periods) of the entire 
SFPP pipeline system in the north (Figure C 12 (c)), whereas many small operators in the south 
have much larger proportions of their pipelines exposed (e.g. Pennzoil: 68.12% on average over 
the five periods, Petro-Diamond: 29.86 %, Ultramar Inc.: 39.72%, Vopak: 28.54%, Figure C 12 
(d)). 

Figure C 12. Patterns of product pipeline’s exposure to coastal flooding, divided by geographic 
regions and operators. (a) and (b) contrasted the most exposed operators to other exposed operators in 
Northern California and Southern California respectively. (c) and (d) highlighted the relationship between 
the absolute exposure (i.e. length of pipeline exposed) and relative exposure (i.e. % pipeline exposed) by 

each operator in Northern California and Southern California respectively. 

Unlike the disjoint product pipeline systems, California crude oil pipelines are an integrated 
statewide system, thus our analysis considered crude oil pipelines as a statewide and not 
regional system (Figure C 11).  However, there were distinct differences in inundation exposure 
between Northern California and Southern California crude pipeline operators. In both regions, 
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the largest operators in terms of total kilometers of assets had the longest length of assets 
exposed, but this exposure represented a small percentage of total assets while small operators 
had higher percentages of asset exposed. However, regionally considered, crude oil pipelines in 
the south had much more exposure than that of Northern California pipelines (e.g. 60 km 
versus 10 km, under the median scenario during the 2040-2060 period Table C 7).  In addition, in 
LA, the two largest players were affected (i.e. Crimson and Phillips66).   Figure C 13 and Figure 
C 14 show the differing exposure of crude pipeline operators in the LA/Long Beach Harbor 
Area and SF Bay Area Martinez region. 

Table C 7. Crude pipeline exposure under the median scenario high sea level event, 2040-2060 

Region Operator  
Pipelines 
exposed 
(km) 

% of the total 
crude pipelines 

Chevron Pipe Line Co. 3.1 >0.1 

North 
Tesoro Logistics Golden 
Eagle 

3.8 59 

Shell Pipeline Co. 1.8 >0.1 

Valero Ref. Co. 0.8 5 

Crimson Pipeline 15.7 2 

Paramount Petroleum 9.1 4 

South 
Phillips66 Pipeline 6.2 1 

Tesoro SOCAL Pipeline 1.4 4 

Chemoil Terminals 5.6 12 

Plains Marketing 4.8 2 
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Figure C 13. Exposed crude oil pipeline operators at LA/Long Beach Harbor (2100 Max and Min 

flooding scenarios). 
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Figure C 14. Exposed crude oil pipeline operators at Martinez, SF Bay Area region (2100 Max and 
Min flooding scenarios). 

C.4.3.2 Refineries 

Refineries are located near sources of crude oil: crude from wells (e.g., in Bakersfield which is 
not exposed to coastal flooding) or from ocean-going tankers, as is the case along the shores of 
the San Francisco Bay and Delta and in the harbor areas of southern Los Angeles.  In the north 
and south, from an inundation perspective, refinery exposure was dominated by one refinery in 
each locale. In the north, Chevron-Richmond was the most affected refinery with the Martinez 
facilities becoming exposed only in the more extreme scenarios. In Southern California, the 
Valero Energy-Wilmington was the most exposed, with other refineries only marginally 
exposed in the later, maximum scenarios.   

It should be noted that our analysis was a tabulation of the flooded area of refinery facility 
footprints only. We made no attempt to identify affected infrastructure facilities. This 
distinction is particularly important as in the SF Bay area, where refinery areas tend to be 
existing wetlands, while in the Los Angeles Harbor region refineries are in more built-up areas. 
Table C 8 summarizes refinery footprint exposure. In the north, approximately 14-18% of the 
Chevron Richmond refinery area could be inundated by 2040, and 20-57% by 2100. In 
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comparison, all other Bay Area Region refineries were far less exposed in total, 1-2% by 2040 but 
only by 2100 did the Martinez refineries, particularly Shell and Tesoro, become exposed 
depending upon scenario (4-21% by 2100). In Southern California, in the 2020-2040 scenarios, 14 
to 18% of the Valero Energy Corp Wilmington refinery footprint was exposed and no other 
refinery was impacted. By the year 2100, 77 to 100% of Valero was exposed and under the Max 
scenario, Tesoro Wilmington had 42% of its facility area exposed (Table C 8 and Figure C 15). 

Table C 8. Refinery exposure under the maximum and minimum scenario high sea level event, 
2020-2040 and 2080-2100. 

Min Scenario Max scenario 
SF Bay Region Hectares % Hectares % 
2020-2040 
Chevron, Richmond 175.6 14.3% 222.6 18.1% 
Andeavor, Martinez 0.6 0.4% 2.2 1.3% 
All others 10.2 1.0% 22.3 2.1% 
2080-2100 
Chevron, Richmond 240.4 19.5% 697.1 56.6% 
Andeavor, Martinez 3.9 2.2% 117.1 68.2% 
All others 51.2 4.9% 204.0 17.1% 
LA Region 
2020-2040 
Valero, Wilmington 33.5 40% 47.2 56% 
2080-2100 
Valero, Wilmington 64.6 77% 83.9 100% 
Andeavor, Wilmington 0.0 0.0% 97.1 42% 
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Figure C 15. Southern California Refineries in the harbor area where coastal flooding can occur. 

C.4.3.3 Terminals 

As explained in Appendix A, terminals can be any facility where there is a transfer of oil or fuel 
products from one transport system to another, often with local onsite storage.  Some notable 
facilities illustrating the variation of terminal types: 

● Tesoro (now Andeavor) Long Beach Terminal 1/Berth 121, this single marine terminal 
offloads crude from marine tankers and supplies 80% (~500,000 barrels / day) of the 
crude to Southern California (Figure C 16); 

● BNSF Richmond, a rail terminal for ethanol and other vital inputs;  

● Kinder Morgan, Inc. Concord Station, primarily a pumping station for movement of fuel 
products in pipelines;  

● Aircraft Service International Inc., which is a jet fuel distribution system within the San 
Francisco International Airport (SFO).  

In Northern California, our results showed that there were many relatively small potentially 
exposed terminals clustered around Richmond and Martinez and one airport serving facility, 
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SFPP LP in Brisbane serving SFO. Within the airports, there are fuel distribution systems, 
Aircraft Service International (at SFO) and Swissport Fueling Inc. (at Oakland International 
Airport). In Southern California, as with other facilities, the LA/Long Beach Harbor area 
dominated terminal inundation exposure. 

Figure C 16. The Andeavor Long Beach Terminal 1/Berth 121 

We analyzed terminal exposure but should note that while the Northern California terminal 
data was sufficient for a quantitative analysis of inundation exposure, the Southern terminal 
data was not. For the entire state, we had point (centroid) terminal location data, but when we 
used point data to identify inundated parcels (e.g., the 2040-2060 Median scenario flood 
footprint), we got 10 inundated terminals out of 100 statewide terminals.  Such centroid 
inundation was a biased estimate of inundation exposure as typically something like the center 
of an area must be flooded before it was counted as exposed to inundation. 

In the north, with the exception of Plains Products, Martinez area terminals were only exposed 
in the maximum scenario and the Kinder Morgan Concord Station was not exposed to coastal 
flooding at all (Figure C 17(a)). A similar pattern follows at Richmond (Figure C 17(b)); in  

Table C 9 the exposure of the Richmond Harbor facilities is overstated due to shoreline edge 
effects in the 50m raster).  At Brisbane, the SFPP LP facility (Kinder Morgan, Inc.) is only 
exposed in the maximum 2100 scenario (Figure C 17(c)). 
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Table C 9. Coastal flooding exposure for Northern California liquid product terminals under the 
2040-2060 Median scenario.  Note that Central California (Sacramento, Stockton) and North Coast 
(Eureka) terminals are affected. The relatively coarse 50m raster inundation data interacting with the 

small size of many terminals and shoreline locations limits the accuracy of these results. 

Operator 

Area (m2) by inundation depth (m) 
Total 
area 
(m2) 

Inund-
ated 
(m2) 

Inund-
ated 
(%) 

Exist 
-ing 
wate 
r 

none 0-0.5 0.5-1 1-1.5 1.5-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 >9 

PLAINS 
PRODUCTS 
TERMINALS 
LLC 
MARTINEZ 

0 450487 48603 24013 24058 11446 0 0 0 0 0 0 0 0 558608 108121 19.36 

IMTT -
RICHMOND -
CA 
RICHMOND 

0 65393 26478 0 940 840 0 0 0 0 0 0 0 0 93651 28259 30.17 

Kinder 
Morgan 
Liquids 
Terminals 
LLC 

1239 72553 2046 0 0 2500 0 2500 2500 0 2500 291 5000 2500 93628 19837 21.19 

BP 
LUBRICANTS 
USA INC 
RICHMOND 

1937 5882 4822 1932 0 0 2494 0 0 0 128 0 1857 980 20032 12213 60.97 

Phillips 66 PL 
- Richmond 

798 128380 1506 1971 3909 0 0 1213 0 0 0 0 0 0 137777 8599 6.24 

CHEVRON 
USA INC 
EUREKA CA 

0 11806 42 1642 2500 3037 0 0 0 0 0 0 0 0 19027 7221 37.95 

Tesoro 
Logistics 
Operations 
LLC * 

0 1913628 5567 566 434 178 0 0 0 0 0 0 0 0 1920372 6744 0.35 

NUSTAR 
ENERGY LP 
PITTSBURG 
H ASPHALT 

0 74925 4919 63 0 0 0 0 0 0 0 0 0 0 79906 4981 6.23 

TESORO 
LOGISTICS 
OPERATION 
S LLC 
STOCKTON 

0 240440 1621 0 0 0 0 0 0 0 0 0 0 0 242061 1621 0.67 

Shell Oil 
Products US - 
W 
Sacramento 

0 23609 0 0 387 334 0 0 0 0 0 0 0 0 24330 721 2.96 

CHEVRON 
USA INC 
MARTINEZ 
CA 

0 550364 17 0 0 0 0 0 0 0 0 0 0 0 550381 17 0.00 

* Includes a Southern California terminal 
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 (a) (b) 

(c) 

Figure C 17. Northern California liquid product terminals inundation under the 2080-2100 Min and 
Max scenarios. (a) Martinez area; (b) Richmond area; and (c) Brisbane area. 
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In the south, the Paktank, NuStar Energy, and Vopak terminals were exposed even at the 
minimum scenario 2100 levels (the year 2080-2100 minimum inundation was similar to 2040-
2060 median scenario inundation). Terminal Island represents a complex situation as the whole 
island was exposed, but minimum scenario 2100 inundation (i.e., at a higher flooding potential) 
only occurred in the northwest area, the site of Vopak Terminal Long Beach and the NRG Long 
Beach Power facility (Figure C 18). 

Figure C 18. Southern California Liquid Product Terminals LA/Long Beach Harbor under the 2080-
2100 Min and Max scenarios. Please note, as described in Appendix A, section A.2.1.1, terminal 

definitions can vary, and many owners and operators have changed since these data were compiled. 
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C.4.4 Uncertainties 
Due to a range of sea levels modeled in this study (Supplementary Table 1), TFS asset’s 
exposure varied by the scenarios and such variation increased when the analysis moved 
towards 2100. This difference in potential future sea level demonstrated under the various 
scenarios was an indication of the uncertainty in future coastal flood prediction. When we 
summarized inundation totals for max. and min. scenarios over 20-year periods, the differences 
between the two scenarios in terms of total inundated product pipelines, were relatively small 
in the near future for Northern California in the 2020-2040 period but diverged sharply in the 
later periods. By 2020-2040, the difference was 27 km (17 miles), or 110 versus (vs.) 137 km (68 
vs. 85 miles), between the min. and max. scenarios. By 2080-2100, the difference was about 204 
km (127 miles), or 152 km vs. 356 km (94 vs. 221 miles), between min. and max. scenarios. 

Figure C 19 illustrates the exposed product pipelines in Northern and Southern California under 
the Min, Median, and Max scenarios over the 20-year periods. 
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Figure C 19. Totals (meters) of exposed product pipelines for by Min, Median, and Max Climate 
Change Scenarios in (top) Northern California and (bottom) Southern California. Note that 

inundation lengths (X axis values) in Southern California are about half that of Northern California. 
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C.6 Appendix C Supplementary Tables 

Supplementary Table 1 Summary statistics of peak sea levels at the ten locations during the five 
planning horizons. The peak sea levels are summarized separately for RCP 4.5 and 8.5.  

Location Planning 
horizon 

RCP 4.5 RCP 8.5 
min. medium max. min. medium max. 

Crescent 
City 

2000 - 2020 3.03 3.15 3.24 3.05 3.13 3.18 
2020 - 2040 3.07 3.18 3.25 2.98 3.17 3.33 
2040 - 2060 3.07 3.32 3.49 3.08 3.51 3.93 
2060 - 2080 3.20 3.60 3.95 3.41 4.17 4.50 
2080 - 2100 3.29 4.02 4.50 3.92 5.04 5.57 

Los 
Angeles 

2000 - 2020 2.31 2.36 2.41 2.30 2.40 2.46 
2020 - 2040 2.28 2.41 2.51 2.30 2.43 2.55 
2040 - 2060 2.42 2.63 2.78 2.53 2.89 3.11 
2060 - 2080 2.61 3.09 3.53 2.81 3.49 3.91 
2080 - 2100 2.79 3.51 3.87 3.40 4.43 5.02 

La Jolla 2000 - 2020 2.28 2.33 2.37 2.28 2.36 2.42 
2020 - 2040 2.27 2.42 2.53 2.32 2.46 2.57 
2040 - 2060 2.43 2.65 2.81 2.49 2.94 3.18 
2060 - 2080 2.67 3.16 3.43 2.89 3.55 3.95 
2080 - 2100 2.91 3.58 4.01 3.49 4.53 5.17 

Monterey 2000 - 2020 2.32 2.58 2.66 2.43 2.47 2.51 
2020 - 2040 2.41 2.61 2.83 2.46 2.58 2.72 
2040 - 2060 2.56 2.75 2.93 2.55 2.92 3.25 
2060 - 2080 2.68 3.13 3.50 2.89 3.66 4.05 
2080 - 2100 2.90 3.66 4.05 3.53 4.61 5.17 

Arena 
Cove 

2000 - 2020 2.66 2.79 2.99 2.65 2.78 2.90 
2020 - 2040 2.61 2.87 3.10 2.76 2.90 3.16 
2040 - 2060 2.81 3.04 3.20 2.77 3.17 3.56 
2060 - 2080 2.79 3.35 3.60 3.18 3.86 4.21 
2080 - 2100 3.12 3.83 4.23 3.73 4.86 5.46 

Point 
Reyes 

2000 - 2020 2.50 2.70 2.90 2.55 2.63 2.71 
2020 - 2040 2.53 2.83 3.03 2.64 2.77 2.90 
2040 - 2060 2.75 3.00 3.17 2.78 3.13 3.56 
2060 - 2080 2.86 3.32 3.71 3.08 3.88 4.20 
2080 - 2100 3.12 3.86 4.26 3.73 4.84 5.52 

Santa 
Barbara 

2000 - 2020 2.28 2.39 2.46 2.25 2.33 2.46 
2020 - 2040 2.26 2.49 2.66 2.34 2.44 2.54 
2040 - 2060 2.38 2.68 2.84 2.46 2.88 3.09 
2060 - 2080 2.53 3.01 3.33 2.78 3.48 3.86 
2080 - 2100 2.79 3.48 3.88 3.34 4.42 5.04 

Port 
Chicago 

2000 - 2020 2.36 2.43 2.63 2.22 2.29 2.32 
2020 - 2040 2.25 2.45 2.55 2.31 2.41 2.49 
2040 - 2060 2.37 2.53 2.72 2.33 2.79 3.15 
2060 - 2080 2.57 2.98 3.30 2.73 3.58 4.03 
2080 - 2100 2.81 3.74 4.30 3.47 4.71 5.39 

San 
Francisco 

2000 - 2020 2.61 2.79 2.94 2.49 2.60 2.63 
2020 - 2040 2.53 2.81 2.98 2.66 2.78 2.88 
2040 - 2060 2.71 2.90 3.10 2.68 3.11 3.50 
2060 - 2080 2.90 3.29 3.57 3.11 3.82 4.17 
2080 - 2100 3.08 3.90 4.40 3.78 4.86 5.50 

Port San 
Luis 

2000 - 2020 2.30 2.39 2.57 2.30 2.38 2.46 
2020 - 2040 2.34 2.60 2.77 2.40 2.53 2.61 
2040 - 2060 2.47 2.66 2.84 2.46 2.87 3.22 
2060 - 2080 2.61 3.11 3.39 2.81 3.55 3.90 
2080 - 2100 2.81 3.57 4.05 3.40 4.46 5.01 
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Supplementary Table 2 Amount of each TFS asset type exposed to each coastal flooding exposure class1 
during the median scenario event2 in the 24 high sea level events derived from the two emission scenarios (RCP 
4.5 and 8.5), four GCMs (a warm/dry, a cool/wet, an average, and a complementary model), and three probabilistic 
SLR values (the 50th, 90th, and 99.9th percentile). Periods of interest to TFS stakeholders are included. 

Assessment Period 2000-2020 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (km2) 48.31 0.85 0.75 0.41 0.17 0.21 
Terminals (km2) 67.58 2.49 2.12 1.05 0.37 0.66 
Docks (count) 198 2 1 0 1 11 
Airports (count) 208 1 0 1 2 1 
Gas Stations (count) 13437 29 17 10 3 1 
Oil fields (km2) 3413.76 19.90 15.78 14.72 12.48 93.11 
Pipelines (km) 11632.50 69.95 27.02 21.21 19.46 41.80 
Roadways (km) 23904.40 45.79 33.93 17.73 16.42 50.74 
Railways (km) 7349.64 31.89 19.25 12.66 7.76 12.11 
Assessment Period 2020-2040 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (km2) 47.92 0.90 0.83 0.57 0.20 0.26 
Terminals (km2) 66.86 2.53 2.39 1.21 0.58 0.70 
Docks (count) 196 4 1 0 1 11 
Airports (count) 207 2 0 1 1 2 
Gas Stations (count) 13432 28 16 17 3 1 
Oil fields (km2) 3402.16 22.86 18.27 14.41 12.12 99.93 
Pipelines (km) 11608.60 73.24 36.68 26.53 20.01 46.84 
Roadways (km) 23888.80 47.67 38.35 20.81 17.31 56.02 
Railways (km) 7338.78 32.37 21.18 17.16 9.45 14.37 
Assessment Period 2040-2060 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (km2) 47.43 0.97 0.89 0.70 0.36 0.33 
Terminals (km2) 65.90 2.42 2.54 1.69 0.89 0.82 
Docks (count) 192 7 1 1 0 12 
Airports (count) 207 2 0 0 2 2 
Gas Stations (count) 13409 39 23 16 6 4 
Oil fields (km2) 3382.45 23.87 21.58 17.83 13.87 110.15 
Pipelines (km) 11555.00 97.53 52.76 27.33 22.74 56.58 
Roadways (km) 23863.60 50.80 41.85 29.59 16.83 66.34 
Railways (km) 7326.24 28.67 26.79 19.37 12.88 19.37 
Assessment Period 2060-2080 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (km2) 45.54 1.62 1.11 1.02 0.72 0.66 
Terminals (km2) 64.61 1.48 2.47 2.57 1.51 1.63 
Docks (count) 182 10 7 1 1 12 
Airports (count) 205 2 1 1 1 3 
Gas Stations (count) 13357 48 44 22 18 8 
Oil fields (km2) 3363.13 25.15 23.88 20.61 15.48 121.52 
Pipelines (km) 11440.30 108.71 97.16 53.25 28.09 84.41 
Roadways (km) 23799.80 60.98 52.04 43.15 29.20 83.83 
Railways (km) 7282.67 37.40 29.62 30.14 19.14 34.35 
Assessment Period 2080-2100 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (km2) 42.61 2.08 2.12 1.09 1.08 1.70 
Terminals (km2) 62.38 1.59 1.58 2.49 2.72 3.50 
Docks (count) 167 16 7 9 1 13 
Airports (count) 203 3 1 1 1 4 
Gas Stations (count) 13229 94 60 56 29 29 
Oil fields (km2) 3323.20 20.48 24.64 26.28 22.88 152.29 
Pipelines (km) 11305.30 118.07 106.55 94.72 57.55 129.75 
Roadways (km) 23693.40 78.87 65.30 60.37 42.43 128.64 
Railways (km) 7182.27 62.07 52.88 39.53 33.01 63.56 

1 Flooding exposure was classified by maximum flooding depth during the high sea level events: none (0 m (0 ft.) depth or existing water), low (0 m 
(0ft) < depth <= 0.5 m (1.64 ft.)), moderate (0.5 m (1.64 ft.) < depth <=1.0 m (3.28 ft.)), high (1.0 m (3.28 ft.) < depth <= 1.5 m (4.92 ft.)), very high (1.5 
m (4.92 ft.) < depth <= 2.0 m (6.56 ft.)), and extreme (2.0 m (6.56 ft.) < depth). 
2 As there were two middlemost scenarios in even number of events, we used the middlemost one with higher peak sea level as the median. 
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Supplementary Table 3. Percentage of each TFS asset type exposed to each coastal flooding exposure class1 

during the median scenario event2 in the 24 high sea level events derived from the two emission scenarios (RCP 
4.5 and 8.5), four GCMs (a warm/dry, a cool/wet, an average, and a complementary model), and three probabilistic 
SLR values (the 50th, 90th, and 99.9th percentile). Periods of interest to TFS stakeholders are included. 

Assessment Period 2000-2020 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (%) 95.31 1.67 1.47 0.80 0.33 0.41 
Terminals (%) 91.00 3.36 2.86 1.41 0.49 0.89 
Docks (%) 92.96 0.94 0.47 0.00 0.47 5.16 
Airports (%) 97.65 0.47 0.00 0.47 0.94 0.47 
Gas Stations (%) 99.56 0.21 0.13 0.07 0.02 0.01 
Oil fields (%) 95.63 0.56 0.44 0.41 0.35 2.61 
Pipelines (%) 98.48 0.59 0.23 0.18 0.16 0.35 
Roadways (%) 99.32 0.19 0.14 0.07 0.07 0.21 
Railways (%) 98.87 0.43 0.26 0.17 0.10 0.16 
Assessment Period 2020-2040 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (%) 94.56 1.78 1.63 1.12 0.39 0.52 
Terminals (%) 90.03 3.40 3.22 1.63 0.79 0.94 
Docks (%) 92.02 1.88 0.47 0.00 0.47 5.16 
Airports (%) 97.18 0.94 0.00 0.47 0.47 0.94 
Gas Stations (%) 99.52 0.21 0.12 0.13 0.02 0.01 
Oil fields (%) 99.95 0.01 0.01 0.00 0.00 0.03 
Pipelines (%) 98.28 0.62 0.31 0.22 0.17 0.40 
Roadways (%) 99.25 0.20 0.16 0.09 0.07 0.23 
Railways (%) 98.73 0.44 0.28 0.23 0.13 0.19 
Assessment Period 2040-2060 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (%) 93.58 1.92 1.75 1.37 0.71 0.66 
Terminals (%) 88.74 3.26 3.42 2.27 1.20 1.11 
Docks (%) 90.14 3.29 0.47 0.47 0.00 5.63 
Airports (%) 97.18 0.94 0.00 0.00 0.94 0.94 
Gas Stations (%) 99.35 0.29 0.17 0.12 0.04 0.03 
Oil fields (%) 94.75 0.67 0.60 0.50 0.39 3.09 
Pipelines (%) 97.82 0.83 0.45 0.23 0.19 0.48 
Roadways (%) 99.15 0.21 0.17 0.12 0.07 0.28 
Railways (%) 98.56 0.39 0.36 0.26 0.17 0.26 
Assessment Period 2060-2080 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (%) 89.86 3.20 2.20 2.02 1.43 1.30 
Terminals (%) 87.00 1.99 3.32 3.46 2.04 2.19 
Docks (%) 85.45 4.69 3.29 0.47 0.47 5.63 
Airports (%) 96.24 0.94 0.47 0.47 0.47 1.41 
Gas Stations (%) 98.96 0.36 0.33 0.16 0.13 0.06 
Oil fields (%) 94.21 0.70 0.67 0.58 0.43 3.40 
Pipelines (%) 96.85 0.92 0.82 0.45 0.24 0.71 
Roadways (%) 98.88 0.25 0.22 0.18 0.12 0.35 
Railways (%) 97.97 0.50 0.40 0.41 0.26 0.46 
Assessment Period 2080-2100 
Flooding Exposure None  Low Moderate High Very High Extreme 
Refineries (%) 84.08 4.10 4.19 2.15 2.14 3.35 
Terminals (%) 84.00 2.15 2.13 3.35 3.67 4.71 
Docks (%) 78.40 7.51 3.29 4.23 0.47 6.10 
Airports (%) 95.31 1.41 0.47 0.47 0.47 1.88 
Gas Stations (%) 98.01 0.70 0.44 0.41 0.21 0.21 
Oil fields (%) 93.09 0.57 0.69 0.74 0.64 4.27 
Pipelines (%) 95.71 1.00 0.90 0.80 0.49 1.10 
Roadways (%) 98.44 0.33 0.27 0.25 0.18 0.53 
Railways (%) 96.62 0.83 0.71 0.53 0.44 0.86 

1 Flooding exposure was classified by maximum flooding depth during the high sea level events: none ((0 m (0 ft.) depth or existing water), low (0 m 
(0ft) < depth <= 0.5 m (1.64 ft.)), moderate (0.5 m (1.64 ft.) < depth <=1.0 m (3.28 ft.)), high (1.0 m (3.28 ft.) < depth <= 1.5 m (4.92 ft.)), very high (1.5 
m (4.92 ft.) < depth <= 2.0 m (6.56 ft.)), and extreme (2.0 m (6.56 ft.) < depth) .2 As there were two middlemost scenarios in even number of scenarios, 
we used the middlemost one with higher peak sea level as the median 
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APPENDIX D: Wildfire Data, Methods, and Results 

The aim of this appendix is to describe the methodology that we used in this report for wildfire 
risk assessment at the State scale and at the local scale.  We look at wildfire risk to assets of the 
Transportation Fuel Sector (TFS) with respect to time, space, and severity, in order to facilitate 
more risk-averse approaches for managing critical infrastructures important to society and the 
environment. 

In this appendix, we evaluate historical trends, current wildfire assessments, and predictive 
models using future wildfire scenarios produced for California’s Fourth Climate Change 
Assessment to better understand California’s relationship with wildfire from 2018 until 2100. 
At the regional-scale, probabilistic wildfire forecasting was conducted to understand the threat 
of increasing frequencies of large wildfire events to the highly distributed TFS.  At the asset-
scale wildfire behavior modeling was utilized to understand the exposure of critical assets and 
TFS choke points to hazards that may exceed the capabilities of fire suppression resources.  This 
multi-scale, multi-scenario wildfire assessment approach identifies ecoregions that are 
susceptible to increasing frequencies of large wildfire activity and quantifies the associated 
wildfire behavior for objects in these high-risk regions. 

Findings: 
 Based on climate and wildfire projections prepared for the California’s Fourth Climate 

Assessment, the frequencies of large wildfire events are expected to increase and present 
significant threats to the TFS between 2018 and 2100. 

 Planning and risk mitigation efforts should be coordinated to increase the resiliency of 
the interconnected, yet operationally independent, system. 

 The advent of higher spatial resolution wildfire behavior modeling enables new insights 
into the expected fire behavior of catastrophic wildfires surrounding TFS assets. The 
clear benefits of high spatial resolution modeling are threefold: 1) an increased ability to 
represent buildings, roads, vegetation cover, and vegetation fuel breaks with greater 
precision and accuracy than coarser spatial resolution fire behavior modeling, 2) an 
enhanced capacity to inventory vegetation assemblages, assets, structures, roads, 
clearings, and natural fire breaks - this more detailed portrayal of the context in which 
an asset is located we are able to evaluate the fire behavior characteristics surrounding 
TFS assets for current and future wildfire scenarios, and 3) an improved ability to 
develop a targeted and data-driven wildfire risk mitigation strategy for individual TFS 
stakeholders. 

This appendix has 3 sections: 
 D.1. Wildfire Hazard, Threat and Risk Assessments: This section outlines the approaches 

and limitations of wildfire assessments, the uncertainties associated with predictive 
wildfire modeling, and our multi-scale, multi-scenario approach. 

 D.2. Analysis of Historical, Near, Intermediate, and Long-Term Trends in CA Wildfire: 
This section analyzes wildfire hazard and threat assessments that have been produced 
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and/or approved by state and federal agencies responsible for managing wildfire and 
its impacts on California. 

 D.3. High Resolution Wildfire Behavior Modeling: In this section the data sources, 
methodologies, benefits, limitations, and fidelity of our 5-m (16.4-ft) wildfire behavior 
modeling results are discussed.  

 Details on the comparison of our modeling efforts to the post-devastation state of the 
2016 Tubbs Fire can be found within section D.3.9. 

D.1 Wildfire Hazard, Threat, and Risk Assessments 
D.1.1 Introduction to Modeling Wildfire for Hazard, Threat, and Risk Assessments 
Wildfire models produce important information for hazard, threat, and risk analyses when 
assessing potential exposure of an asset to this destructive natural phenomenon.  There are 
many different approaches to modeling wildfire.  Process-based models rely upon systems of 
reality-approximating equations to simulate time and space-variant rates of burn area perimeter 
expansion or other physical characteristics of combustion, including flame length and reaction 
intensity.  Probabilistic and statistical wildfire models that rely upon historical observations can 
be used to predict when and where wildfires of specified sizes or severities are most likely to 
occur.  It is important to note that these forecasting models should be used with caution given 
that they will be biased toward the periods from which the data used in their construction was 
collected. Moreover, wildfire modeling results developed from past observation can become 
unreliable when future conditions deviate from those presented during the historical period.  
When past conditions do match those of present or future prediction periods, statistical wildfire 
models can be used with greater confidence to describe patterns in wildfire likelihood, 
frequency, magnitude, or severity.  

Wildfire threat assessments do not attempt to measure the effects of one or more wildfire events 
during the modeling period upon a particular area. Instead, the objectives of wildfire risk 
assessments are to forecast the likelihood of events, to describe expected behaviors (e.g. 
intensity). These insights can be applied to post hoc analyses of the direct and indirect effects to 
society and the environment (e.g., the loss of vegetation biomass, the creation of hydrophobic 
soils that increase runoff, the destruction of infrastructure, human death). 

D.1.2 Modeling Uncertain Wildfire Futures 
Most of the environmental controls on wildfire (e.g. flammable vegetation presence/absence, 
wind, temperature, atmospheric water content, etc.) are time and space variant.  The 
magnitudes and directions of change, as well as patterns in these characteristics of change, can 
be quantitatively investigated using conditional burn probability modeling. An example of this 
approach to forecasting wildfire events is highlighted in Collins, Stephens, Roller, & Battles 
(2011). 

Historically, California’s Mediterranean climate has typically limited manifestations of extreme 
fire weather conditions to only the warmest and driest months of any given year.  For most of 
the State, wildland fire season frequently begins during the late spring months and ends when 
the first substantial precipitation arrives in late fall or early winter. In recent years, large and 
catastrophic wildfires have been burning with increasing regularity during what have 
historically been months falling outside of the California fire season.  Observed shifts in wildfire 
frequency and timing have largely been attributed to changes in climate and amounts of 
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flammable materials present in wildland systems.  In turn, this recent trend toward a year-
round wildfire season has led to increased suppression costs and economic losses. 

Agencies responsible for managing wildfire events or dealing with the financial impacts have 
felt the burden of a longer fire season and wonder if recently observed changes in yearly 
wildfire patterns are going to become the status-quo moving forward.  In search of answers, 
many have turned to forecasts generated from probabilistic and statistical models capable of 
incorporating long-term trends in climate, weather, population sizes and distributions, as well 
as changes in land use and land cover -- all of which are considered to be first or second order 
drivers of wildfire patterns, into estimations of what the future holds.  

 Event attribution methods can be used to better understand the severity associated with 
anticipated events. At present, the science of event attribution as it relates to wildfire faces a 
daunting challenge:  there still exists a profound lack of long-term time-series datasets that can 
be used to calibrate and parameterize wildfire forecasting models (National Academies of 
Sciences, Engineering, and Medicine, 2016). While the accuracy and amount of detail included 
in descriptions of wildfire and local weather conditions have improved greatly during this 
century, significant sampling problems still exist and long-term oscillations in wildfire trends 
may not be well captured in wildfire projections due to deficiencies in the historical data that 
underpins them or due to climate shifts dissimilar from previous periods of observed fire 
history. 

D.1.3 Overview of Multi-Scale Approach to Assessing Wildfire Hazards and 
Threats 
Wildfires are hazardous events that endanger, and are expected to continue to endanger, 
individuals, organizations, and assets located in California and to release pollutants into that 
atmosphere which may affect neighboring States.  As the amount of wildland-urban interface 
expands, and undeveloped areas become more exposed to human populations, the chances of a 
catastrophic wildfire taking place are increasing at the State level.  When assessing changing 
risk to TFS infrastructure, a multiscale approach is especially useful.  Broad changes in wildfire 
frequency and location will affect the relative importance and threat of this natural hazard, but 
do not necessarily imply asset hazard.  A higher resolution perspective is required to assess 
specific threats to assets.  Our team has analyzed the following sources of information:  

 Historical trends in wildfire throughout California; 
 Spatially explicit wildfire threat and hazard model outputs produced by state and 

federal agencies; 
 Wildfire futures forecasted at regional scales; and  
 Estimates of potential wildfire behavior produced by models used to shed light on how 

existing vegetation will burn at specific sites under extreme wildfire weather conditions. 

Information and analytical methods incorporated into Appendix D can be used to support those 
working to assess the degree to which objects, populations, and systems are vulnerable to the 
effects of wildfire. 

Technical terminology and phrases that have been abbreviated as acronyms throughout the 
remaining sections of Appendix D are listed in the acronym table at the end of this appendix; 
which has been included as a reference for readers. 
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D.2 Analysis of Historical, Near, Intermediate, and Long-Term Trends 
in California Wildfire 

This section establishes the historical relationship of California's wildfire patterns needed to 
assess near, intermediate, and long-term estimates of wildfire futures.  Particular attention will 
be paid to analyzing wildfire hazard and threat assessments that have been produced and/or 
approved by state and federal agencies responsible for managing wildfire and its impact on 
California.  A wildfire futures dataset produced for California’s Fourth Climate Change 
Assessment (Westerling, forthcoming) has been examined and distilled by our group in an 
effort to provide insights into the manner in which wildfire patterns are expected to trend over 
the remainder of the current century. 

D.2.1 Introduction to California Wildfire History 
Much of California has experienced wildfire in the past and will continue to endure destructive 
wildfires.  Since the Mid-Holocene epoch, indigenous peoples of California set fires to produce 
landscape conditions that favored their survival.  Prior to wildfires set by Native Americans, 
lighting storms were the primary source of ignition in the region.  The impacts of wildfire 
during times that pre-date the arrival of Europeans and Euro-Americans created and 
maintained many fire-adapted ecosystems found in the State today. This fact supports a very 
inconvenient truth – wildfires are at home in California. 

Wildland fires threaten valuable social and cultural assets.  Since the beginning of the 20th 
Century, wildfire events have been actively suppressed in efforts to protect human life and 
property from harm.  The exclusion of wildfire as a natural, restorative process capable of 
reducing fuel loads before they become excessively hazardous has curated a situation where 
many areas of California have not burned in over a century, despite experiencing wildfire 
events every few decades prior to the arrival of peoples non-indigenous to the region.  In some 
parts of the State, fire exclusion has allowed the buildup of flammable biomass (fuel loads) to 
reach levels that were once rare when wildfires occurred with more frequency. Collins et al. 
(2009) observed that the quantity of flammable material accumulated on a site and the time 
since last fire at that site are correlated.  The increased amount of dead and live woody material 
in these regions has exacerbated the hazards posed to ecosystems, to communities, and to 
infrastructure by the physical characteristics of wildfires burning with greater intensities. 
Further, the biomass accumulation has contributed to greater heat and greenhouse gas 
emissions over time than shallower fuel beds (less combustible material).  The build-up of fuels 
over time is especially pronounced in many of the State’s forested areas. 

The removal of wildfire from California’s forests has also led to the proliferation of stand 
structures that are highly susceptible to crown fire.  The potential for crown fire has increased in 
many areas where wildfire-induced mortality has not occurred, and tree densities have risen in 
many fire-prone regions of the State.  The accumulation of coarse woody debris over time now 
provides a great deal of horizontal continuity between upper forest strata and routes along 
which wildfire can propagate and spread from ground to crown. Crown fires2 are an especially 

2 The term crown fire is used by Scott & Reinhardt (2001) in reference to both true crown fires (referring to burning individual tree 

crowns, also called torching or passive crown fire) and canopy fires (referring to fires that burn the whole forest canopy as a single 
entity, which include active, continuous, and independent crown fires). 
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hazardous form of wildfire from an emergency response perspective because these events are 
difficult, if not impossible, for ground-based firefighting resources to control through direct 
attack.  Burning embers carried away from flaming tree crowns by wind have the potential to 
hasten the rate of perimeter expansion through the establishment of spot fires and present 
challenges to those attempting to prevent a wildfire from growing in size.   

Historically, many of California’s temperate forests experienced frequent low to medium 
severity fires, whereas much of the State’s shrublands are thought to have faced infrequent 
high-severity fires.  These relationships between severity and frequency were inverted when 
humans arrived in the ignition-limited shrublands and extinguished all new starts. Today, 
many areas that were once dominated by low-severity fires are experiencing more severe 
instances of wildfire (State Board of Forestry and Fire Protection, 2016). 

D.2.2 California Wildfire Frequency, Size, and Severity Trends 
Multiple wildfire frequency trends can be found within California.  Wildfire frequency is a 
time-related metric used to describe local patterns in wildfire.  Wildfire rotation lengths and fire 
return intervals are the most common descriptors of wildfire frequency.  Wildfire rotation 
lengths are defined as the number of years required to burn an area equal to the size of the area 
for which the rotation length is being estimated.  To illustrate this calculation, take the example 
of a situation where it has been determined from a wildfire perimeter history that an area 
spanning 5,000 acres (7.8 square miles) in size had an average of 100 acres (0.16 square miles) 
burn in wildfire events per year.  The calculated fire rotation for this area based on the historical 
fire record would thus be 50 years. Fire return intervals on the other hand are estimates of the 
time that elapses between two successive fires within an evaluated area.  This quantitative 
descriptor of local wildfire frequency is the mean fire-free interval, calculated as the arithmetic 
average of all wildfire intervals observed within a given area and period.  Fire frequency is the 
reciprocal of the mean fire-free interval and yields the number of fires per unit time for a given 
area. 

Once rotation lengths and mean fire return intervals have been determined, sub-regions of 
larger areas can be categorized based on differences in relative expected frequency of wildfire.  
Cal FIRE FRAP maintains a fire rotation class database (Figure D 1), which reveals trends in 
wildfire return intervals during the modern era.  Wildfire return intervals are shortest in coastal 
regions of Central and Southern California as well as in areas east of Redding relative to the rest 
of the State.  Wildfires occur with lower frequency throughout much of the Sierra Nevada and 
southeastern portions of California.  Under the FRAP Historical Fire Rotation Class (HFRC) 
system, areas of California that have burned once every 300 years on average were classified by 
FRAP as having moderate frequency wildfire, while areas that burned once every one hundred 
years or less were classified as having very high wildfire frequencies.  Historical wildfire 
categorizations were not determined for areas outside of the jurisdiction of State or Federal fire 
protection agencies or in areas having barren or developed (urban) land cover classifications 
(California Department of Forestry and Fire Protection Fire and Resource Assessment Program, 
2003). 
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Figure D 1. Historical Fire Rotation Class (HFRC) categorizations for areas in California.  Darker 
shades of red indicate more frequent wildfire than would be expected in areas covered by lighter shades 

of yellow or orange. Rotations represent modern era (20th-21st century) average fire-free intervals. 

Trends in wildfire size across time and space can be investigated by analyzing geospatial 
datasets maintained by government agencies responsible for the management and 
documentation of wildfire incidents.  These empirical datasets describe multiple attributes of 
wildfire events that have occurred in the State’s past including size, location, and date. An 
extensive burn perimeter database maintained by California’s wildfire management agency, 
CAL FIRE, Fire Resource and Assessment Program (FRAP) can be used to evaluate local and 
statewide historical trends in wildfire.  Figure D 2 maps out the spatial extent of each wildfire 
found in the FRAP database, which houses records for 19,483 fires that burned between 1898 
and 2016.  Large fires, such as the Biscuit Fire (500K acres, 2002), Rim Fire (250K acres, 2013), or 
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Soberanes Fire (300K acres, 2016) are well documented within the dataset as well as smaller 
wildfires and prescribed fires that have burned in the State. The Fire Program Analysis Fire-
Occurrence Database (FPA FOD) can be useful when assessing modern-era wildfire frequencies 
for areas located within context of the entire United States.  The 1.88-million wildfire records 
included in this spatial database were sourced from federal, state, and local fire organizations 
reporting wildfires between 1992 and 2015 (Short, 2017).  Another federally maintained dataset, 
Monitoring Trends in Burn Severity (MTBS), can be of great use when assessing severity, 
frequency, and size patterns for large wildfires (>1000 acres) that occurred between 1984 and 
2015. 

Figure D 2. Wildfire perimeters included in the CAL FIRE FRAP database with large or notable fires 
labeled A to E. (A) the 1991 Tunnel Fire; (B) the 2002 Biscuit Fire; (C) the 2013 Rim Fire; (D) the 2016 

Soberanes Fire; (E) the 2017 Tubbs, Atlas, and Nuns Fires; and (F) the 2017 Thomas Fire.  Data Source: 
CAL FIRE FRAP Fire Perimeters Database version 17_1 (Accessed on April 19, 2018 at 

http://frap.fire.ca.gov/data/frapgisdata-sw-fireperimeters_download) 
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D.2.3 Assessments of Current California Wildfire Hazard and Threat Levels  
Wildfire threat assessments require a description of the hazard being evaluated as well as a 
probability measure that describes the likelihood of the specified hazard.  There are many ways 
to characterize wildfire-related hazards and to estimate likelihood.  In this subsection, a diverse 
suite of existing wildfire threat assessment products will be reviewed that relate to California.   

One of the most widely recognized and relied upon near-term wildfire threat assessments is the 
National Fire-Danger Rating System (NFDRS).  This system underlies the ‘Today’s Fire Danger’ 
signs posted outside most fire stations in California.  This scale of wildfire threat has 
nationwide coverage and conveys a message that is readily understandable – the likelihood of a 
wildfire occurring changes over time and when the likelihood of occurrence is high, extra care 
should be taken to prevent ignition of wildland fire fuels.  Model parameter values that are 
required for calculating the NFDRS include dead and live fuel moistures as well as fuel model 
type classification assignments for areas included in the run.  These values are used to calculate 
fire potential and output wildfire spread components, energy release components, and burning 
indexes for evaluated regions (Burgan et al., 1997).  The forecasts can be near real time or up to 
five days out from the time at which the forecast is made. 

A national-scale dataset that maps current Wildfire Hazard Potential (WHP), at 240 m x 240 m 
(787 ft x 787 ft) spatial resolution, has been generated and distributed by Fire Modeling Institute 
at the USDA Forest Service Missoula Fire Sciences Laboratory (Dillon, Menakis, & Fay, 2015).  
The WHP assessment can be used to identify areas where the threat of uncontrollable wildfire 
throughout the United States exists (Figure D 3). The WHP assessment is created by first 
estimating rates of spread using wildfire behavior models. These values are then used to 
identify areas where emergency-responders are likely to have difficulty constructing fire breaks 
at a pace that would allow them to stop the expansion of an active fire perimeter.  Areas where 
wildfires had the greatest potential to experience control failures are given a ranking of Very 
High. Using this assessment, one can see that conditions throughout the Intermountain West, 
and California especially, present the greatest potential for uncontrollable wildfire when 
compared to most of the Nation (Figure D 3) other than South Florida, portions of North 
Carolina, coastal Louisiana, and the Pine Barrens of New Jersey. 
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Figure D 3. Wildfire Hazard Potential (WHP) for the conterminous United States. Very high values 
represent areas where there is the greatest potential for wildfires to occur that are difficult to control.  

(Data Source: Dillon, 2015). 

Wildfire threat assessments produced by CAL FIRE FRAP can be used to evaluate near-term 
wildfire hazard potential within the California region.  FRAP has defined wildfire threat as 
being a combined index of expected wildfire frequency and potential wildfire behavior.  The 
FRAP Wildfire Threat Index (WTI) was first produced in 2005 using the spatially explicit 
Historical Fire Rotation Class (HFRC) product described in Section D.2.2 as well as Potential 
Fire Behavior (PFB) rankings ( 

Figure D 5) to determine the threat level within a lattice of 100 m (328 ft) square grid cells 
covering the State. The PFB classifications are influenced by the types of fuel present at 
evaluated sites as well as the topographic factors (slope and aspect) known to affect wildfire 
behaviors.  Vertical fuel profile characteristics, such as canopy base height, are also considered 
when assigning PFB rankings to areas of the State in order to account for variation that existed 
between site-specific potentials for surface fires to reach the canopy strata and initiate crown 
fire. 

The 2005 FRAP WTI (Figure D 4) was first published in California’s Forests and Rangelands: 
2010 Assessment (California Department of Forestry and Fire Protection Fire and Resource 
Assessment Program, 2010).  This assessment was produced to meet State level requirements 
for natural resource inventories while also satisfying some of the requirements of the 2008 Farm 
Bill, which required the Department of Agriculture to coordinate with California’s forest and 
rangeland assessments. 
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Figure D 4. The 2005 CAL FIRE FRAP Wildfire Threat Index (FRAP-WTI).  Areas with Extreme (red), 
Very High (orange), High (yellow), and Moderate (green) FRAP-WTI scores are shown along with areas 

that faced little or no wildfire threat (grey). 

According to the 2005 FRAP WTI, the threat of wildfire is most extreme in coastal regions of 
Southern California and in mountainous terrains surrounding L.A. and San Diego. Heavily 
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forested portions of the Sierra Nevada faced very high WTI conditions while little to no threat 
of wildfire is found in the irrigated agricultural zones of the Sacramento Valley or the San 
Joaquin Valley.  A lack of wildfire threat is also observed in much of southeastern California, 
where sparsely vegetated desert land cover types contained small amounts of combustible 
material (fuels).  

In 2017, FRAP released an updated wildfire threat index that incorporated updated PFB 
rankings – this time FRAP referred to the fuel hazard classification component of the index as 
Fuel Ranks.  The revised PFB component of the wildfire threat index reflected changes in land 
cover that occurred between 2005 and 2014. A LANDFIRE digital raster data set is used to 
identify places where disturbance driven changes in land cover classifications had occurred in 
California (Jin et al., 2013).  The LANDFIRE disturbance layer is used to provide location 
specific information on changes in vegetated land cover types that are the result of wildfire, 
development, insect activity, disease, windthrow, and other forms of disturbance that took 
place between 2003 and 2012.  The disturbance information taken from the LANDFIRE dataset 
is then used in conjunction with known revegetation patterns and resulting changes in land 
cover classifications that had been observed between initial times of disturbances and 2014 to 
produce final 2017 Fuel Rankings shown in Figure D 5 (T. Moody, Personal Communication, 
2017). 
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Figure D 5. Potential Fire Behavior (PFB) rankings produced by FRAP in 2005 (left) and 2017 
(right). 

Unfortunately, making direct comparisons between the 2005 and the 2017 fuel hazard rankings 
for the purposes of detecting change over time proved to be problematic given that significant 

differences existed between the two datasets.  The 2005 PFB ranks, for example, used a fuel 
hazard classification method that assigned ratings of Little or No Hazard, Moderate, High, and 
Very High while the 2017 dataset had Fuel Rank classes labeled Non-Fuel, Moderate, High, and 
Very High.  The datasets are also distributed at two different spatial resolutions: the 2005 data 

was at 100 m (384 ft), while the 2017 dataset was at 30 m (98.4 ft).  We make an effort to 
overcome these differences and detect where changes in wildland fire fuel hazards are likely to 

have occurred during the decade that separated the release of these similar FRAP data 
products.  The 100 m 2005 FRAP PFB dataset is resampled to a 30 m (98.4 ft) raster using the 
nearest neighbor resampling technique. An attempt is then made to determine where, and to 

what degree, other changes in fuel hazard rankings had occurred. Areas labeled as Little or No 
Hazard (2005) or as Non-Fuel (2017) are excluded from this portion of the analysis. The 

preliminary results of this investigation are depicted in Figure D 6. 

Figure D 6 shows wildfire, timber harvesting, and other disturbance events that occurred in the 
northern regions of the Sierra Nevada and areas north of Redding may have decreased fuel 
loads and lowered the FRAP fuel hazard rankings.  Most areas of the State, however, saw 
localized wildfire-fuel related hazard levels dramatically increase between 2005 and 2017. 
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Figure D 6. Direction of change (increase, decrease, or no change) in CAL FIRE FRAP Fuel Threat 
Rankings between the 2005 and 2017 releases (left). Note that areas that were unassessed in the 

2017 data release were excluded from this analysis. 

D.2.4 Wildfire Hazard and Threat Projections for California  
Westerling's (forthcoming) research produced near, intermediate, and long-term wildfire 
forecasts for California. The specific wildfire threats addressed in Westerling’s modeling efforts 
included the likelihood of large wildfire as well as the likelihood of high severity wildfire at 
discrete time steps and locations.  This section describes Westerling’s modeling framework and 
data inputs used to generate wildfire projections for California’s Fourth Assessment on Climate 
Change.  It concludes with a summary of the modeled wildland fire futures at regional and sub-
regional levels of analysis. 

D.2.4.1 Overview of Wildfire Projection Scenarios 

Wildfire projecting models are run by Westerling (forthcoming) under specific scenarios 
designed to reflect the effects of climate change and population growth over time (Figure D 7).  
Each wildfire projection scenario is developed from outputs of a single general circulation 
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model, or global climate model (GCM), run under a specific greenhouse gases emissions 
scenario.  Outputs from each of the GCM considered are bias corrected and downscaled to a 
spatial resolution of 1/16th degree x 1/16th degree using localized constructed analog (LOCA) 
models.  Climate variables from each of the GCM runs are then passed into a variable 
infiltration capacity (VIC) hydrodynamic model to produce estimates of other weather variables 
that impact the probability and characteristics of a wildfire occurrence.  For more information 
on LOCA and VIC models see Appendix B.  GCMs used to generate climate variables included, 
the CanESM2 earth system model generated by Canadian Centre for Climate Modelling and 
Analysis; the CNRM-CM5 earth system model generated by the Centre National de Recherches 
Météorologiques, the HadGEM2 coupled earth system model generated in the UK by the Met 
Office Hadley Centre, and the MIROC5 earth system model International Centre for Earth 
Simulation in Tokyo.  GCMs are each run under two different Representative Concentration 
Pathways (RCPs); a comparatively high emissions scenario (RCP 8.5) and a comparatively 
moderate to low emissions scenario (RCP 4.5). The numerical portions of RCP names referred to 
the amount of radiative forcing, measured in W/(m2), expected to be observed by 2100.  
Expected impacts of projected population growth on spatiotemporal patterns of development in 
California are also integrated into Westerling’s wildfire future modeling routine.  Spatially 
explicit estimates of land cover and land use conditions are modeled by (Sleeter, Wilson, 
Sharygin, & Sherba, 2017) to support Fourth Assessment research projects using low, central, 
and high population growth estimates produced by the California Department of Finance.  In 
order to account for the uncertainty surrounding the spatial patterns of future population 
growth and development, ten Monte-Carlo simulations are run to produce land cover 
classifications (Sleeter et al., 2017). These spatially explicit predictions of land cover changes 
over time are used to determine the percentage of vegetation per wildfire forecasting cell at 
each time step.  For more information on the inputs to each wildfire future scenario modeled by 
Westerling (forthcoming), refer to Appendix B.  

30 Population Growth 
Trajectories 240 FutureScenarios 2 Emissions Scenarios 4 GCMs 

RCP 4.5 
(Medium) 

RCP 8.5 
(High) 

Warm/Dry 
(HadGEM2‐ES) 

Cool/Wet 
(CNRM‐CM5) 

Average 
(CanESM2) 

Complement 
(MIROC5) 

High 
(10 Stochastic Variations) 

Central 
(10 Stochastic Variations) 

Low 
(10 Stochastic Variations) 

… 

Scenario #1 

Scenario #240 

Scenario #238 

Scenario #239 

Scenario #2 

Figure D 7. Overview of wildfire projection scenarios modeled by Westerling (forthcoming). 

D.2.4.2 Overview of Modeling Framework used to Generate Wildfire Projections 

Westerling modeled a total of 240 wildfire projection scenarios to estimate the likelihood of 
large wildfire occurrence at each timestep and location considered.  Likelihood estimates are 
then used to derive additional estimates of wildfire occurrence, size, and severity over time and 
space.  To arrive at each of these additional estimates, Westerling relied upon a probabilistic-
statistical linked modeling framework that included four separate mathematical models and 
empirical data collected from wildfire history records. In the first step of Westerling’s 
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framework, a linear predictor of burn state is estimated for each 1/16th degree grid cell within 
the study area extent using logistic regression.  The linear predictors are then used to calculate 
the probability of the presence and the absence of wildfire within each grid cell at monthly time 
intervals and to determine the parameters of a Generalized Pareto Distribution for thirty 
spatially explicit population growth influenced estimates of wildland fuel (vegetation) 
availability.  Outputs of step one also included logit estimator derived from linear predictor 
parameters.  A second model is then initiated using the probabilities of fire presence and 
absence generated in the first step to create binary distributions and simulate the presence or 
absence of burning for each month. A third model is then activated to compute the number of 
wildfires that occurred if presence is established during the running of the second model.  
Wildfire occurrence counts could take on a value of zero, one, or two.  Poisson lognormal 
distributions constructed from the linear predictors generated by the first model and the burn 
distributions generated by the running of the second model are used to determine the wildfire 
occurrence count.  In the last stage of Westerling’s multi-step approach a fourth model is used 
to simulate wildfires that are larger than 400 hectares (approx. 988 acres or 1.5 square miles) in 
size using the Generalized Pareto Distribution parameters created during the first step and the 
monthly fire numbers generated when the third model is run. Fire sizes are not allowed to 
exceed the size of the largest fire observed in the State during the period in which historical fire 
records were collected and published in the Monitoring Trends in Burn Severity database (See 
Section D.2.2). Outputs from the forth model included estimates of area burned by wildfire 
during a single monthly time step in each 16th degree cell modeled.  The fourth step in 
Westerling’s linked modeling routine is then run ninety-nine more times to produce a total of 
one-hundred monthly estimates of area burned within each prediction cell.  Westerling then 
averaged all 100 values for each grid cell to produce a single estimate of area burned by wildfire 
for each month.  Lastly, monthly mean estimates of area burned by wildfire are annualized for 
years between 1953 and 2100 to produce 147 estimates of area burned by wildfire for each of the 
240 wildfire projection scenarios modeled.  We use the full set as well as select subsets of 
annualized mean estimated values to characterize regional and sub-regional trends in expected 
wildfire frequency and size (total area burned per year) during data processing and analysis 
phases of our work with Westerling’s futures data.  

D.2.4.3 Overview of Wildfire Projection Data Processing and Analysis 

After Westerling and other Fourth Assessment Researchers determined that there is little 
difference between estimates generated from the ten stochastic variations of land cover 
developed for each population growth trajectory modeled, the number of datasets included in 
further steps of our analysis is reduced by ninety percent, from 240 to 24, by averaging all 
values from like population growth scenarios for each time-step and prediction cell together to 
produce one dataset for each GCM+RCP+PopGrowth scenario modeled (B. Sleeter, Personal 
Communication, 2017; D. Storms, Personal Communication, 2017; CalAdapt, 2017).  We refer to 
the average annualized mean estimated values (MEV) for area burned by wildfire within each 
of Westerling’s prediction cells as MEVs throughout our analysis of these projection data. 

To analyze Westerling’s outputs we first determined median MEVs as well as specific median 
MEV percentile break values at annual, decadal, and double decadal time scales. Trends in 
these MEV summary values are analyzed in Section D.2.4.4.  We then use the double-decadal 
median MEVs to construct a Modeled Wildfire Threat Rating (MWTR) system described in 
Section D.2.6.  Annual median MEVs also serve as inputs to a space-time hotspot analysis that 
aims to shed light on spatio-temporal trends in areas burned by wildfire.  A detailed description 
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of the methods and parameters used in the space-time hotspot analysis is included in Section 
D.2.4.4.  

D.2.4.4 Summary and Analysis of 4th Assessment Wildfire Projection Scenarios Modeling 
Results 

Westerling's (forthcoming) Fourth Assessment projections of wildfire futures cover a wide 
range of estimated values due to the large number of scenarios modeled.  Figure D 8a-8d 
provides line plots of decadal median MEVs for each of the wildfire projection scenarios 
modeled. 
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Figure D 8. Decadal median estimates of area burned by wildfire in California for entire modeled 
period. All wildfire projection scenarios modeled by Westerling (forthcoming)shown.  Separate lines within each of 

the four charts represent trends in decadal median MEVs of area burned by wildfire between1953 and the year 2100 
one of the three different population growth scenarios (Low, High, and Business-as-Usual) incorporated into the 

wildfire futures modeling routine. 

Figure D 8a-d and Figure D 9 depict the statewide median MEVs of area burned by wildfire 
annually during each of the decades modeled.  Each line represents the results of a unique 
GCM+RCP+LULCcond scenario modeled.  The cubic structure of square blocks is included in 
Figure D 8a-d, 

Figure D 9, and Figure D 10 to provide an overview of the set of permutations modeled by 
Westerling's research (forthcoming). The difference between maximum and minimum MEVs of 
area burned by wildfire increases with time.  These values diverged at a greater rate after 2040 
for many of the scenarios modeled; which is to be expected given the underlying definitions for 
each of the RCPs modeled (See Appendix B).     
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Data Source: Westerling, A. L., (Forthcoming) 
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Figure D 9. Decadal median MEVs of area burned by wildfire in California from 1960 until 2100. All 
wildfire projection scenarios modeled by Westerling (forthcoming) shown. Red line represent trends in 

decadal median MEVs for RCP 8.5 model runs and the dark grey lines represent trends in decadal 
median MEVs for RCP 4.5 model runs. 
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a) 

b)  

Figure D 10. Decadal median MEV trends for area burned by wildfire in California. (a) All wildfire 
projection scenarios modeled by Westerling (forthcoming) shown as separate colored lines.  Minimum 

and maximum MEV for each decadal period was found from a pool of values containing outputs from all 
wildfire projection scenarios modeled (b).  Maximum and minimum MEVs are then used to create the dark 
great grey envelope surrounding a single red line.  This single red line passing through the grey envelope 

represents the median MEV for each decadal period selected from a set of values containing outputs 
from all wildfire projection scenarios modeled. 
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Wildfire patterns are expected to vary throughout California over the remainder of the current 
century.  Increases, decreases, and relatively insignificant changes in wildfire frequency and/or 
magnitude are projected to occur within sub regions of the State (Figure D 11 and Figure D 12).  
Modifications to current wildfire patterns are expected to be largely driven by changes in land 
cover and wildland fuel stocking levels, as well as by fluctuations in local climate conditions 
over time. Coastal areas are expected to see small changes in wildfire risk between now and the 
end of the century. The TFS assets in forested portions of the State are expected to experience a 
marked increase in exposure to wildfire over this same period of time. 

Figure D 11. Median modeled estimates of area burned by wildfire annually within 16th Degree 
Latitude x 16th Degree Longitude climate forecasting cells for the current twenty-year period 

(2000 - 2020). 
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Figure D 12. Inter-Period Changes in median modeled estimates of area burned by wildfire 
annually within 16th Degree Latitude x 16th Degree Longitude climate forecasting cells for the 

current twenty-year period. (Top Left: 2000 - 2020 vs 2020-2040) (Top Right: 2000 - 2020 vs 2040-
2060) (Bottom Left: 2000 - 2020 vs 2060-2080) (Bottom Right: 2000 - 2020 vs 2080-2100) 

D.2.5 Exploring Spatial and Temporal Patterns of Large Wildfire Threat- 
identifying Localized Hot Spots   
Analyzing and understanding wildfire spatial-temporal patterns and trends enhances our 
ability to allocate resource and prioritize hazard and risk mitigation efforts in areas most 
vulnerable to large catastrophic fires. Mapping statewide projections of fire occurrence and 
identifying hot spot areas helps identify locations that will be increasingly threatened by 
wildfires in the near, and distant future. We classify a location as a “hot spot” if it has a high 
value of number of hectares burned and is also surrounded by areas that also have high values. 
There are a number of different types of hot spots (see Table D 1). Visually representing hot spot 
areas provides insight on the spatial distribution of wildfire threat. Furthermore, mapping hot 
spot patterns statewide not only enhances our understanding of California’s dynamic wildfire 
regimes, but also helps identify areas where fire risk is projected to increase, decrease, or remain 
the same. 
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The Space Time Cube function in ESRI’s Arc Pro software (ESRI 2017). ArcGIS Pro version 1.4. 
Redlands, CA: Environmental Systems Research Institute) is used to aggregate Westerling’s 
median MEVs into space-time bins. Within each bin, the median values for the number of 
hectares burned in each cell are grouped. We examined the median values of the MEVs because 
we considered this to be a conservative representation of the model projections across the 
different models analyzed. By excluding extreme values (minimum and maximum values) and 
solely looking at the median model prediction values, we can showcase moderate estimation of 
statewide wildfire threat until the end of the century. 

We aggregate the data on a yearly basis for each time period studied (2000-2020, 2000-2040, 
2000-2060, 2000-2080, and 2000-2100). We pick the year 2000 as a reference point since it marks 
the beginning of the 21st century. When running the Space Time Cube function, we set the time 
step parameter as 1 year since we want to capture a yearly progression of modeled wildfire 
threat. The number of aggregated space time cubes, or bins, varies based on the length of time 
studied. For example, the first time period, 2000-2020 has 20 bins since it is up to 2020 but not 
including 2020, the second, 2000-2040 has 40 bins since it does not include 2040, and so forth in 
20 year increments until we reach the end of the century. Each bin encompasses a single year 
containing the median values for the number of hectares burned. 

Since the original size of our data is 1/16 of a degree which translates to approximately 6.91 km 
or 6,910 m, the distance interval (parameter which specifies how large each bin is) is set as 6,910 
m. This number is slightly more than the cell size of 6.2 km by 6.2 km used in the previous maps 
due to a minor difference in the format of the data. Specifically, Westerling’s original statewide 
grid cell data is made up of rectangles (not squares), since he uses the 1/16 of a degree as a 
measurement of distance. In contrast, the space time cube requires the area analyzed to be 
divided into a grid cell made up of squares. Therefore, the center of each rectangle does not 
perfectly coincide with the center of the squares if the size of a side of a square grid cell would 
be set as 6.2 km. Using a larger cell size of 6.91 km ensures that all the centers of Westerling’s 
grid cells are accurately represented in the statewide square grid cell pattern created by the 
space time cube function. Consequently, when creating the space time cubes, we keep the 
spatial parameter consistent to our original input data as much as possible. 

Furthermore, when applying the space time cube function, within each bin of the cube, the 
points are counted, and the Summary Field statistic (in this case the median value for each bin) 
is calculated. The trend for bin values across time at each location is measured using the Mann-
Kendall statistic.  When dealing with missing values (if any), these values are filled with the 
average value of the spatial neighbors surrounding the empty bin. 

The Emerging Hot Spot spatial analysis function is used to investigate trends over space and 
time, and to determine whether these trends are increasing, decreasing or remain consistent. 
The function classifies bins as hot or cold spots using the Getis-Ord Gi* statistic. Each data point 
is analyzed within the context of its neighbors. Therefore, a hot spot is identified when a feature 
(space-time bin) has a high value and is also surrounded by other features with high values. The 
parameter values for Neighborhood Distance and Neighborhood Time Step define the extent of 
each bin's neighborhood. The Neighborhood Time step is set to 2, and the Neighborhood 
Distance is set to 13,821 (which is calculated as 6,910*2+1) m. Given these parameters, the 
spatial neighbors extend two bins both horizontally and vertically, and one bin out diagonally. 
Based on the trends recorded, the final output of the function classified the landscape into 17 
distinct categories representing varying degrees of hot spots, cold spots, and areas where no 
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trend is detected. However, we are solely interested in viewing areas classified as varying 
degrees of hot spots (new hot spot, consecutive hot spot, intensifying hot spot, persistent hot 
spot, diminishing hot spot, sporadic hot spot, oscillating hot spot, and historical hot spot) (Table 
D 1). 

Table D 1. ESRI Emerging Hot Spot Categories Descriptions

 New 
A location that is a statistically significant hot spot for the final time step 
and has never been a statistically significant hot spot before. 

Consecutive 
A location with a single uninterrupted run of statistically significant hot 
spot bins in the final time-step intervals. The location has never been a 
statistically significant hot spot prior to the final hot spot run and less 
than ninety percent of all bins are statistically significant hot spots. 

Intensifying 
A location that has been a statistically significant hot spot for ninety 
percent of the time-step intervals, including the final time step. In 
addition, the intensity of clustering of high counts in each time step is 
increasing overall and that increase is statistically significant. 

Persistent 
A location that has been a statistically significant hot spot for ninety 
percent of the time-step intervals with no discernible trend indicating an 
increase or decrease in the intensity of clustering over time. 

Diminishing 
A location that has been a statistically significant hot spot for ninety 
percent of the time-step intervals, including the final time step. In 
addition, the intensity of clustering in each time step is decreasing 
overall and that decrease is statistically significant. 

Sporadic 
A location that is an on-again then off-again hot spot. Less than ninety 
percent of the time-step intervals have been statistically significant hot 
spots and none of the time-step intervals have been statistically 
significant cold spots. 

Oscillating 
A statistically significant hot spot for the final time-step interval that has 
a history of also being a statistically significant cold spot during a prior 
time step. Less than ninety percent of the time-step intervals have been 
statistically significant hot spots. 

Historical The most recent time period is not hot, but at least ninety percent of the 
time-step intervals have been statistically significant hot spots. 
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Figure D 13. Outputs of ESRI’s Emerging Hotspot Tool. Only Hotspot classifications shown. 

When analyzing the Figure D 13, it is important to understand that it illustrates a gradual 
progression through time of projected wildfire threat from 2000 until the end of the century.  
Specifically, even if in the map depicting the period 2000-2080 some areas are characterized by 
diminishing hot spots, they are initially classified as intensifying hot spots in a previous time 
period such as 2000-2020. An example of this is illustrated by looking at areas north-east of Los 
Padres National Forest, north of Santa Barbara. Consequently, when looking at a point in time, 
it is important to consider all the previous time steps and grasp the dynamic characteristic of 
modelled fire threat across the state. 

From the results of the Emerging Hot Spot Analysis of the Space Time Cube (2000-2100) specific 
trends can be observed: 

 In the periods following 2020, more and more intensifying hot spots are detected 
throughout the state. 

 There are relatively few new (purple areas) and consecutive (blue areas) hot spots 
detected. 
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 The north-eastern part of the Central Valley foothills is predominantly characterized as 
an oscillating and sporadic hot spot (orange) across all time periods analyzed. 

 The time periods 2000-2020 and 2000-2040 are characterized by a large number of areas 
experiencing persistent hot spots (black). These areas, then become classified as 
intensifying hot spots in the following periods studied. 

 Areas located in close proximity to the coastline, along the North Coast (where 
precipitation values are among the highest in the State), do not exhibit a particular hot 
spot trend. However, moving eastward towards the Klamath Mountains, we notice an 
oscillating hot spot that turns into an intensifying hotspot over the mountain range. 

 Areas along the South Coast, around the Santa Barbara (Santa Ynez Mountains) and 
areas of Los Padres National Forest are classified as an intensifying (red), then become a 
persistent hot spot (black) as we move eastward towards the Central Valley they become 
converted to a diminishing and historical hot spot (brown areas). 

D.2.6 Modeled Wildfire Threat Rating System 
The Modeled Wildfire Threat Rating (MWTR) system allows for the tracking of changes in 
wildfire threat over time. The MWTR system lets users determine how local large wildfire 
related threat levels are expected to vary throughout the 21st Century relative to the rest of the 
State and the reference time period (2000-2020).  The MWTR system is created in the following 
manner. First, values from all 24 averaged MEV time-series data sets for area burned by wildfire 
annually within 16th degree x 16th degree estimation cells are used to find a median estimated 
MEV for each projection pixel for each year modeled. These median MEV values are then 
binned into five non-overlapping double decadal periods; 2000-2020, 2020-2040, 2040-2060, and 
2060-2080.  Median MEV estimates within each bin are then sorted to find the period-specific 
median estimates of area burned by large wildfire within each prediction cell.  These median 
MEV estimates are then collected from all prediction cells for the 2000-2020 reference period 
and sorted into 26th, 50th, 75th, 90th, and 99th percentile bins.  These percentile break values 
ware then used to construct the MWTR class definitions.  The lower boundary of the “Low” 
MWTR classification is set to the twenty-six percentile MEV value of 2 ha.  Cells with median 
estimates falling below this value are labeled as being areas where “Little to No” threat of 
wildfire existed.  The remaining percentile break values derived from reference period modeled 
estimates of area burned by large wildfire are used to define the MWTR classifications of 
“Low”, “Moderate”, “High”, “Very High”, and “Extreme” (Table D 2). The MWTR definitions 
are then applied the four remaining twenty-year periods.  
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Table D 2. Modeled Wildfire Hazard Rating (MWTR) level definitions and corresponding ranges of
reference period median MEV of area burned by wildfire.  Percentile break values were determined by 

examining a pool of estimates that included modeling outputs from All GCM and RCP permutations 
recommended for use by agencies managing the development of California's 4th Assessment on Climate 

Change. 

MWTR Class 
Class Definition for the Period 2000-2020 

Median MEV falls within the specified percentiles of the 
distribution for all GCM and RCP models combined 

Little to None or Unassessed  < 26 

Low ≥ 26 and < 50 

Medium ≥ 50 and < 75 

High ≥ 75 and < 90 

Very High ≥ 90 and <99 

Extreme ≥ 99 and <100 

The MWTR system is developed to assess long-term changes in wildfire patterns throughout 
California and to identify differences that existed between specific regions and periods of 
analysis, we deemed the inclusion of cells with null and zero estimate values during the 
determination of percentile break values to be desirable.  Of the 10,688 16th degree latitude x 16th 

longitude prediction cells required to provide full coverage of California’s extent, 1094 cells 
(10.24%) produced estimates that are all equal to zero or null during the entire period modeled 
(1953-2100).  Many of these areas are likely masked out of the results by Westerling 
(forthcoming). The period median estimates for such cells are set to zero and assigned the 
MWTR thematic classification of “Little to None or Unassessed.”  This is done after observing 
that many of these cells capture locations in California where it is highly unlikely, if not 
impossible, for wildfires to occur due to a lack of combustible wildland fire fuel presence 
during the reference period (Figure D 14). Highly developed areas, like downtown Los Angeles, 
which has a high concentration of impervious surfaces, are places where the threat of large 
wildfire is non-existent.  Agricultural lands, concentrated in the Central Valley, are also places 
where a large wildfire could not have become established. Zero or null estimates of area burned 
by wildfire existed in Westerling's (forthcoming) modeling outputs where pixels contain large 
water bodies or stretches of barren land. By choosing to include the zeros and null values as 
zeros in the set from which percentile range values are identified, MWTR provides a 
classification system that takes all areas of the State into account and not just those where large 
wildfire has been predicted to occur during the reference period.     
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Figure D 14. Prediction cells with only zero or null value estimates were produced in red (Left). 
Areas which had at least one estimate of area burned by wildfire that is greater than zero throughout all of 
the time steps modeled between 1953-2100 is in yellow (Left). The NLCD classified map of California and 

portions of Nevada are also shown (Right). Placing map graphics of these two datasets side-by-side 
allows one to see that many of the cells that had all zero or null estimate values are found in areas where 
wildland fuels are determined to be either entirely or mostly absent or broken up in such a manner that a 

large wildfire would not be possible. 

In an attempt to investigate the role that RCP selection plays on modeled projections of wildfire, 
MWTR percentile breaks are determined using three subsets of MEV values including all 
outputs from RCP 4.5 and RCP 8.5 scenarios, outputs from just the RCP 8.5 scenarios, and 
outputs just from the RCP 4.5 scenarios.  Median, Maximum, and Minimum MEV percentile 
break values derived from these sets of values are quite comparable during the Reference 
Period (Table D 3).  Which is to be expected given initial conditions for the emissions’ pathways 
modeled were similar. 
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Table D 3. Median, Minimum, and Maximum MEV percentile break values for the 2000-2020 
reference period. Break values were determined using (a) all outputs from RCP 4.5 and RCP 8.5 

scenarios, (b) outputs from just the RCP 8.5 scenarios, and (c) outputs just from the RCP 4.5 scenarios. 

Median MEV for Reference Period (2000-2020) Minimum MEV for Reference Period (2000-2020) Maximum MEV for Reference Period (2000-2020) 
Percentile 
Break 

(a.) RCP 8.5 and 
4.5 (b.) RCP 8.5 (c.) RCP4.5 

(a.) RCP 8.5 and 
4.5 (b.) RCP 8.5 (c.) RCP4.5 

(a.) RCP 8.5 and 
4.5 (b.) RCP 8.5 (c.) RCP4.5 

26th* 2 2 2 0 0 0 18 16 17 

50th 14 14 14 0 0 0 54 50.5 50 

75th 27 28 27 3 4 5 93 88 86 

90th 36.5 36.5 37 9 10 11 147 139 135 

99th 60 59 61 21 22 25 873.13 872.13 833.13 

100th 80 86.5 78 32 34 45 1638 1638 1577 
*27th percentile value reported for Median MEV value determined using only estimates from RCP 8.5 wildfire projection scenarios modeled 

The results shown in Figure D 15 imply that 99th percentile estimate of area burned by wildfire 
during the current period has a higher likelihood of being observed during future periods, 
particularly in the last 20 years of the century. The top and middle figures of Figure D 15 appear 
almost identical.  The bottom seems to be identical to the top two figures until the 2080-2100 
period.  At that time there are differences in the Sierra Mountains – probably because it only 
uses RCP 4.5. 
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Figure D 15: Present-day and future Modeled Wildfire Threat Rankings (MWTR) for twenty-year 

long periods falling between 2000 to 2100.  (Top) The pool of values used to calculate median estimate 
of area burned by wildfire annually for each prediction cell (16th Degree Latitude x 16th Degree 

Longitude; 3.85 mile x 3.85 mile resolution) included modeling outputs from all GCM's+RCP (8.5 and 4.5) 
+LULCcond projection scenarios. (Middle) The pool of values used to calculate median estimate of area 
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burned by wildfire annually for each prediction cell (16th Degree Latitude x 16th Degree Longitude; 3.85 
mile x 3.85 mile resolution) included modeling outputs from all GCM's+RCP (8.5 only) +LULCcond 

projection scenarios. (Bottom) The pool of values used to calculate median estimate of area burned by 
wildfire annually for each prediction cell (16th Degree Latitude x 16th Degree Longitude; 3.85 mile x 3.85 

mile resolution) included modeling outputs from all GCM's+RCP (4.5 only) +LULCcond projection 
scenarios. Prediction cells having all null or zero value estimates are included in the construction of the 

(MWTR) system. 

Much of the variability in the frequency, magnitude, and severity of wildfires that have been 
projected to take place in California can be explained by differences in the types of vegetation, 
or fuels, that carry wildfires.  The State’s total wildfire diversity can be segmented into the 
broad, but extremely intuitive dominant vegetation-based categorizations of wildfire.  The most 
basic form of this type of classification system involves labeling sub-regions as being dominated 
by grass fire, shrub fire, and forest fire.  Although the descriptions of these three types of 
wildfire lack precision, they often prove to be the best way to communicate basic differences in 
wildfires observed through the State to individuals with limited exposure to wildfire science 
and management. 

Stratification of California’s wildfire prone areas can also be achieved through the use of 
slightly more descriptive land cover typologies than those that only discriminate between grass, 
shrub, and forest classifications.  The 2010 California Fire Plan (CFP), which was updated and 
re-released in April of 2016 (CDF-FRAP 2015) divided up the State in terms of the dominant 
vegetative life form found in each area for the purpose of summarizing the amount of area 
burned by wildfire in each of these classes over time (Figure D 3).  The CFP authors label 
vegetated areas as conifer, hardwood, herbaceous, shrubland, or agriculture dominant.  
Shrublands are found to have experienced the greatest amount of area burned by wildfire 
during each of the decadal periods summarized between 1950 and 2008.  The CFP also 
determined that more acres of conifer forest burned than hardwood forest during this same 
time span. Agricultural areas experienced the smallest area burned on average while 
herbaceous, or grass dominated systems saw approximately twenty-five and fifty thousand 
acres of wildfire each year on average for each of the six decades assessed.  The land cover 
classifications used in the CFP helped to summarize findings of historical fire analyses in a 
manner that can be understood by most non-technical audiences. 
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Figure D 16. Decadal averages of mean area burned by wildfire annually for six periods falling 
between 1950 and 2008. All periods except the 2000-2008 period represent ten-year averages of acres 
burned by wildfire in five different land cover types found in California.  Figure reproduced from California 

Fire Plan (State Board of Forestry and Fire Protection, 2016). 

Summarizing wildfire trends within and between simple descriptions of land cover works well 
when distinct land cover types can be found within an area of interest.   The State of California 
can also be stratified, using non-jurisdictional boundaries that take other factors, such as climate 
or soil types, into account when classifying an area. 

Figure D 17 provides an example of a classification system, which divides the State up using ten 
CALVEG EcoRegion Province boundaries that have been drawn by the U.S. Department of 
Agriculture -United States Forest Service. Segmenting the State into CALVEG EcoRegions also 
allows analysts to draw distinctions between multiple climate types (Cleland, Freeouf, 
Nowacki, Carpenter, & McNab, 2007).   
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CALVEG EcoRegion Province % of State 

CA Coastal Chaparral Forest and Shrub 6.6% 

CA Dry Steepe 12.0% 

CA Coastal Steppe-Mixed Forest-Redwood Forest 4.5% 

American Semi-Desert and Desert 20.9% 

Intermountain Semi-Desert and Desert 4.6% 

Intermountain Semi-Desert 1.4% 
Sierran Steepe-Mixed Forest- Coniferous Forest-Alpine 
Meadow 38.0% 
CA Coastal Range Open Woodland-Shrub-Coniferous-Forest-
Meadow 12.1% 

Figure D 17. USDA-USFS Region 5 CALVEG EcoRegion Provinces found in California 
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Figure D 18. ESRI ArcGIS Emerging Hot Spot Tool output maps and CALVEG EcoRegion 
Provinces 

When we overlaid the results of our emerging hot spot analysis with CALVEG Ecoregion 
Provinces we noticed: 

 Along the southern coast (areas around Big Sur) areas characterized by coastal chaparral 
forest and shrub are vulnerable in all time periods studied.  These regions are affected 
by either Intensifying or Persistent hot spots. 

 Sierran steppe-mixed forest coniferous forest–alpine meadows ecoregion province will 
be affected by persistent, diminishing, or intensifying hot spots (depending on the time 
period studied). 
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 The California Coastal Range Open Woodland Shrub Coniferous Forest Meadow is also 
an ecoregion that will largely experience Intensifying or Persistent hot spots. 

In Table D 4 we supply modeled Wildfire Threat Ratings for CALVEG EcoRegion Provinces.  In 
Figure D 19 this same information is summarized using bar graphs. 
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Table D 4. Modeled Wildfire Threat Ratings for CALVEG EcoRegion Provinces 

Assessment Period 2000-2020 

Modeled Wildfire Threat Rating 
None or 

Unassessed Low Moderate High 
Very 
High Extreme 

CA Coastal Chaparral Forest and Shrub 17.29% 17.25% 18.44% 17.17% 29.06% 0.79% 
CA Dry Steepe 61.50% 20.57% 15.93% 1.94% 0.06% 0.00% 
CA Coastal Steppe-Mixed Forest-Redwood Forest 2.83% 67.27% 23.53% 4.07% 2.30% 0.00% 
American Semi-Desert and Desert 82.71% 15.07% 1.48% 0.45% 0.29% 0.00% 
Intermountain Semi-Desert and Desert 20.88% 58.59% 16.81% 3.71% 0.00% 0.00% 
Intermountain Semi-Desert 0.71% 43.56% 52.92% 2.81% 0.00% 0.00% 
Sierran Steepe-Mixed Forest- Coniferous Forest-Alpine Meadow 1.37% 17.25% 45.67% 27.33% 8.26% 0.13% 
CA Coastal Range Open Woodland-Shrub-Coniferous-Forest-Meadow 3.56% 5.03% 14.88% 36.31% 32.40% 7.82% 
Assessment Period 2020-2040 

Modeled Wildfire Threat Rating 
None or 

Unassessed Low Moderate High 
Very 
High Extreme 

CA Coastal Chaparral Forest and Shrub 18.10% 16.99% 19.08% 15.60% 28.95% 1.28% 
CA Dry Steepe 61.50% 19.85% 16.58% 1.78% 0.28% 0.00% 
CA Coastal Steppe-Mixed Forest-Redwood Forest 1.62% 59.67% 30.83% 3.04% 4.84% 0.00% 
American Semi-Desert and Desert 81.97% 16.13% 1.16% 0.40% 0.35% 0.00% 
Intermountain Semi-Desert and Desert 24.59% 55.47% 16.64% 3.30% 0.00% 0.00% 
Intermountain Semi-Desert 1.41% 48.55% 47.76% 2.27% 0.00% 0.00% 
Sierran Steepe-Mixed Forest- Coniferous Forest-Alpine Meadow 1.30% 16.37% 40.24% 28.64% 13.00% 0.45% 
CA Coastal Range Open Woodland-Shrub-Coniferous-Forest-Meadow 3.80% 5.77% 14.04% 36.38% 31.77% 8.24% 
Assessment Period 2040-2060 

Modeled Wildfire Threat Rating 
None or 

Unassessed Low Moderate High 
Very 
High Extreme 

CA Coastal Chaparral Forest and Shrub 18.28% 14.56% 19.24% 14.81% 29.60% 3.52% 
CA Dry Steepe 61.50% 21.40% 16.16% 0.91% 0.02% 0.00% 
CA Coastal Steppe-Mixed Forest-Redwood Forest 1.39% 41.59% 44.82% 6.68% 5.52% 0.00% 
American Semi-Desert and Desert 84.49% 13.60% 1.13% 0.30% 0.48% 0.00% 
Intermountain Semi-Desert and Desert 31.15% 49.94% 14.98% 3.92% 0.00% 0.00% 
Intermountain Semi-Desert 2.11% 55.09% 41.10% 1.70% 0.00% 0.00% 
Sierran Steepe-Mixed Forest- Coniferous Forest-Alpine Meadow 1.01% 13.92% 32.94% 23.81% 26.88% 1.44% 
CA Coastal Range Open Woodland-Shrub-Coniferous-Forest-Meadow 4.06% 6.75% 14.67% 36.31% 29.18% 9.04% 
Assessment Period 2060-2080 

Modeled Wildfire Threat Rating 
None or 

Unassessed Low Moderate High 
Very 
High Extreme 

CA Coastal Chaparral Forest and Shrub 18.45% 14.24% 18.34% 12.79% 30.32% 5.86% 
CA Dry Steepe 61.58% 22.73% 15.04% 0.63% 0.02% 0.00% 
CA Coastal Steppe-Mixed Forest-Redwood Forest 1.18% 33.96% 50.14% 9.02% 5.70% 0.00% 
American Semi-Desert and Desert 87.34% 10.96% 0.89% 0.33% 0.47% 0.00% 
Intermountain Semi-Desert and Desert 40.41% 43.07% 13.74% 2.70% 0.07% 0.00% 
Intermountain Semi-Desert 11.22% 61.00% 27.70% 0.08% 0.00% 0.00% 
Sierran Steepe-Mixed Forest- Coniferous Forest-Alpine Meadow 1.07% 14.95% 32.18% 20.38% 28.31% 3.12% 
CA Coastal Range Open Woodland-Shrub-Coniferous-Forest-Meadow 4.81% 7.94% 17.02% 34.79% 26.88% 8.56% 
Assessment Period 2080-2100 

Modeled Wildfire Threat Rating 
None or 

Unassessed Low Moderate High 
Very 
High Extreme 

CA Coastal Chaparral Forest and Shrub 18.40% 13.66% 19.37% 13.50% 29.57% 5.50% 
CA Dry Steepe 61.58% 22.69% 14.67% 1.04% 0.02% 0.00% 
CA Coastal Steppe-Mixed Forest-Redwood Forest 0.62% 23.55% 52.50% 16.69% 6.64% 0.00% 
American Semi-Desert and Desert 84.99% 12.84% 1.42% 0.32% 0.43% 0.00% 
Intermountain Semi-Desert and Desert 43.68% 39.44% 14.03% 2.57% 0.28% 0.00% 
Intermountain Semi-Desert 14.02% 63.93% 21.38% 0.66% 0.00% 0.00% 
Sierran Steepe-Mixed Forest- Coniferous Forest-Alpine Meadow 0.90% 13.78% 27.43% 16.63% 29.84% 11.41% 
CA Coastal Range Open Woodland-Shrub-Coniferous-Forest-Meadow 4.84% 9.15% 19.83% 36.05% 22.60% 7.53% 
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Figure D 19. Modeled Wildfire Threat Ratings for CALVEG EcoRegion Provinces. For the Reference 
Period (2000-2020) and two future periods: 2040 to 2060 and 2080 to 2100. All of the bars of a unique 

color correspond to one of The CALVEG EcoRegion Provinces 
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In certain instances, it may be highly desirable to assess wildfire variability using classification 
systems that decompose wildland areas using characterizations of the surface fuel beds.  
Surface fuels are defined as being either downed woody material, brush, or grass.  
Characteristics of surface fuel loads that contribute to fire behavior and fire severity include 
abundance, material size, and moisture content.  The California Interagency Fuel Mapping 
Group (CAIFMG), a consortium of State and Federal agencies, maintains a regional surface fuel 
database that use definitions for the original standard 13 fuel behavior models (Anderson), used 
in the Fire Behavior Prediction System to classify areas of the State.  The CAIFMG dataset is 
constructed from the "best available" wildland fuels data available for the State of California at 
the time of its most recent release in 2015  (California Department of Forestry and Fire 
Protection Fire and Resource Assessment Program, 2015). 

D.2.7 Downscaling Westerling’s Wildland Fire Futures to One Square Kilometer 
Westerling's (forthcoming) regional-scale wildfire futures provide information that can prove to 
be too spatially coarse to be of great value to TFS stakeholders seeking to plan. Ultimately, 
many asset operators need a clearer picture of what is going on in each of Westerling’s 
prediction cells if the modeling outputs are to be of any practical use. A 2018 USGS research 
project, headed up Dr. Ben Sleeter, downscaled Westerling’s wildfire projections to one square 
km spatial resolution for a 100-year period spanning between 2001 and 2101 as part of an effort 
to estimate carbon balances over the remainder of the current century (B. Sleeter, Personal 
Communication, 2017).  Sleeter’s finer spatial resolution modeling outputs represent patterns of 
wildfire at the landscape scale and (may) better characterize wildfires where heterogeneous 
land cover types are found within a single 16th degree latitude x longitude Westerling 
prediction cell.  To illustrate what this improvement in resolution means take, for example, a 
high elevation region of the southern Sierra Nevada where any one of Westerling’s 16th degree 
latitude x longitude cells is likely to contain large, continuous areas of non-combustible granite 
rock as well as portions of flammable forest, grass, and shrub land cover types.  In this situation 
Sleeter’s downscaled wildfire modeling routine only burns portions of Westerling’s larger cell 
classified as being a combustible cover type. However, fundamentally Sleeter and Westerling 
should be in agreement since Westerling’s 16th degree latitude x longitude outputs are used to 
place limits on Sleeter’s estimates of area burned by wildfire throughout different ecological 
regions of California.  At the time of this project, Sleeter is in the process of publishing his 
approach to downscaling Westerling’s results and further information on the results have been 
withheld at the researcher’s request. 

D.2.8 Application: Modeled Wildfire Threat Rating System and the TFS  
For TFS link assets, including pipelines, highways, and rail lines, we define exposure to wildfire 
as the distance of the individual asset type intersecting the different MWTR categorizations.  
For TFS assets that have “footprints”, such as oil fields, we calculate wildfire exposure in terms 
of the area falling in each MWTR classification.  Other TFS assets in our analysis are defined by 
points (latitude and longitude coordinates) and in these instances we calculate wildfire 
exposure as counts of these assets across the different MWTR classes.  This latter method is used 
to summarize exposure for Refinery, Terminal, Airport, and Gas Station TFS asset types.  We do 
not assess changes in MWTR for Dock or Port type TFS assets, as is done in the flooding portion 
of this study, because the likelihood of a large wildfire occurring in the highly developed and 
water-rich areas of the State where they are located is essentially zero.  For more information 
on all asset types assessed as well as data sources used to build the GIS layers for each asset 
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type, refer to Appendix A.  The different asset types intersected with modeled wildfire futures 
can be found in Table D 5. 

Table D 5. TFS asset types, geospatial vector data types, and units of analysis used when 
assessing exposure of asset type to different wildfire hazard and threat classes 

TFS Asset Type[MSP1]  Vector Data Type Unit of Analysis 

Refineries point Counts 

Terminals point Counts 

Pipelines polyline Linear Distance in Miles 

Rail polyline Linear Distance in Miles 

Roadways polyline Linear Distance in Miles 

Airports polyline Counts 

Gas Stations point Counts 

Oil Fields polygon Area in Hectares 
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Table D 6.Total distance, area, or number of TFS assets exposed to each Modeled Wildfire Hazard 
Rating (MWHR) class. Median values used to determine MWHR classes are taken from wildfire 

projections derived from the outputs of four GCMs (Warm/Dry, Cool/Wet, Average, and Complementary) 
run under two emissions scenarios (RCP 4.5 and RCP 8.5). 

Assessment Period 2000-2020 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (Count) 12 4 2 0 0 0 
Terminals (Count) 67 25 5 0 0 0 
Pipelines (Miles) 3713.8 887.0 1561.1 772.4 322.6 23.8 
Rail (Miles) 2188.3 968.2 758.8 452.2 191.7 0.0 
Roadways (Miles) 4311.0 3642.6 3504.0 1982.8 1100.9 76.0 
Airports (Count) 83 55 40 21 8 0 
Gas Stations (Count) 6814 3289 1979 769 310 1 
Oil Fields (Hectares) 139353.1 61007.8 78418.8 34374.3 20472.1 191.1 
Assessment Period 2020-2040 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (Count) 12 4 2 0 0 0 
Terminals (Count) 67 25 5 0 0 0 
Pipelines (Miles) 3727.1 882.9 1553.0 764.8 324.2 28.6 
Rail (Miles) 2191.1 1024.9 648.6 401.3 293.2 0.0 
Roadways (Miles) 4310.7 3581.9 3445.9 1977.4 1207.9 93.5 
Airports (Count) 84 53 43 17 10 0 
Gas Stations (Count) 6902 3515 1778 680 281 6 
Oil Fields (Hectares) 140560.2 57099.0 78820.0 35288.5 21270.5 778.8 
Assessment Period 2040-2060 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (Count) 12 4 2 0 0 0 
Terminals (Count) 71 22 4 0 0 0 
Pipelines (Miles) 3760.0 1165.2 1437.0 526.4 357.9 34.2 
Rail (Miles) 2240.3 971.8 635.9 318.7 373.6 18.9 
Roadways (Miles) 4400.0 3263.6 3265.5 1807.1 1732.9 148.2 
Airports (Count) 83 52 41 16 15 0 
Gas Stations (Count) 7038 3478 1653 596 383 14 
Oil Fields (Hectares) 140560.2 72143.8 80686.3 19320.9 18293.9 2811.9 
Assessment Period 2060-2080 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (Count) 12 4 2 0 0 0 
Terminals (Count) 71 23 2 1 0 0 
Pipelines (Miles) 3803.9 1283.6 1393.7 389.3 335.7 74.5 
Rail (Miles) 2295.1 973.6 607.5 301.4 312.9 68.6 
Roadways (Miles) 4519.7 3250.1 3172.2 1638.8 1789.3 247.1 
Airports (Count) 83 52 39 17 14 2 
Gas Stations (Count) 7117 3582 1424 561 437 41 
Oil Fields (Hectares) 140560.2 83598.7 74580.2 13118.7 17012.0 4947.2 
Assessment Period 2080-2100 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (Count) 12 5 1 0 0 0 
Terminals (Count) 71 23 3 0 0 0 
Pipelines (Miles) 3801.5 1305.9 1398.5 374.0 321.6 79.2 
Rail (Miles) 2321.5 948.3 592.8 284.4 283.5 128.7 
Roadways (Miles) 4511.7 3207.7 3045.2 1552.9 1821.3 478.6 
Airports (Count) 84 49 40 17 13 4 
Gas Stations (Count) 7125 3628 1421 522 362 104 
Oil Fields (Hectares) 140560.2 84078.1 73654.7 15211.8 15403.0 4909.3 

D-39 



 

 

 

 
     

      
     

      
      

      
      

     
     

 
     

      
     

      
      

      
      

     
     

 
     

      
     

      
      

      
      

     
      

 
     

      
     

      
      

      
      

     
      

 
     

      
     

      
      

      
      

     
      

Table D 7. Percentage of each TFS asset type exposed to each MWHR class. Median values used to 
determine MWHR class were taken from wildfire backcast and forecast data derived from the outputs of 

four GCMs (Warm/Dry, Cool/Wet, Average, and Complementary) run under two emissions scenarios 
(RCPs 4.5 and 8.5). 

Assessment Period 2000-2020 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (%) 66.67 22.22 11.11 0.00 0.00 0.00 
Terminals (%) 69.07 25.77 5.15 0.00 0.00 0.00 
Pipelines (%) 51.01 12.18 21.44 10.61 4.43 0.33 
Rail (%) 48.00 21.24 16.64 9.92 4.20 0.00 
Roadways (%) 29.49 24.92 23.97 13.56 7.53 0.52 
Airports (%) 40.10 26.57 19.32 10.14 3.86 0.00 
Gas Stations (%) 51.77 24.99 15.04 5.84 2.36 0.01 
Oil Fields (%) 41.75 18.28 23.49 10.30 6.13 0.06 
Assessment Period 2020-2040 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (%) 66.67 22.22 11.11 0.00 0.00 0.00 
Terminals (%) 69.07 25.77 5.15 0.00 0.00 0.00 
Pipelines (%) 51.19 12.13 21.33 10.50 4.45 0.39 
Rail (%) 48.06 22.48 14.23 8.80 6.43 0.00 
Roadways (%) 29.49 24.50 23.57 13.53 8.26 0.64 
Airports (%) 40.58 25.60 20.77 8.21 4.83 0.00 
Gas Stations (%) 52.44 26.71 13.51 5.17 2.13 0.05 
Oil Fields (%) 42.11 17.10 23.61 10.57 6.37 0.23 
Assessment Period 2040-2060 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (%) 66.67 22.22 11.11 0.00 0.00 0.00 
Terminals (%) 73.20 22.68 4.12 0.00 0.00 0.00 
Pipelines (%) 51.64 16.00 19.74 7.23 4.92 0.47 
Rail (%) 49.14 21.32 13.95 6.99 8.19 0.41 
Roadways (%) 30.10 22.33 22.34 12.36 11.86 1.01 
Airports (%) 40.10 25.12 19.81 7.73 7.25 0.00 
Gas Stations (%) 53.47 26.42 12.56 4.53 2.91 0.11 
Oil Fields (%) 42.11 21.61 24.17 5.79 5.48 0.84 
Assessment Period 2060-2080 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (%) 66.67 22.22 11.11 0.00 0.00 0.00 
Terminals (%) 73.20 23.71 2.06 1.03 0.00 0.00 
Pipelines (%) 52.25 17.63 19.14 5.35 4.61 1.02 
Rail (%) 50.34 21.36 13.33 6.61 6.86 1.51 
Roadways (%) 30.92 22.23 21.70 11.21 12.24 1.69 
Airports (%) 40.10 25.12 18.84 8.21 6.76 0.97 
Gas Stations (%) 54.07 27.21 10.82 4.26 3.32 0.31 
Oil Fields (%) 42.11 25.04 22.34 3.93 5.10 1.48 
Assessment Period 2080-2100 
Modeled Wildfire Hazard Rating None or Unassessed Low Moderate High Very High Extreme 
Refineries (%) 66.67 27.78 5.56 0.00 0.00 0.00 
Terminals (%) 73.20 23.71 3.09 0.00 0.00 0.00 
Pipelines (%) 52.21 17.94 19.21 5.14 4.42 1.09 
Rail (%) 50.92 20.80 13.00 6.24 6.22 2.82 
Roadways (%) 30.87 21.94 20.83 10.62 12.46 3.27 
Airports (%) 40.58 23.67 19.32 8.21 6.28 1.93 
Gas Stations (%) 54.13 27.56 10.80 3.97 2.75 0.79 
Oil Fields (%) 42.11 25.19 22.06 4.56 4.61 1.47 
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Figure D 20. Percentages of each TFS asset types exposed to Very High or Extreme MWTR 
classes during each 20-year period of analysis. Note that Refineries and Terminals carry no Very High 

or Extreme MWTR exposure during the entire one-hundred year time-frame assessed and thus have 
slopes of 0 and intersect the y-axis at 0 on the chart. 

During the 2000-2100 period we expect marked increases to occur in the percentages of 
highways (+ 8% of total distance), Railways (+ 5% of total distance), Airports (+ 4% of total 
number) that intersect areas of the State with MWTR classifications that are Very High or 
Extreme (Figure D 20).  Less dramatic increases in the percentages of Pipelines (+ 1% of total 
length) and Gas Stations (+ 2% of total count) with exposure the two most severe MWTR classes 
are expected during the same one-hundred year timeframe.  Oilfields show a slight decrease 
(<1%) in exposure to Very High or Extreme MWTR classes while Refineries and Terminals carry 
no Very High or Extreme MWTR exposure during the entire century-long assessment period. 

The majority of each TFS asset type is located in regions of the State where the 90th percentile or 
greater median estimate for area burned by wildfire annually during the reference period (2000-
2020) is not been projected to occur in the future.  Many TFS asset containing regions of the 
State carry Low, Moderate, or High MWTR throughout the 21st century and still have potential 
to be exposed to large wildfire events (Figure D 21). Terminals and Refineries are exposed to 
very small amounts of large wildfire relative the other asset types however the threat still exists  
and is projected to persist. 
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Figure D 21. Percentage of each TFS asset type exposed to each MWTR class. 
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Pipelines that carry refined products are of particular interest to TFS stakeholders for reasons 
discussed in the main body of this document.  Figure D 22 shows TFS non-crude pipelines 
overlaid upon the results of the space-time hotspot analysis. Areas around the Salton Sea are 
projected to have intensifying hotspots over the century. 

Figure D 22. Statewide hot spot areas and non-crude pipelines 

So far this Appendix has explored future projections of statewide wildfire threat across different 
models, examined spatial-temporal trends in statewide modelled wildfire occurrence, 
compared existing modelling techniques, and assessed the wildfire threat of the essential TFS. 
Dr. Westerling’s wildfire projection dataset is used to identify areas with a high potential of 
being affected by wildfire - hot spot areas. The following section focuses on describing the 
newly created methodology that models wildfire behavior at a fine spatial scale (5-m; 16.4-ft) 
resolution. Modeling techniques, data collection methods and challenges, and future directions 
are further discussed. 

D.2.9 Tree Mortality and Wildfire 
Recent research by Stephens et al. (2018) reports that tree mortality is becoming more prevalent 
in California, especially in the northern California Sierra Nevada.  The mortality is a result of 
recent drought, insects and disease, and a human-induced infrequency of low and moderate 
intensity wildfires.  Downed vegetative fuels pose a risk of high and extreme surface fire 
intensity if ignited (Stephens et al., 2018).  Moreover, they pose a risk of spotting, causing 
multiple proximate ignitions and potentially mass fire conditions (Collins, Personal 
Communication 2018).  Dead standing trees pose threat of increased ignitability, but tree 
mortality proves most dangerous when these trees eventually fall to the forest floor, typically 
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about a decade after standing dead.  The dead biomass on the forest floor poses the greatest 
threat of extreme surface fire intensity for multiple decades, after which the downed vegetation 
will have decomposed into non-ignitable biomass (Stephens et al., 2018). 

We conducted research to identify wildfire hazards in California posed by tree mortality.  In 
order to spatially locate hazard from tree mortality, a dataset is produced to identify canopy 
biomass loss in forests using remotely sensed MODIS imagery (Li, Under Review).  The 
Biomass Loss dataset (see Figure D 23) leverages the Enhanced Vegetation Index (EVI) to 
indicate canopy biomass loss.  Biomass loss is derived from decreases in seasonal peak canopy 
greenness from 2000 to 2016.  Since remotely sensed imagery can only observe forest canopy, 
not understory, the dataset is interpreted as canopy biomass loss.  The dataset is restricted to 
assess only forested regions by using forested land covers identified by the National Land 
Cover Database (NLCD) as a mask for the data.   In addition to removing non-forested regions 
from the dataset, historical wildfires and clear cutting, acquired as polygons from GeoMAC and 
USFS, respectively, are removed from the dataset to eliminate biomass losses that do not 
contribute to combustible vegetation. 
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Figure D 23. 2000-2016 canopy biomass loss (as derived from decrease in seasonal peak EVI) in 
forested regions in California. The dataset tracks change in EVI from 2000 to 2016. Wildfires and 

locations of clearcutting are removed from the dataset. 
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Table D 8 displays where infrastructures are exposed to biomass loss, or where infrastructures 
intersect decreases in seasonal peak EVI during the observed time period.  Considering only 
forested areas are assessed by the BML dataset, the first column shows the amount of 
infrastructure that does not intersect with a forested area, and therefore is excluded from the 
dataset.  The next column, “No BML,” indicates infrastructure exposed to seasonal peak EVI 
that either increases or is constant across the assessed time period.  The following columns 
show the infrastructures exposed to decreases in seasonal peak EVI, or canopy biomass loss. 
These are areas of potential concern for the high- and extreme-surface fire intensities described 
by Stephens et al. (2018). 
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Table D 8. Total distance, area, or number of TFS assets exposed to biomass loss. Only forested 
areas are assessed by the biomass loss dataset, so “Not Forested” areas are separated from areas in 
forested regions.  Of the forested regions, the table shows the exposure to increments of percentage 

decreases in canopy biomass loss, as well as “No Biomass Loss (BML).”  The bin 81-100% is not 
included because there are no instances of this degree of canopy biomass loss intersecting with 

infrastructure. 

Biomass Loss (% Decrease Seasonal Peak EVI) 

Not Forested No BML 1-20% 21-40% 41-60% 61-80% 

Refineries (Count) 18 0 0 0 0 0 

Terminals (Count) 96 1 0 0 0 0 

Pipelines (Miles) 6,934.9 273.5 55.4 16.2 0.6 0 

Rail (Miles) 3,988.0 403.6 148.1 17.9 1.6 0 

Roadways (Miles) 11,012.1 2616.4 814.1 170.8 4.0 0.2 

Airports (Count) 195 10 2 0 0 0 

Gas Stations (Count) 12,675 398 78 11 0 0 

Oil Fields (Hectares) 321,946.7 9,976.3 1,192.8 653.2 43.0 5.4 

Of the infrastructures exposed to biomass loss, not all the infrastructures are in wildfire prone 
regions of the State.  In order to decompose this data further, the infrastructures exposed to 
biomass loss--infrastructures described by the four rightmost columns above--are intersected 
with CAL FIRE Wildfire Rotation, a component of the CAL FIRE Threat Map (California 
Department of Forestry and Fire Protection Fire and Resource Assessment Program, 2015). 
Table D 9 informs which infrastructures exposed to canopy biomass loss are also in regions that 
are expected to experience frequent wildfires. 
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Table D 9. Total distance, area, or number of TFS assets exposed to each class of wildfire rotation 
for each class of biomass loss. 

Wildfire Rotation 
Interval 

Canopy 
Biomass Loss 

Pipeline 
(Miles) 

Rail 
(Miles) 

Gas Stations 
(Count) 

Oil Fields 
(Hectares) 

Roadways 
(Count) 

None 

1-20% 4.1 23.7 39 53.3 119.1 

21-40% 2.1 2.2 5 64.0 30.2 

41-60% 0.2 0 0 6.1 0.9 

61-80% 0 0 0 0 0 

Low (>200 years) 

1-20% 6.3 7.0 3 96.3 83.0 

21-40% 2.7  1.3  0  0  10.2 

41-60% 0.1 0.1 0 0 0.1 

61-80% 0 0 0 5.4 0 

Medium 
(35-200 years) 

1-20% 8.1 33.5 9 296.9 184.9 

21-40% 3.8 4.5 1 71.2 40.5 

41-60% 0 0.2 0 9.2 1.5 

61-80% 0 0 0 0 0 

High (<35 years) 

1-20% 36.9 83.9 27 746.2 424.1 

21-40% 7.6 9.9 5 518.2 89.9 

41-60% 0.2 1.2 0 27.7 1.4 

61-80% 0 0 0 0 0 

Any degree of tree mortality in a wildfire prone region is hazardous.  Therefore, any 
infrastructures included in the bottom rows of this table—infrastructures exposed to canopy 
biomass loss where the wildfire rotation return interval is less than 35 years—are areas of 
concern for wildfire exposure.  Figure D 24 shows the location 44.7 miles of pipeline (bolded and 
italicized in the table above) this methodology has identified as exposed to canopy biomass loss 
and frequent wildfire return interval. 
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Figure D 24. The location of the 44.7 miles of pipeline exposed to biomass loss and a High wildfire 
rotation class. The pipelines in areas of concern are concentrated in the northern California Sierra 

Nevada and in southern California. 

D.3 High Resolution Wildfire Behavior Modeling 

During a wildfire, fire behaviors such as fire intensity, flame length, and rate of spread may 
seem unpredictable. However, these fire behavior attributes can be predicted using complex fire 
models built on assumptions about fuel composition and moisture levels, topography, weather, 
wind, and time of day. The wildfire behavior science community has advanced the fidelity of 
fire behavior modeling by calibrating their modeled simulations to observed fire behaviors. In 
this section, we detail our methodology for deriving landscape attributes at a 5m spatial 
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resolution from public data sources, for downscaling future weather conditions from Localized 
Constructed Analog (LOCA) data, for simulating wildfire scenarios under extreme wildfire 
conditions, for quantifying predictable hazards and mitigating hazards, and for calibrating our 
models to recent, catastrophic wildfires from this decade. An analysis of our results shows a 
93% land cover classification accuracy and a strong correlation between modeled fire intensity 
and observed soil burn severity. 

D.3.1 Introduction: High Resolution Wildfire Behavior Modeling 
We conduct high spatial resolution wildfire behavior modeling to assess wildfire hazard near 
TFS assets. We do so by estimating potential wildfire behavior metrics under present and 
future climate conditions.  The wildfire behavior simulation process involves topography model 
construction, surface classification into standardized fuel models, and a basic fire behavior 
(BFB) simulation using FlamMap software. 

Given that modeling wildfire behavior at 30m resolution is a common practice, and we learn 
TFS stakeholders find it difficult to relate those model outputs to their asset exposure, we use 
high spatial resolution imagery and Light Detection and Ranging (LiDAR) to classify 
landscapes at 5m resolution. The model offers a more accurate and precise decomposition of fire 
behavior to identify wildfire behavior hazards. Digital Elevation Models (DEM), Digital 
Surface Models (DSM), and Canopy Height Models (CHM) are derived from first and last pulse 
LiDAR data.  Land cover is classified as a selection of the thirteen Anderson fuel models for 
deriving wildfire behavior (Anderson, 1982).  These models are incorporated into an object-
based image analysis (OBIA) method, which constructs a classified landscape. This landscape is 
further used as an input layer into FlamMap, a wildfire behavior simulation software.  Fire 
behavior simulation produces output metrics of flame length, fire intensity, and rate of spread.  
In order to model future conditions of wildfire, LOCA data are used to represent future extreme 
conditions of temperature and relative humidity, while vegetation and land cover properties are 
held constant through time (D. W. Pierce & Cayan, 2015; David W. Pierce, Cayan, & Thrasher, 
2014).  Mitigation procedures are simulated by modifying fuels to include the Scott and Burgan 
standard 40 fuel models to demonstrate the effect of mitigation on wildfire behavior (Scott & 
Burgan, 2005). 

D.3.2 Model Inputs 
D.3.2.1 Airborne LiDAR 

Airborne LiDAR data are collected as discrete point clouds from USGS and OpenTopography, a 
National Science Foundation data facility developed by the San Diego Supercomputer Center.  
First and last return point data are processed using binning and interpolation algorithms 
available in ESRI ArcGIS 10.5 to construct DEM, DSM, and CHM for all study sites (See section 
D.3.3 – Elevation Models). 

Since there is not full LiDAR coverage of California (Figure D 25), and multitemporal data is not 
available for any of the study sites processed, LiDAR is the limiting factor for modeling present 
conditions of elevation and surface object heights (Table D 10).  To limit artifacts of land cover 
change between LiDAR and imagery collection, imagery is chosen based on temporal proximity 
to LiDAR collection instead of the most recent imagery available for the study site. 
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Figure D 25. Available Open Source LiDAR in California. (Data Source: United States Geological 
Survey, OpenTopography). 

Table D 10. LiDAR datasets used for analysis 

Bioregion Dataset Source Collection Date Horiz. Point Spacing Coordinate System 

Sierra Nevada 
Mountains 

OpenTopography 2014 4 inches UTM Z10N 

California Oak 
Woodlands 

USGS 2007 3-6 inches NAD83 State Plane 
CA ZIII 

Southern 
California 
Mountains 

OpenTopography 2005 1 meter UTM Z11N 

D.3.2.2 Imagery: National Agriculture Imagery Program (NAIP) 

Multi-spectral orthoimagery from the National Agriculture Imagery Program (NAIP) is 
acquired from Google Earth Engine (GEE), an online platform that offers access to petabytes of 
public GIS data. Through GEE’s JavaScript-based API, the cloud-driven interface enables high-
speed processing, visualization, and downloading. With the complete NAIP archive accessible 
and advantageous filter-by-date and filter-by-boundary image selection features, GEE allows 
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for the efficient download of NAIP images nearest to LiDAR collection dates, resulting in 
reduced data processing post-download. Once acquired, the NAIP data, which has a standard 
resolution of 1 meter, is resampled to 5 meters, since fuel models are representations of 
heterogeneous flammable land cover types, not individual objects, and classification of 1 meter 
pixels cannot be appropriately used to represent the heterogeneity assumed in the fuel models 
(M. Finney, personal communication, June 29, 2017). In addition to red, green, and blue 
wavelengths, NAIP imagery includes a near infrared band, the inclusion of which improves 
classification of land cover, making NAIP 4-band imagery a strong choice for the high-
resolution wildfire behavior modeling. NAIP missions are flown every two to three years in 
California and 4 band imagery began in 2008 (Table D 11). 

. 

Table D 11. NAIP imagery datasets used for analysis 

Location Dataset Source Collection Date Coordinate System 

Tahoe USGS 2016 UTM Z10N 

Contra Costa County USGS 2009 UTM Z10N 

D.3.3 Wildfire Behavior Simulation 
D.3.3.1 FlamMap Basic Fire Behavior Analysis (BFB) 

FlamMap is an open source software developed by the US Forest Service for simulating 
potential wildfire behavior with a GIS (Finney, 2006).  Our research employs the Basic Fire 
Behavior (BFB) Analysis module of FlamMap.  BFB applies pixel-based calculations of wildfire 
propagation to model static, spatially-explicit wildfire behavior characteristics (Albini, 1979; 
Rothermel, 1972).  The pixel-based nature of the software allows for quicker processing than an 
equivalent vector-based software, such as FARSITE, making it an ideal choice for conducting 
analyses of large areas and high spatial resolution data.  We select BFB analysis for the scope of 
our project because, as opposed to spread models alternatives, BFB does not require an ignition 
point.  While a stochastic model could be developed to predict a potential source of ignition, 
TFS stakeholders should operate and mitigate under the assumption that wildfire could ignite 
near any of their assets that neighbor vegetation.  FlamMap BFB inputs include spatially explicit 
landscape data, as well as initial fuel moisture data and temporally explicit climate data (Table 
D 12). 
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Table D 12. Inputs to Basic Fire Behavior Simulation.

 Input Data Source Units 

Spatially Explicit 

Fuel Model Imagery, CHM Standard Fuel 
Classes (Integer) 

Elevation DEM Meters 

Slope DEM Percent 

Aspect DEM Degrees 

Canopy Cover CHM Percent 

Stand Height CHM Meters 

Canopy Base Height Constant Meters 

Canopy Bulk Density Constant kg/m3 

Non-spatially explicit 

Fuel Moisture US Forest Service 1-hr, 10-hr, 100-hr 

Temperature observed or LOCA Fahrenheit 

Relative Humidity observed or LOCA Percent 

Precipitation observed or LOCA Inches 

Wind Direction Constant Degrees 

Wind Speed Constant mi/hr 

Cloud Cover observed or 0 Percent 

D.3.3.2 Wildfire Behavior Hazard Metrics: Spread Rate, Flame Length, Fire Intensity 

Spatially explicit and non-spatial inputs to the BFB produced estimates of fire intensity, flame 
length, and rate of spread as outputs. Fire intensity, measured in BTU/ft, is a measure of heat 
emitted per unit area. Flame length is the length of the flame emitted measured in feet, and is 
determined by both the rate of spread and heat emitted per unit area (Andrews & Rothermel, 
1982).  Rate of spread, measured in feet per minute, is the rate at which an object ignites and 
indicates the threat of an object to propagate wildfire.  Fire intensity, measured in BTU/ft, is a 
measure of heat emitted per unit area (Table D 13). 
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Fire Suppression Tactics and Wildfire Behavior Hazard Metrics 

These wildfire behavior hazard metrics are used to inform suppression capability of a wildfire 
eliciting these characteristics. Figure D 26 is a Fire Characteristics Chart, also known as a 
“Hauling Chart,” and is a useful decision making tool for hauling in hand crews, equipment, 
aircraft; or hauling everything out of there (Andrews, 2010). 

Figure D 26. Wildfire Behavior Metrics and Fire Suppression Tactics (Andrews & Rothermel, 1982) 
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Table D 13. Description of selected fuel metrics as pertaining to potential methods of suppression. 

Rate of Spread 
(ft/min) 

Flame Length 
(ft) 

Fire Intensity 
(BTU/ft) 

Figure 3.3.1. Interpretation 

<5 <4 <100 
Fire can be maintained by 

hand tool resources.  

5-20 4-8  100-500 
Handline may not hold fire, 

bulldozers and air support may 
be utilized. 

21-50 8-11 500-1,000 

Fires are difficult to control, 
efforts may be ineffective, and 
resources shifted to preventing 

spread, as opposed to 
attacking the fireline. 

>50 >11 >1,000 
Risk of major fire runs.  

Control efforts are ineffective. 

(Source: Andrews & Rothermel, 1982) 

D.3.4 Elevation Surfaces 
Elevation surfaces are constructed in an automated process using airborne Light Detection and 
Ranging (LiDAR) data.  LiDAR measurements are used to construct Digital Elevation Models 
(DEMs) and Digital Surface Models (DSM). The difference between the DSM and DEM is used 
to create a Canopy Height Model (CHM) and Canopy Cover models.  The models are used to 
determine slope, aspect, stand height, and canopy cover values that BFB simulations required. 

D.3.4.1 Source Data 

Airborne LiDAR are acquired as discrete point clouds.  Average point spacing, or average 
horizontal resolution, of LiDAR data ranges from three inches to one foot, and varies between 
datasets.  Point clouds either contained first and last return observations, or all observed 
returns.  Point cloud binning operations used to construct elevation and surface models use 
minimum and maximum values within raster cells.  For a ground surface that is observed by 
airborne LiDAR with all return data, the first pulse, last pulse, and all intermediate returns 
would be the same.  For a non-ground surface, such as vegetation or a built object, the first 
return will correspond with the maximum height return value and the last return will 
correspond with the minimum height return value. Therefore, for the purposes of constructing 
DEMs and DSMs, first and last pulse data are functionally equivalent to all return data.  All 
Airborne LiDAR source data are received as .las files. Projection and datum of source data 
varies, and all data is ultimately processed in Universal Transverse Mercator projection. 

D.3.4.2 Elevation Models 

DEMs are derived from point clouds to construct raster elevation models for input into 
FlamMap Basic Fire Behavior simulation.  Point cloud data is originally in .las file format and is 
converted to an ArcGIS LAS Dataset format.  For source data with .las files that are parsed by 
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first and last return, two separate LAS Datasets are constructed.  For source data acquired as a 
point cloud of all returns, an aggregate LAS Dataset is created. 

To construct the raster DEM from point clouds, the LAS Datasets are input into a binning 
algorithm, in which the minimum return value within each raster cell is assumed to be ground 
surface.  Cell size for binning is set to align with imagery resampled to five meters.  For first and 
last return datasets, only last return data is used to construct the elevation model.  For datasets 
including all returns, the minimum of all points in the five-meter cell is assumed to be the 
ground surface.  Cells with no return data are populated by rendering a triangulated surface 
across the empty space and using a linear interpolation to ascribe elevation values to a 
contiguous raster. 

D.3.4.3 Canopy Height Model 

A raster Digital Surface Model (DSM) is constructed as an intermediate step before calculating a 
Canopy Height Model (CHM).  Similar to DEM construction, to construct the DSM, a binning 
algorithm using five-meter cells is used to aggregate LiDAR points.  The maximum height 
within each rater cell is calculated as the surface.  Similar to the DEM, the DSM represents the 
maximum of all points used for all-return datasets, and the maximum of first return points are 
used for parsed datasets.  Instead of an interpolation algorithm to fill voids, raster cells with no 
return points are given the value of the DEM raster. 

The vertical difference between the DEM and DSM is calculated as the CHM (DSM - DEM = 
CHM).  This calculation alone yields raster cells that indicate error, usually due to bird presence 
during LiDAR collection, so an algorithm is developed to eliminate the outlying points.  If any 
raster cells are greater than 300 feet then they are removed from the contiguous CHM 
surface.  The algorithm filled the void with a natural neighbor interpolation to recreate a 
contiguous CHM. 

D.3.4.4 Elevation and Surface Models: Sources of Error 

Sources of error in this process are those that are typically artifacts of deriving terrain models 
from LiDAR data.  The observed point returns collected during flight are unlikely to be the true 
minimum and maximum of the true surface.  To increase likelihood of nearly true minimum 
and nearly true maximum representations, ESRI recommends a minimum of four points for 
each raster cell created in the binning algorithm; based on a range of four-inch to one-foot 
horizontal resolution of LiDAR, five-meter cells contained approximately 256 to 2400 returns to 
bin the minimum and maximum elevation, but can still contain significantly fewer depending 
on point density for a cell.  Another source of error is the estimated elevations derived from the 
triangulated network and linear interpolation algorithm.  However, occurrences of voids are 
rare due to large binning cells relative to the fine horizontal resolution of the LiDAR flights. 

D.3.5 Classification of Fuels 
D.3.5.1 Fire Behavior Fuel Models 

Fire behavior fuel models (FBFM) are used to represent the components of surface fuels that 
produce predictable surface fire spread behavior. Previous research on fuel compositions and 
fire behavior characteristics has expanded Anderson’s original set of 13 FBFM to a current 
standard of 40 FBFM (Scott & Burgan, 2005). FBFMs are mathematical representations of a 
vegetation type’s fuel loading, particle size class, surface area to volume ratio, heat content, fuel 
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bed depth, and dead fuel moisture of extinction. The Scott and Burgan 40 (S&B 40) FBFMs offer 
the ability to model fuels with live herbaceous components and a range of fuel loading options 
for each vegetation class. This makes the S&B 40 FBFM particularly useful for modeling 
prescribed fires when relative humidity, wind and weather conditions do not present serious 
fire dangers. The Anderson 13 FBFM, on the other hand, represent fully cured fuels since they 
do not account for live herbaceous moistures. A fully cured fuel is one that is completely dead 
and only needs ignition to express the most extreme fire behavior characteristics for that fuel. 
As such, the Anderson 13 FBFM are useful when modeling fire spread behavior during the 
severe driest period of the fire season (Anderson, 1982). In this study, all fire-carrying fuels are 
classified into the Anderson 13 FBFM in order to characterize the maximum, static fire behavior 
potential for a landscape. 

The potential fire behavior of FBFMs are products of Richard Rothermel’s surface fire spread 
equations, which do not model the physics of combustion, but closely approximate the behavior 
of observed fire spread behavior (Rothermel, 1972). FBFMs are not representative of perfectly 
homogenous fuel compositions. Instead, these models are calibrated over an unspecified area 
with the assumption of heterogeneous compositions of fuels in order to mimic the spatial 
heterogeneity and species composition of wildland fires. Classifying a fuel into an FBFM is a 
time-intensive task that typically requires field observations and a knowledge of the ecoregion’s 
vegetation in order to fit the FBFM to the observed fuel and achieve the appropriate predicted 
fire spread behavior (Ager, Finney, Kerns, & Maffei, 2007). This study substitutes on-the-ground 
sampling for remotely sensed data in order to classify landscape objects into FBFMs. This 
method has inherent accuracy limitations: airborne LiDAR data does capture the vertical 
structure of fuel complexes well, and processing remotely sensed data succeeds in its ability to 
rapidly approximate fuel models for land cover at the landscape-scale. To achieve a more 
precise characterization of a landscape’s maximum, static fire behavior potential, it is 
recommended to consult expert fuel managers and ecologists to improve upon the methods 
presented herein. 

Remotely sensed data from the Landsat series has become a critical medium for fuel managers 
to classify land cover into the FBFM. The Landsat series has a 30m spatial resolution, captures 
imagery for all fire environments across the US, and is easy to classify into land cover because 
of its many spectral bands.  However, 30m spatial resolution is too coarse to sufficiently 
understand the fire behavior of surface fuels for a local scale assessment when the minimum 
pixel has an area of 900 sq.m. This study demonstrates the benefits of classifying fuels at 5m 
using resampled NAIP imagery, where the minimum object size is 25 sq.m. Due to the 
approximations of surface fire behavior made by Rothermel’s equations and the inherent 
heterogeneity of each FBFM, 5m spatial resolution represents the upper resolution limit before 
the physics of combustion are apparent and the quality of Rothermel’s spread equations begin 
to break down. Therefore 5-m (16.4-ft) spatial resolution is utilized in order to improve the 
resolution of land cover and of a landscape’s maximum, static fire behavior potential. Figure D 
27 and Figure D 28 are images of the fuel types used to standardize each FBFM taken from 
Anderson’s “Aids to determining fuel models for estimating fire behavior” (1982). 
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Figure D 27. Grass fuel type: “Short Grass” (FBFM 01) (left); Shrub fuel types: “Dormant
Brush/Hardwood Slash” (FBFM 06) (middle), “Chaparral” (FBFM 04) (right). (Source: Anderson, 

1982). 

Figure D 28. Tree fuel types: “Timber Grass and Understory” (FBFM 02) (left), “Timber Litter and 
Understory” (FBFM 10) (middle), “Heavy Logging Slash”(FBFM 13)(right). (Source: Anderson, 1982). 
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Land cover is first classified into burnable and non-burnable land cover, then classified by 
height into land cover that fits the Anderson 13 FBFM. There 3 main FBFM groups used in this 
study include: Grass, Shrub, Tree, and Non-burnable. From this set, land cover is rapidly 
classified into FBFMs based on our assessment of primary vegetation types for each ecoregion 
studied. The classifications and assigned FBFM represent the expected fuel complexes, but do 
not account for variation in fuel ladders, so fuel strata are standardized by the FBFM. 

We use one FBFM for all grass-type fuels: FBFM 01. The “Short Grass” (FBFM 01) fire behavior 
fuel model is calibrated to the fire behavior observed from annual and perennial grasses under 
2 feet tall. In fire ecology, grasses are known as 1-hour fuels, which describes how a grass’s 
moisture content takes approximately 1 hour to reach equilibrium with the local relative 
humidity. Grasses represent light, flashy fuels that burn at relatively low intensities and flame 
lengths, but high rates of spread. All of California’s fire environments utilize grasses as the 
primary vector for surface fire spread.  

We used two FBFMs for all shrub-type fuels: FBFM 06 and FBFM 04. The “Dormant Brush” 
(FBFM 06) fire behavior fuel model is calibrated to the fire behavior for a wide range of 
chaparral-type shrubs under 6 ft tall. Shrubs are mostly considered 10-hr fuels and typically 
have fire behaviors with high intensities, high flame lengths and moderate rates of spread. The 
“Chaparral” (FBFM 04) fire behavior fuel model is similar to FBFM 06, but has a fuel bed depth 
above 6 feet. 

We use three FBFMs for all tree-type fuels: FBFM 10, FBFM 02, FBFM 13. The “Timber Litter 
and Understory” (FBFM 10) fire behavior fuel model is calibrated to the fire behavior observed 
for a patch of forest with an intermix of fine fuels and branches. While this fuel model may be 
considered for any forest type where “heavy down material is present” (Anderson, 1982), we 
apply this fuel model to trees in the forest-dominated ecoregions like the Sierra Nevada 
Mountains. The “Timber Grass and Understory” (FBFM 02) fire behavior fuel model is used in 
grass- or shrub-dominated ecoregions, like California Oak woodlands and Southern California 
Mountains. Surface fires spreading through these fuels generate high intensities and pass 
primarily through fine herbaceous fuels. The “Heavy Logging Slash” (FBFM 13) fire behavior 
fuel model is used. When surface fires spread through this fuel type, fire behaviors do not 
weaken only if it reaches a fuel break or a change in fuel type. This FBFM is applied to all 
senescent trees as a proxy for modeling the behavior of dead trees. 

When modeling potential fuel treatments, hazardous fuel loads are reclassified using the S&B 
40 FBFM in order to optimize mitigation.  While these FBFM are capable of dynamically 
adjusting fuel moisture, in order to compare directly to a fuel model constructed with the 
Anderson 13 FBFM, treated vegetation is assumed to be fully cured and fuel moisture assigned 
accordingly (Scott & Burgan, 2005).  In order to choose the appropriate fuel model to represent 
mitigation, we consult the local USFS fuels manager for the region about mitigation modeling. 

“Low Load Activity Fuel” (SB1) replaces fuels formerly classified as shrubs “Dormant Brush” 
(FM06).  This model is chosen at the recommendation of a Fuels Manager from the Truckee 
Ranger District, which is located near the Sierra Foothill region containing the TFS 
infrastructure (L. Ferguson, personal communication, October 3, 2017).  Low Load Activity Fuel 
is representative of mastication fuel treatment, a process used to grind standing fuels into 
compact surface fuels with moderate ignition spread rates and low intensity flames (McDaniel, 
2013). 
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“Low Load Compact Conifer Litter” (TL1) replaces “Timber Litter and Understory” (FM10) to 
represent thinning of tree understory.  This model is chosen to represent treated tree understory 
in the Northern Sierra ecoregion (L. Ferguson, personal communication, October 3, 2017).  The 
treatment, and representative fuel model, yield a fuel bed with a low spread rate and flame 
length. 

D.3.5.2 Object-Based Image Analysis 

Developing a high-resolution model of the fuels on a complex landscape requires objects, not 
pixels, to be the minimum mapping unit for analysis. In other remote sensing applications, an 
Object-Based Image Analysis (OBIA) has proven to be an effective means for classifying 
features by their spectral and spatial attributes (Blaschke et al. 2001). Traditional wildland fuel 
mapping uses 30m spatial resolution to segment and classify fuel patches (Chuvieco et al. 1989).  
However, for a local-scale fire behavior assessment, having nominal pixel sizes of 30m is 
insufficient for capturing the spatial heterogeneity of fuels needed for a local-scale, landscape 
assessment. When using 30m spatial resolution, many areas are generalized into the same fuel 
type despite having a complex spatial heterogeneity of fuels. This overgeneralization of 
landscapes at the local scale presents a problem for fuel managers and fire suppression 
managers who use fire behavior modeling to justify and support their management decisions. 
With 5m spatial resolution, the minimum area for objects is 25 m2 and captures all of the 
minimum attributes needed to maintain the fidelity of fire behavior fuel models (see Section 
D.3.5 - Classification of Fuels). However, this strategy clearly requires more time to choose fuel 
type models for all 5 m2 pixels.  However, we do not apply this globally, but just in areas with 
high value TFS assets.  At this high spatial resolution, the accuracy of land cover classification 
significantly improves where landscapes have heterogeneous land covers since the complexity 
of features and their edges are more easily discernible. As such, landscapes classified into 
objects at 5m (16.4 ft) spatial resolution provide insight into the potential fire behavior observed 
at local scales where vegetation patterns, types, and topography are increasing nuanced and 
complex. 

Image Segmentation 

Segmenting high spatial resolution imagery into discrete objects is critical to the understanding 
of local hazards around TFS infrastructure. Objects are segmented using the Segment Mean 
Shift (SMS) algorithm within ArcGIS. SMS utilizes a region-growing kernel that forms 
boundary segments between pixels with high contrasting values. This algorithm succeeds at 
creating boundaries between dissimilar fuel types because it can create complex object 
structures regardless of scale and can be applied to multi-band datasets like Landsat or NAIP 
imagery.  

Objects are created based on the selected fuel classes from the Anderson 13 FBFM. 
Segmentation into these objects is a three-stage process.  First, the height raster is segmented 
into ground and non-ground surfaces. Second, the NDWI raster for each surface is extracted 
and segmented using SMS. The objects created from these surfaces are merged into a 
continuous surface that is then classified as burnable or non-burnable. Third, the heights raster 
is segmented by the burnable surface and further segmented into grass, shrub, and tree surfaces 
based on their Anderson 13 FBFM specified heights. Fourth, NAIP imagery is segmented for 
each fuel class using SMS to create internal segments appropriate for each fuel class. After object 
boundaries are created for each whole object feature, these datasets are spatially merged into a 
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contiguous surface. Having spatial contiguity between objects is important when modeling 
wildfire because fuels are represented as a matrix of values. 

In the first stage of segmentation, the heights raster is segmented into ground and non-ground 
surfaces. The ground surface is any height at or under 0.6096 m and the non-ground surface is 
any height above 0.6096 m. NDWI is selected as the raster to segment into burnable and non-
burnable fuels because it highlights impervious and water surfaces and is useful at delineating 
those surfaces from vegetation surfaces. Then, these objects are classified into burnable and 
non-burnable fuels according to their median spectral enhancement values (see the following 
section). 

Once the objects from these surfaces are fully classified into burnable and non-burnable fuel 
objects, these objects are merged and their boundaries are created. The burnable fuels boundary 
is used to extract the heights surface contained within it. This burnable fuels heights raster is 
segmented into grass, shrub, and tree heights by height thresholds specified by the Anderson 13 
FBFM: short grass has a height range of 0 to 2 feet, dormant shrubs have a height of 2 to 10 feet, 
and trees are above 10 feet. These height thresholds are assumptions about the vertical fuel 
structure that cannot be directly observed from LiDAR or NAIP imagery. Therefore, these 
heights thresholds are a limitation of the data and may lead to an incorrect classification of a 
shrub or tree, where the height of a young sapling lodgepole pine, for example, may be 
confused as a tall shrub. Once the heights are created for each fuel class, boundaries for the 
grass, shrub, and tree objects are created and used to extract the NAIP imagery contained 
within each. 

SMS is used to segment the Red, Green, Blue and Near-Infrared bands from NAIP imagery for 
each fuel class in order to optimize internal segmentation and capture each ground object’s 
horizontal boundaries. The spectral and spatial detail parameters passed into the SMS 
algorithm are used to optimize the segmentation of each fuel class. Lower spectral and spatial 
detail values do not produce a high number of internal segments because it smooths the 
spectral and spatial information before creating segments. A lower spectral and spatial detail is 
selected for grass because grass does not need a high internal segmentation since grass is 
considered a continuous fuel, unlike shrubs and trees. High spectral and spatial parameters are 
used to segment individual fuel class members for the shrub and tree surfaces. Generalizing 
these parameters for a fuel class may lead to instances of over- and under-segmented objects, 
such that one tree may be segmented horizontally into two objects, or two horizontally 
overlapping shrubs may be classified as one shrub. Perfect segmentation of objects is difficult at 
the spatial resolution used because one object may appear to have two boundaries when 
looking at it from above or boundaries between objects may be blurry. 
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Figure D 29. The process used for creating burnable and non-burnable surface fuels. This process 
involves creating non-ground and ground height rasters, clipping a Normalized Difference Water Index 
raster by the boundaries of these height rasters, segmenting this new raster using the Segment Mean 

Shift (SMS) algorithm, classifying these object segments using a rule-based classifier and Support Vector 
Machines (SVMs) classifier, and then merging the resulting objects into their respective burnable and 

non-burnable surfaces. 

Figure D 30. The process for creating a spatially contiguous landscape with object-oriented 
surface fuels: This process involves clipping the heights raster by the boundaries of the burnable and 
non-burnable surface fuels, segmenting this new burnable heights raster by the height thresholds for 

each burnable fuel type, clipping NAIP imagery by each of these new burnable fuels surfaces, 
segmenting this clipped NAIP imagery using SMS algorithm, and merging these objects into a single data 

set. 
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Figure D 31. The Segment Mean Shift (SMS) algorithm was used to create the object boundaries 
for grass, shrub, tree, and urban surface fuels. 

Spectral Indices 

To access each object’s unique spectral signatures for classification, the Red (R), Green (G), Blue 
(B), and Near-Infrared (NIR) bands from the NAIP imagery are used to create spectral indices 
(Table D 14). Spectral indices enhance the information of remotely sensed data and are useful to 
indicate characteristics such as vegetation health and soil moisture content. To confidently 
separate land cover into burnable and non-burnable fuel types, we use the Normalized 
Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), 
Normalized Difference Water Index (NDWI), and Optimized-Soil Adjusted Vegetation Index 
(OSAVI). NDVI is created because it distinguishes varying densities of green vegetation from 
other land cover and is useful for monitoring vegetation health. Similarly, GNDVI is created to 
discriminate between green and brown vegetation since it is more sensitive to chlorophyll 
concentrations than NDVI. NDWI is created to delineate impervious surfaces from vegetated 
surfaces and is found to be very effective for highlighting water bodies and pavement. OSAVI is 
used to highlight instances of sparse vegetation where soil is visible through canopies or 
surrounded by barren soil. These indices are initially calculated through Google Earth Engine at 
1-meter resolution for the entire State. With its incredible processing power and iterative 
flexibility, GEE allows for quick prototyping. However, because the platform is not built for 
handling LiDAR input data or separate software uploads (like FlamMap), our research team 
decided to carry out the automation of our stakeholder-specific analyses locally. Therefore, the 
index data used in the final study is ultimately calculated post-download.  

Separation between fuel types is achieved by finding threshold ranges to use for burnable and 
non-burnable land cover masks. Narrow data number ranges for each spectral index are 
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recorded for each of the modeled bioregions in order to account for varying spectral 
characteristics from vegetation from different bioregions. These threshold ranges are utilized in 
the rule-based classification process that evaluates an object’s unique spectral index attributes 
and assigns the object to a corresponding class. 
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Table D 14. Spectral index threshold values used in to classify surfaces into burnable and non-
burnable surface fuels. 

Spectral Index Fuel Type 

Threshold values used for classification 

Forest-

dominated 
ecosystems 

Grass-

dominated 
ecosystems 

Shrub-

dominated 

ecosystems 

Normalized Difference Vegetation Index 
(NDVI) 

_NIR - R_ 

NIR + R 

Burnable [-0.01, 0.60] [-0.18, 0.50] [0.02, 1.00] 

Non-burnable [-0.88, -0.12] [-0.88, -0.20] [-1.00, -0.05] 

Green Normalized Difference Vegetation 
Index (GNDVI) 

_NIR-G_ 

NIR+G 

Burnable [-0.02, 0.38] [-0.30, 0.38] [0.00, 1.00] 

Non-burnable [-0.94, -0.05] [-0.94, -0.17] [-1.00, -0.05] 
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Normalized Difference Water Index (NDWI) 

_G - NIR_ 

G +NIR 

Burnable [-0.46, -0.03] [-0.41, 0.18] [-1.00, -0.1] 

Non-burnable [-0.02, 0.91] [0.24, 0.91] [0.02, 1.00] 

Optimized Soil-Adjusted Vegetation Index 
(OSAVI) 

____NIR - R____ 

NIR + R + 0.16 

Burnable [-0.08, 0.76] [-0.15, 0.76] [0.20, 1.00] 

Non-burnable [-0.94, -0.13] [-0.94, -0.25] [-1.00, -0.4] 
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Data Fusion 

The primary objective for data fusion in our methodology is to populate each object with 
attribute information useful for its classification into a fire behavior fuel model. The zonal 
median for each spectral index and the zonal maximum height are calculated for each object. 
The median value for each spectral index is generated in order to reduce bias from outliers that 
may arise from the spatial resolution or from spectrally mixed pixels. The maximum height 
value for each object is generated because maximum height is useful for categorizing land cover 
types. 

One limitation of the datasets used for the data fusion is differing data collection dates. The date 
of the NAIP imagery used is selected based on its closest time period to the LiDAR collection 
date because NAIP imagery is flown every two to three years, and typically there is one LiDAR 
dataset for an area. Therefore, fusing spectral values and LiDAR data from non-overlapping 
periods introduces an error because an object that is present in the LiDAR may not be present in 
the NAIP imagery, or vice-versa. An example of such an error may include creating an object 
boundary for a tree from 2012 imagery and fusing it with a LiDAR dataset from 2013 after the 
tree was cut down. These instances are artifacts of the data fusion process. There are several 
possible errors that may arise in the classification of the objects due to changes in the landscape 
that happened between the data collection dates. Therefore, the datasets used are not totally 
ideal for data fusion, instead imagery and LiDAR should be collected at the same instance 
whenever feasible. Yet, the information derived from fused lidar and multispectral data is rich 
and so we use it in our research even with these caveats. These potential artifacts that arise from 
this study are an example of how LiDAR should be flown more frequently to reduce the 
collection date discrepancies between the imagery and LiDAR. 

Classification 

Objects have a range of spectral information that, when associated with spatial information, can 
yield specific characteristics useful for classification (Blaschke, 2010). Object heights are equally 
useful. The 4 fuel classes used as label classes for this study were selected from the Anderson 13 
FBFM.  

Once objects are classified into burnable or non-burnable surfaces, each object is evaluated 
based on its maximum height (Figure D 32). Burnable objects are further classified into grass, 
shrubs, and trees. Objects that could not be classified from this process are labeled as 
“Undetermined” objects and are collected into a dataset. Object that are classified into land 
cover classes are used as a data to train the SVMs algorithm in order to classify the 
“Undetermined” objects. 

D-67 



 

 

 

 

 

 

 

 

 

Figure D 32. Flowchart of rule-based classifier. 

Support Vector Machine in Land Cover Classification 

The Support Vector Machines (SVMs) algorithm within ArcGIS is utilized to classify objects that 
remained unlabeled after the rule-based classifier. These objects are given an “Undetermined” 
designation. Many of the “Undetermined” objects are rock and perennial grasses. 

The SVMs algorithm is a machine learning approach to classification that creates nonlinear 
segmentation between training samples in a hyperplane. SVMs have often been found to 
provide higher classification accuracies than other widely used pattern recognition techniques 
and appear to be especially advantageous in the presence of heterogeneous classes (Melgani et 
al., 2004). 
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Figure D 33. Land cover classified by rule-based classifier (top right), objects that are 
undetermined (top right), objects classified using Support Vector Machines (bottom left), 

contiguous objects classified (bottom right). 

 

From the dataset of objects generated from the rule-based classification, burnable and non-
burnable objects are used as training samples to train a SVM classifier rule. This classifier rule is 
applied to a LiDAR-Multispectral stack comprised of NDVI, NDWI and heights. The SVM 
algorithm within ArcGIS produces a classified raster data output with unique identifiers for 
each fuel class. Using a similar method as the rule-based classifier, these unique identifiers are 
assigned to the objects according to the most frequently occurring label within each object’s 
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zone. This final output layer is a vector data file with the contiguous study site classified into 
burnable and non-burnable fuel classes (Figure D 33). 

D.3.6 Ancillary FlamMap Inputs 
D.3.6.1 FlamMap 

FlamMap Basic Fire Behavior (BFB) simulations use ancillary data, both spatial and non-spatial, 
to supplement spatial fuel model classifications of a surface.  Spatial ancillary data included 
topography data to represent the fuel model surface and canopy data that correspond with fuel 
models representing tree cover.  Static wind data, and temporally varying climate data are used 
to condition fuel moistures to simulate extreme conditions.  Temporal climate data are used to 
represent potential changes in future wildfire behavior in conjunction with the representation of 
current land cover. 

Topography Data 

Topography data are derived from last pulse LiDAR data that are processed into a rasterized 
DEM (see Section D.3.4). Landscape topography data readable by BFB simulations include 
elevation, slope, and aspect.  Elevation data are ASCII GRID representations of DEMs.  
Elevation is used in BFB simulation for adiabatic adjustment of temperature and humidity 
climate variables.  Slope data are calculated using a three-by-three moving window along the 
raster and a planar method to calculate the slope of each DEM cell based on the relative 
elevation of the surround eight cells.  A similar moving kernel planar analysis method is used to 
calculate aspect (ESRI Corp.).  FlamMap uses slope and aspect to calculate the slope effects on 
fire spread, and the fuel conditioning effect of solar radiance (Finney, 2006).  

Canopy Data 

Spatial canopy data, including stand height and canopy cover are input into BFB analyses as 
ASCII GRID.  Stand height and canopy cover are estimated using LiDAR data, and have proved 
to bolster accuracy of intensity and spread metrics produced by wildfire behavior simulations 
(Andersen, McGaughey, & Reutebuch, 2005).   Stand heights are ASCII representations of 
CHMs, which are calculated as the difference between the DSMs and DEMs (see Section D.3.4). 
Vertical canopy covers (VCC) are calculated as the ratio of non-ground LiDAR returns to all 
returns within a raster cell.  The nature of airborne LiDAR may render an overestimation bias of 
canopy cover. Pulses hitting non-foliar portions of a tree are recorded as non-ground return 
pulses, but these pulses should not be included in the estimation of canopy cover (Andersen et 
al., 2005). 

Fuel Moisture and Climate Data 

Fuel Moisture data, represented as integer percent values, established the initial moisture 
content of 1-, 10-, and 100-hour dead fuels, as well as the initial moisture content of live 
herbaceous and woody fuels, for each fuel model included in the analysis.  In order to facilitate 
comparison between models, Scott & Burgan (2005) document standard moisture scenarios for 
both live and dead fuels.  The most hazardous fuel moisture condition, D1L1, is chosen to 
simulate worst-case scenario impacts of wildfires.  D1 represents dead fuels that have been 
conditioned by high-fire-prone weather.  This may include low relative humidity, high 
temperature, and extended periods of sun exposure.  L1 represents live fuels under the similar 
conditions, such that all live fuels are fully cured.  Since live fuels are fully cured, the model is 
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robust to compare dynamic fuel models included in the Scott and Burgan 40 to static fuel 
models included in the Anderson 13.  The resultant fuel moistures are listed in Table D 15.  

Table D 15. Definition of initial fuel moisture file for extreme wildfire weather events 

D1 (Very Low) fuel moisture 
content (percent) 

L1 (Fully Cured) Fuel Moisture 
Content (percent) 

1-hr 3 - 

10-hr 4 - 

100-hr 5 - 

Live herbaceous - 30 

Live woody - 60 

Relative humidity, temperature, and cloud cover are used to condition dead fuel moistures 
prior to the simulation of wildfire behavior.  Wind speed and direction are used in calculation 
of flame length, rate of spread, and intensity (Finney, 2006). The inclusion of these variables is 
used to simulate future climate conditions to model the potential effects of climate change on 
wildfire behavior.  Future conditions are represented under the assumption of present day 
conditions of vegetation and topography due to the uncertainty associated with changes in land 
cover.  Local climate projections (1/16º degree) are derived from LOCA Downscaled Climate 
Projections processed as NetCDF from Cal Adapt, and used to model extreme conditions.  
Extreme conditions are modeled to simulate the most severe potential wildfire, since: 1) this is 
when catastrophic wildfires are most likely to occur, and 2) stakeholders should mitigate 
assuming worst case scenarios in order to sufficiently prepare for a wildfire near their assets 
(Keeley, 2004).  The LOCA dataset is selected on the basis of its projection of extreme weather 
conditions; as opposed to a bias corrected statistical downscaling (BCSD) method that use 
averages and thereby overpredicts moderate conditions (e.g. over predicting drizzle as a result 
of aggregating precipitation and non-precipitation events), LOCA uses as analog to scale 
historical events (D. W. Pierce & Cayan, 2015; David W. Pierce et al., 2014). 

For input to wildfire behavior modeling, extreme conditions are defined as the maximum 
temperature and minimum relative humidity for the given year, as well as the minimum 
temperature and maximum relative humidity that corresponded with a day that is projected to 
elicit the extreme conditions.  An algorithm is developed that allows a user to input a year that 
corresponds to a stakeholder’s planning horizon, read extreme conditions of temperature and 
relative humidity from LOCA data for that year, and write the extreme conditions into a 
weather stream (.WXS) file that can be input into FlamMap for fuel conditioning calculations.  
Extreme wind conditions are modeled as foehn winds, and input to BFB as 30 miles per hour 
blowing downhill (Brinkmann, 1971). 

D-71 



 

 

 

 

 

 

 
 

 

 
 

D.3.7 Vegetation Management 
There is a spectrum of vegetation management options effective at reducing fire hazards in 
California’s forests, shrubland, and grassland areas (Agee, 2002; Cheney et al., 1993; Potts et al. 
2010, Stephens et al., 2009). In order to reduce the exposure of TFS link and node assets to fire 
hazards, active vegetation management can achieve a desired level of exposure (Ager et al., 
2010). In this section, we demonstrate how two vegetation management strategies: mechanical 
treatment and prescribed burn can be applied to a digital landscape and burned using FlamMap 
to show reductions in modeled fire behavior. While numerous studies have shown that the 
spatial pattern of vegetation has a significant impact on fire behavior and that operational, 
social and ecological issues are unique for each fuel treatment approach, the two fuel treatment 
models offer insights into how vegetation management can be modeled at a 5m spatial 
resolution to better understand how firefighter suppression and the protection of TFS link and 
node assets can be managed during a catastrophic wildfire. 

Hazard Mitigation and Fuel Treatment Methods 

When surface fires spread into tree canopies, the likelihood of spotting and mass fire increases 
(Stephens et al., 2018). To maintain control during an active wildfire, ladder fuels such as 
overgrown shrubs and tall grasses should be removed before ignition in order to prevent the 
transition from a surface fire to a canopy fire. For illustrative purposes, only the vegetative fuels 
within 60 ft (18.288 meters) of TFS link and node assets in Dutch Flat are modified. This buffer 
distance is selected to simulate a fuel treatment plan that achieves a safe and desirable 
containment area that reduces exposure and increases suppression control for firefighters. 

A “Mechanical Removal of Vegetation” fuel treatment model is created to understand the fire 
behavior when all trees understories are mechanically thinned (Table D 16a), all shrubs 
masticated (Table D 16c) and all grass heights reduced and made discontinuous (Table D 16d). 
Mechanical removal by mastication is a process that reduces fuel loads but leaves moderate to 
low fuel loads, which may be sufficient for TFS link and node assets.  Heavy machinery 
equipped with masticators grind live and dead standing fuels, to produce a fuel bed that 
reduces the heat intensity of catastrophic fires. 

The “Prescribed Burn” fuel treatment model represents a hazard mitigation scenario in which 
trees have no understories (.b), all shrubs are masticated (.c), and all grass heights are reduced 
and made discontinuous (.d). Prescribed burns are designed to burn at low intensities and 
remove the majority of surface fuel loading. This approach significantly improves fire 
suppression efforts during catastrophic wildfires by reducing the intensity, size and damage of 
wildfires (Fernandes et al, 2003). 
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Table D 16. Fire Behavior Fuel Models Selected to Model Vegetation Management (Photo credit: 
Scott and Burgan, 2005). 

Tree Management Shrub Management Grass Management 

Before 

“Timber Litter and Understory”; 

FBFM 10 

“Dormant Brush, 
Hardwood Slash”; 

FBFM 06 

“Short Grass”;

 FBFM 01 

After 

“Low Load Humid 
Climate Timber - Grass - 

Shrub”; 

FBFM 162 

“Low Load Compact 
Conifer Litter”; 

FBFM 181 

“Low load Activity 
Fuel”;

 FBFM 201 

“Short, Sparse Dry 
Climate Grass”; 

FBFM 101 

(a) (b) (c) (d) 

Interpretation of Exposure to Substantial Hazards - Flame Length 

As discussed in Chapter 3.2.2., modeled flame lengths are a useful proxy for understanding the 
degree of firefighter control. In Table D 17., the flame lengths for the “No Treatment”, 
“Mechanical Removal of Vegetation”, and “Prescribed Burn” models are shown. A “No 
Treatment” model is used to demonstrate a current scenario where no vegetation is modified 
and the landscape experiences a wildfire driven by catastrophic wildfire conditions. In Table D 
17.a, it’s distribution of flame length exposure to the stretch of pipeline in this area has over 
15,000 sq.m. of extreme flame lengths and 4000 sq.m. of high flame lengths. In this location, we 
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describe the exposure of modeled behaviors by area of substantial hazards, such that any 
behavior classified as “High” or “Extreme” will give firefighter’s substantial control difficulty. 

ASH = ( AE + AH ) /AT (1) 

Where 

ASH = Area of Substantial Hazard (%), 

AE = Area of Extreme (sq.m), 

AH= Area of High (sq.m.), and 

AT= Total Area (sq.m.) 

TFS link and node assets exposed to a large % of substantial hazards may seek to improve their 
vegetation management strategies. Under the “Not Treatment” scenario, this selected stretch of 
pipeline is exposed to 83% substantial flame length hazards, therefore it is a likely candidate for 
vegetation management. 

In Table D 17.b, the “Mechanical Removal of Vegetation” model has a greater reduction in 
exposure to substantial fire hazards as compared to the “No Treatment” model. Within the 60’ 
buffer around the pipeline, there are 10,000 sq.m. of extreme flame lengths and under 1,000 
sq.m. of high flame lengths. This vegetation management strategy leaves the pipeline exposed 
to 41% substantial flame lengths, which may be desirable when considering heat exposure 
thresholds. 

In Table D 17.c, the “Prescribed Burn” model has an even greater reduction in exposure to 
substantial fire hazards compared to the other models, with a 13% exposure to substantial flame 
lengths. Within 60’ of the pipeline, about 3,000 sq.m. express extreme flame lengths and almost 
no high flame lengths. Compared to the “Mechanical Removal of Vegetation” model, this 
management approach may be more desirable around vulnerable TFS link and node assets. 

When comparing the distributions of exposure to flame lengths, modeling demonstrates how 
different treatment options have different outcomes for reducing potential hazards and some 
amount of fuel treatment is better than no vegetation management. More specific vegetation 
management approaches can be used to optimize defensible spaces for wildland firefighters. 
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Table D 17. Exposure of A Stretch of Pipeline to Modeled Flame Lengths Under Vegetation 
Management Strategies. 

Flame Length Distribution of Flame Length Exposure 

(a) 
No 

Treatment 

(b) 
Mechanical 

Removal 
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(c) 
Prescribed 

Burn 

Comparing Selected Fire Behavior Fuel Models 

The Fire Characteristics Chart discussed in Appendix D 3.3 is also useful for comparing the fire 
behavior of different fuel models burned under the same fire simulation conditions. In Figure D 
34, the three vegetation management strategies are compared. This chart demonstrates the 
importance in selecting the appropriate fuel models for achieving the desired modeling 
vegetation management. 

The FBFMs of the “No Treatment” are selected from the Anderson 13 and the treatment FBFMs 
are selected from the S&B 40.  For both treatment scenarios, “Low Load Activity Fuel” (FBFM 
201) and “Short, Sparse Dry Climate Grass” (FBFM 101) are used to represent the shrub and 
grass classes, respectively.  These fuel models simulate the results of a mastication and grass 
removal process and a prescribed burn process.  The two mitigation strategies differed by the 
tree fuel model used.  For the mechanical removal mitigation strategy, trees are represented by 
“Low Load Humid Climate Timber-Grass-Shrub” (FBFM 162).  This fuel model is chosen to 
include some low load understory with humid climate vegetation.  To simulate the removal of 
all non-leaf litter vegetation, “Low Load Compact Conifer Litter” (FBFM 181) is used to model a 
prescribed burn strategy. 

In addition to Table D 17, we also compare the fuel models in the Fire Characteristics Chart 
below.  The Fire Characteristics Chart shows the expected suppression response based on the 
fire behavior observed in the three scenarios.  The “No Treatment” simulation yields fire 
intensity (heat per unit area) and flame length to a degree where one would expect an indirect 
suppression response, rendering the asset vulnerable to direct heat exposure without firefighter 
intervention.  The simulation shows “Mechanical Treatment” fuel models reduce wildfire 
behavior such that the area could be defensible by wildland firefighters equipped with heavy 
machinery. Finally, wildfire behavior is reduced in the “Prescribed Burn” simulation to a low 
magnitude that is defensible by hand crews. 
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Figure D 34. Fire Characteristics Chart with plotted points from three strategies: No Treatment, 
Mechanical Removal of Vegetation, and Prescribed Burn.  Note that points from the No Treatment 

strategy are plotted off the chart, with Heat per Unit Area values ranging from 6,000 to 8,000 
BTU/ft2. 

D.3.8 High Resolution Wildfire Modeling Results 
D.3.8.1 Comparison to LANDFIRE 

This section examines the similarities and differences between the static, maximum potential 
fire behavior of the burnable fuels at 30 m (98.4 ft) and 5m (16.4 ft) across the landscape of 
Dutch Flat (Figure D 36 through Figure D 39). Dutch Flat is an unincorporated community in 
Placer County that has a history of wildfire. Analyzing a potential wildfire disruption in this 
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location is useful to demonstrate the benefits of using high-resolution data over medium 
resolution data for wildfire modeling TFS infrastructure. Within Dutch Flats, there is a 
convergence of three TFS infrastructure types that regularly distribute fuels: highway, railway, 
and pipeline. In our 5-m (16.4-ft) data products (Figure D 35) TFS assets are clearly present, 
while the 30-m (98.4-ft) land cover classification data products may omit or confuse the critical 
fuels surrounding TFS assets (Figure D 36). Comparing the 5m to 30m resolution land cover 
demonstrates the increased benefits of higher spatial resolution imagery for detecting fuel 
complex characteristics around TFS assets. 
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Figure D 35: Highway, railway, and pipeline are displayed in green, blue, and pink, respectively in 
the high-resolution aerial imagery (top) and land cover model (bottom). Vegetation, landscape 

features, and fuel breaks can be seen in the aerial image. To its right is a zoomed-in image of the railway, 
with its tracks and gravel seen in gray and the green vegetation surrounding it. In the event of a wildfire, 
this railroad would act as a fuel break and provide a location for firefighters to suppress fire. Using high 

spatial resolution data, we created a 5-m (16.4-ft) land cover model. In the 5-m (16.4-ft) land cover model, 
desired fuel beaks are represented in black. The accuracy of mapped fuel cover is 91.25% (see Table D 

18). 
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Figure D 36: Using a 30-m (98.4-ft) fuel model product from LandFire, we created corresponding 
land cover at 30-m (98.4-ft).  Because 30-m (98.4-ft) pixels assign a single value to a large area, the 
railway and surrounding critical fuel break are absent from the dataset. The accuracy of mapped fuel 

cover at 30 m (98.4 ft) is 48.75%. 

The primary trade-offs between medium (30-m; 98.4-ft) and high (5-m; 16.4-ft) resolution 
wildfire modeling concern the accuracy of land cover classifications. Land cover classified at a 
30-m (98.4-ft) spatial resolution is useful for regional fuel estimates, where the variability of 
local scale information does not critically impact regional fire suppression or mitigation efforts. 
The 30-m (98.4-ft) land cover classifications from LandFire are a standard data product used by 
fuel managers and others in the field of wildfire modeling. This data is best used for regional 
analyses where fire management strategies are more focused on containing large, active wildfire 
perimeters and allocating fire suppression specialists. Land cover classified at 5-m (16.4-ft) 
spatial resolution is useful for local scale fire behavior estimates where the fire behavior of 
individual objects is important in decision making and especially relevant for planning fuel 
breaks and fuel treatments. 
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We conduct an accuracy assessment of the vegetation classification for the 5-m (16.4-ft) data 
(Table D 18) and the 30-m (98.4-ft) data (Table D 19). As expected there is a remarkable 
difference in accuracy between these two products.  The User’s accuracy represents the 
probability that a pixel predicted to be a certain class really is that class. Producer's accuracy is 
the probability that a pixel in a given class is correctly classified. Both the User’s and Producer’s 
accuracy are 20-60 or more points higher for the 5-m (16.4-ft) data.  This is not surprising since 
30-m (98.4-ft) pixels often are “mixed” pixels meaning that they are comprised of one or more 
land cover classes.  So, the accuracy of classification for the 30-m (98.4-ft) pixels would be 
expected to be less than for 5-m (16.4-ft) pixels. 

Table D 18: Accuracy tables for 5m land cover classification using stratified random sample of 
validation points. The overall accuracy of land cover classification is 91.25%. 

Classes Grass Shrub Tree Non-burnable 

User’s  

Accuracy (%) 

Grass 57 1 3 1 92.94 

Shrub 0 30 0 3 90.91 

Tree 0 0 57 0 100 

Non-burnable 8 3 2 75 85.23 

Producer’s 
Accuracy (%) 

87.69 88.24 91.94 94.94 91.25 

Table D 19: Accuracy tables for 30m land cover classification using stratified random sample of 
validation points. The overall accuracy of land cover classification is 48.75%. 

Classes Grass Shrub Tree Non-burnable 
User’s 

Accuracy (%) 

Grass 

19 10 6 12 40.43 

Shrub 

4 1 0 4 11.11 

Tree 

29 20 53 19 43.80 
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Non-burnable 
13 3 3 44 69.84 

Producer’s 
Accuracy (%) 

29.23 2.94 85.48 55.70 48.75 

Assessing the impacts of a hazard requires a defined spatial scale. In this area of Dutch Flat, an 
intermix of tall grasses, shrubs, and conifer trees sitting on steep slopes with a southward facing 
aspect can produce extreme fire behaviors that can disrupt the movement of fuels along 
railway, pipeline, and highway. When comparing the potential fire behavior of the same area, 
but at different spatial resolutions, the higher resolution data product we created shows a 
greater range and higher precision mapping of predictable fire behaviors. Figure D 37 shows the 
effect of spatial scale on flame length.  With 5-m (16.4-ft) resolution data, the railroad line is 
better identified and leads to a NE to SW area of zero flame length.  But with the 30-m (98.4-ft) 
resolution imagery the railroad line is not well identified. At this spatial resolution the fire 
models predict flame length of 0.30-1.22 m (1-4 ft) owing to the fact that at 30 m (98.4 ft) there 
are mixed pixels that have both railroad and vegetation.  The same pattern is show with rate of 
spread and fire intensity in Figure D 38 and Figure D 39, respectively. 

D-82 

http:0.30-1.22


 

 

 
 

 

 

 

Figure D 37: NAIP imagery (left), 5-m (16.4-ft) maximum potential flame lengths (middle) and 30-m 
(98.4-ft) maximum potential flame lengths (right). The railroad does not ignite under these conditions 

and its benefits as a fuel break are observed. 

Figure D 38: NAIP imagery (left), 5-m (16.4-ft) maximum potential rates of spread (middle) and 30-
m (98.4-ft) maximum potential rates of spread (right). 
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Figure D 39. NAIP imagery (left), 5-m (16.4-ft) maximum potential fire intensity (middle) and 30-m 
(98.4-ft) maximum potential fire intensity (right). 

D.3.8.2 Future Projections of Wildfire Behavior 

This section examines the modeled fire behavior of simulated future climate conditions from the 
periods between 2020-2100 for Dutch Flat, California.  The results suggest that wildfire 
behaviors depend more strongly on topography and vegetation type than on the fuel 
conditioning effects of pre-fire temperature and relative humidity.  The primary driver of future 
changes in wildfire behavior will be land cover. In other words, human development and 
vegetation succession. TFS planning for future wildfire should, therefore, consider changes in 
location and frequency of large wildfires, as suggested by the regional resolution analysis in 
Appendix D.2. 

The following graphics show changes in wildfire behavior in the study site from the periods 
2020-2100 for 8 future weather scenarios. These future weather scenarios change how fuels are 
conditioned, from changes in relative humidity and temperature, in the moments leading up to 
a wildfire event. Across all 8 future conditions from the periods 2020-2100, the wildfire 
behaviors (fire intensity, flame length, and rate of spread) do not show any significant changes. 
As part of our procedure we choose to model extreme conditions - maximum temperature and 
minimum relative humidity for the given year (Figure D 40).   The findings in Table D 20 suggest 
that this methodology elicited conditions that did not change appreciably over the 8 future 
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weather scenarios.  That is, similar extreme weather conditions are a feature of all 8 future 
weather scenarios.  

Table D 20: Future Weather Scenarios that are standard for California’s Fourth Assessment on 
Climate Change. 

Scenarios 

1 2 3 4 5 6 7 8 

GCM CanESM CNRM-CM5 HadGEM2-ES MIROC5 

RCP 4.5 8.5 4.5 8.5 4.5 8.5 4.5 8.5 
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Figure D 40: The process for creating fuel conditioning parameters for the future climate 
scenarios from LOCA data involves extracting the daily weather conditions for each 20-year 
period, identifying the maximum high temperature and corresponding daily minimum, the 

minimum relative humidity and corresponding daily high, and coupling this with constant wind 
conditions. 
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Figure D 41: Modeled Fire Intensity for 8 future scenarios for the periods 2020-2039, 2040-2059, 
2060-2079, and 2080-2099. 
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Figure D 42: Modeled Flame Length for 8 future scenarios for the periods 2020-2039, 2040-2059, 
2060-2079, and 2080-2099. 
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Figure D 43: Modeled Rate of Spread for 8 Future Scenarios for the periods 2020-2039, 2040-2059, 
2060-2079, and 2080-2099. 
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D.3.9 Model Validation 
Wildfire behavior metrics are useful tools to assess wildfire hazard, but validation of these 
metrics is a necessary component of analysis to ensure the accuracy, and thereby applicability, 
of high spatial resolution wildfire behavior modeling.  Validation of wildfire behavior 
estimation is difficult, considering the discrepancy of priority during an active fire between 
firefighting and research-oriented data collection.  There are no precise spatial measurements at 
large scale of observed fire intensity, flame length, or rate of spread. Therefore, a novel 
approach to validating the fire intensity metric is conducted using observed data from both 
during and after a recent wildfire in Sonoma County, the Tubbs Fire. 

In this section, an area from a recent California wildfire, the October 2017 Tubbs Fire, is used for 
a two-part validation.  In the first section is an accuracy assessment for the land cover in the 
region, yielding 93.07% overall accuracy.  The following section is a validation for the fire 
intensity behavior metric modeled using FlamMap 5.0. The validation uses a multinomial logit 
regression to evaluate the correlation of estimated fire intensity with soil burn severity (SBS), an 
observed categorical outcome variable.  The regression indicates a statistically significant 
correlation between the two variables, such that a higher estimate of fire intensity tends to 
correspond with greater SBS. 

D.3.9.1 Land Cover Classification Accuracy Assessment 

A 37 sq. km (14.29 sq. mile) study site within the Tubbs Fire perimeter is used for this analysis 
(Figure D 44 left). This is a wildland-urban interface area with an intermix of impervious 
surfaces, oak and fir trees, shrubs, grass, perennial agriculture (vineyards), and ponds.  NAIP 
imagery from 2009 and LiDAR from 2003 are used to create a 5-m (16.4-ft) land cover model 
(Figure D 44 right). The classification results achieved an overall accuracy of 93.07% (Table D 21). 
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Figure D 44: Map showing study site within the Tubbs Fire perimeter (left), NAIP imagery (middle) 
and land cover classified at 5 m (16.4 ft) (right) 

Soil Burn Severity (SBS) is a measure of the relative changes in soil organic matter or deposition 
of ash from the above ground combustion of biomass (Lewis, Wu, & Robichaud, 2006). After a 
wildfire event, a Burned Area Emergency Response (BAER) team assesses the degree of 
biomass lost and classifies the post-fire soil conditions using the Burned Area Reflectance 
Classification (BARC). Soil conditions are classified to indicate the relative changes in pre- and 
post-fire soil conditions. While Vegetation Mortality data from a Rapid Assessment of 
Vegetation Condition after Wildfire (RAVG) would be ideal for this comparison to land cover, 
this data is not collected at a high enough spatial resolution. Instead, comparing SBS to land 
cover is useful to make the case that land cover contributed to SBS measurements. 

D-91 



 

 

 

    

   

  

   

  

     

 

  

Table D 21: Accuracy tables for 5-m (16.4-ft) land cover classification using stratified random 
sample of validation points. The overall accuracy of land cover classification is 93.07%. 

Classes 

Grass 

Grass 

96 

Shrub 

1 

Tree 

1 

Non-burnable 

4 

User’s Accuracy 
(%) 

94.12 

Shrub 4 95 1 0 95.00 

Tree 0 2 100 0 98.04 

Non-burnable 8 7 0 85 85 

Producer’s 
Accuracy (%) 

88.89 90.48 98.04 95.51 93.07 
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Figure D 45: The areas burned by the Tubbs Fire were shrub-dominated (NAIP imagery (left) and 
5m land cover (middle left)). When comparing land cover with Soil Burn Severity, we can see that soil 
burn severity is generally moderate for shrub areas. Healthy trees have both moderate and high soil burn 
severity in the southern portion of the study area. In the northern portion healthy trees experience very 
low-to-moderate soil burn severity.  When comparing the SBS (middle right) and fire intensity (right) 
graphics, there appears to be a geographical relationship worthy of investigating. 

D.3.9.2 Wildfire Behavior Validation for the Fire Intensity Metric 

According to the logit analysis, higher fire intensity is associated with a greater likelihood of 
“Moderate” and “High” soil burn severity (SBS). While a lack of observed fire intensity data 
complicates a precise validation of the fire intensity metric, studies have indicated a positive 
correlation between fire severity and fire intensity (Keeley, 2009).  This analysis attempts to 
tease out this correlation in observed and modeled data, and indicates modeled fire intensities 
may resemble those observed during the Tubbs Fire. 
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Scope of Analysis 
The fundamental idea of the validation is that, though imperfectly, fire intensity should be 
directly correlated with SBS.  The validation of fire intensity hinged on two key observed 
datasets from the Tubbs Fire: thermal infrared data recorded during the active fire and a soil 
burn severity analysis produced after the fire.  Thermal infrared data is a spatial point dataset 
indicating which locations are confirmed to have burned during the fire.  The thermal infrared 
data enabled the analysis to validate only estimations for areas confirmed to have burned, 
allowing the analysis to sidestep the assumption of FlamMap BFB simulator that the full input 
surface burns.  Soil burn severity data, the other key observed dataset, is a sub-optimal yet 
serviceable dependent variable influenced by fire intensity. 

The following regression equation is proposed, with the aim of creating a predictive model for 
observed soil burn severity with all observed independent variables, aside from the estimated 
fire intensity: 

(soil burn severity) = α + β0(fire intensity) + β1(slope) + β2(elevation) + β3(soil type) + β4(solar radiation) + β5(OSAVI) 

The analysis supposes that if the predictive equation is statistically significant, and estimated 
fire intensity is a statistically significant predictor of soil burn severity, then estimated fire 
intensities may be similar to those elicited during the Tubbs Fire.  The multinomial logit 
regression is used over ordinary least squares regression because the outcome variable, SBS, is 
categorical.  An ordinal multinomial logit analysis is not used because the precise distinctions 
between classes of SBS are not recorded. 

As for expectations of the overall fit of the equation, it is well documented that fire intensity is 
not perfectly correlated with SBS.  Soil moisture and random flame activity have a greater effect 
on SBS than do fire intensity (Keeley, 2009; Marion, 1991).  Therefore, expectations of a 
confirmatory analysis are a relatively low McFadden psuedo-R2 for a statistically significant 
equation and statistically significant dependent variables.  In other words, the predictive 
equation could not possibly predict soil burn severity with great confidence, but ideally would 
consistently explain some proportion of the variation in soil burn severity.  
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Data and Variables Included in the Analysis 

Table D 22: Data Used in Multinomial Logit Regression Analysis 

Variables Geographic Data Description 

Dependent 
Soil Burn Severity 

(SBS) 

SBS is a post-wildfire product constructed by a private 
contractor.  The conventional goal of SBS data is to detect 
implications on vegetation succession and watershed 
recovery, so it is being repurposed for this analysis.  SBS is 
generated by collecting field samples of soil burn severity, 
processing an image enhancement, and using the field 
samples to threshold the image enhancement.  Fortunately 
for our analysis, the original SBS data was constructed at 5 
meter resolution, the same as our fire intensity and 
topography models. 

Fire Intensity (Model 
Estimated) 

Fire intensity is strongly influenced by the vegetation type 
and fuel moisture, such that grasses are known as 1-hr fuels, 
shrubs are typically 10 to 100-hr fuels, and trees are 1000-hr 
fuels.  Fire intensity is the energy emitted per unit area. 

Slope 

Wildfire behaviors such as flame length and rate of spread 
are strongly influenced by slope since heat rises, causing 
vegetation on steeper slopes to be pre-cooked from upward 
moving radiation.  A steeper slope may indicate greater 
flame contact with soil, and thereby greater SBS. 

Elevation 

One of a series of variables used to internalize soil moisture, 
which should be a correlate of soil burn severity.  Higher 
elevation should roughly correlate with lower soil moisture, 
and therefore greater soil burn severity, based 
generalizations of the subsurface water table. 

Independent 

Soil Type 

Various soil types have different water holding capacities. 
Drier soils typically experience greater soil burn severities.  
Soil types were acquired from Soil Survey Geographic 
Database (SSURGO) soil surveys and separated into 9 soil 
types based on the basic soil classes. 

Solar Radiation 

Fuel and soil moistures are drier on south facing aspects and 
wetter on north facing aspects in the Northern Hemisphere.  
Solar radiation is a measure of solar energy collected based 
on aspect and slope.  Higher solar radiation is expected to 
correspond with higher SBS. 

OSAVI 

The optimized soil adjusted vegetation index is useful for 
identifying sparse vegetation cover within diverse soil types.  
Since SBS is derived spectrally, OSAVI was included to 
explain a degree of variation in SBS that is an artifact. 

Thermal Infrared data collected by the USDA Forest Service 
National Infrared Operations (NIROPS) Unit was used to 
identify objects that ignited during the Tubbs Fire. When 
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Masks 

Thermal Infrared 
validating the modeled fire behavior to the soil burn severity, 
it is important to only include ignited objects in our analysis. 
Only pixels that intersected within a 11.61 foot buffer (3.54 
meter) (half the diagonal length of one pixel) buffer of thermal 
infrared recordings were included in the analysis. 

Impervious Surfaces 

In this modeling effort, impervious surfaces include roads, 
buildings, and water bodies.  The land covers were dis-
included from the analysis.  There are not adequate fuel 
models for buildings, and no observable soil under buildings, 
so they are not validated.  Roads are spectrally similar to 
severely burned land cover, and roads would not yield a soil 
burn severity.  Similarly, water bodies should not have an 
associated soil burn severity.  Only the fire behavior of 
vegetated land cover is included as observations. 

Weather Temperature 

Observed temperature data were input to FlamMap for 
modeling fire intensity for the Tubbs Fire.  One thousand 
hours of temperature data were collected from the Petaluma, 
California weather station from Weather Underground. 
Temperature affected the output metric via fuel conditioning. 

Relative Humidity 

Observed relative humidity data were input to FlamMap for 
modeling fire intensity for the Tubbs Fire.  One thousand 
hours of humidity data were collected from the Petaluma, 
California weather station from Weather Underground. 
Relative humidity affected the output metric via fuel 
conditioning. 

Wind Wind speeds for simulating fire intensity were held constant 
at 30 miles per hour (48.3kmh). 

Multinomial Logit Regression 
The validation resembles expectations for a confirmatory analysis of the fire intensity metric.  
Variation in SBS is highly random variable, depending not only on fire intensity, topography, 
and soil moisture, but also in microclimate conditions during the fire, soil exposure to flames, 
and spectral variation in the sampled image processed as SBS.  Despite this challenge, the 
analysis teased out statistically significant predicting effects of nearly all dependent variables on 
SBS.  Moreover, all statistically significant coefficients have the expected association with the 
probability of a given level of SBS compared to the probability of “Low” SBS. 

The coefficients for fire intensity, for example, shows that a 1% increase in the metric are 
associated with a -0.105 change in the log-odds of “None” SBS as compared to “Low” SBS.  In 
other words, an increase in fire intensity is more likely associated with “Low” SBS than it is 
“None” SBS.  Similarly, a 1% increase in fire intensity is more likely associated with “Moderate” 
SBS than with “Low”.  This change in odds is even more pronounced when comparing the 
association of “High” SBS to “Low”. 

This pattern is elicited in nearly all other variables.  There are no real expectations for the 
outcome of OSAVI, but the distinct pattern indicates spectral artefacts from the calculation of 
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SBS do affect the dataset.  Higher elevation is associated with higher soil burn severity, possibly 
because soil is generally dryer at higher elevation.  Steeper slope indicates greater likelihood of 
higher SBS, though this association is not statistically significant for the comparison of “High” 
SBS to “Low” as it is “Moderate” to “Low” and “None” to “Low”.  Solar Radiation shows this 
pattern for the two statistically significant coefficients, but deviates from the expected pattern 
for the non-statistically significant “High” coefficient. 

Soil types are binary variables that reflect the change in log-odds of a given SBS as compared to 
the “Low” SBS.  Wet soil and Rock Land soil are consistent with expectations, since these soils 
correspond to a greater likelihood of lower SBS.   A null value is shown in Soil Type 4, Silty 
Clay Loam, due to too few observations coinciding with “Moderate” SBS. 

Table D 23: Results of Multinomial Logit Regression for SBS on predictor variables 

Multinomial Logistic Regression 
“Low” SBS is the base outcome 
Coefficients represent the change in log-odds for a one unit increase in the variable. 
Coefficients compare “None”, “Moderate”, and “High” SBS, respectively, to “Low” SBS 
23,412 Observations        

Log likelihood = -19,302.317     
McFadden’s Psuedo-R2 = 0.1641 

Likelihood Ratio Chi-sq (42) = 7,576.63 
Prob > Chi-sq = 0.000*** 

Variable Coefficients Standard Error Z-Score P-Value 

(Constant) 5.109*** 
-1.741*** 
20.758*** 

0.639 
0.604 
2.218 

7.992 
-2.882 
-9.360 

0.000 
0.004 
0.000 

Log Fire Intensity -0.105*** 
0.123*** 
0.300*** 

0.021 
0.021 
0.063 

-4.994 
5.746 
4.776 

0.000 
0.000 
0.000 

OSAVI -.203*** 
1.432*** 
3.518*** 

0.071 
0.087 
0.379 

-17.041 
16.529 

9.274 

0.000 
0.000 
0.000 

Log Slope  -0.347*** 
0.580*** 

0.736 

0.039 
0.059 
0.246 

-8.915 
9.841 
2.992 

0.000 
0.000 
0.286 

Log Elevation -0.581*** 
-0.203*** 
1.923*** 

0.070 
0.079 
0.275 

-8.299 
-2.563 
6.980 

0.000 
0.010 
0.000 

Log Solar 
Radiation 

-0.166*** 
0.051*** 

-0.049 

0.011 
0.014 
0.046  

-14.450 
3.698 

-1.067 

0.000 
0.000 
0.286 
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Soil type 1 
(Loam) 

1.700*** 
-3.272*** 
-4.455*** 

0.392  
0.120  
0.324 

4.334 
27.370 

-13.731 

0.000 
0.000 
0.000 

Soil type 2 
(Rocky Loam) 

1.680***
 -0.290 

-29.024*** 

0.424 
0.158 
0.000 

3.961 
-1.833 

-5.909e+13 

0.000 
0.067 
0.000 

Soil type 3 
(Silt Loam) 

2.289*** 
-1.623*** 

-20.388*** 

0.399 
0.143 
0.000 

5.738 
-11.366 

-1.250e+09 

0.000 
0.000 
0.000 

Soil type 4 
(Silty Clay Loam) 

2.565*** 
-32.904 

-10.540***  

0.648 
NaN 

0.000 

3.959 
NaN 

-1.933e+06 

0.000 
NaN 

0.000 

Soil type 5 
(Clay Loam) 

1.6158*** 
-0.436*** 
-1.403*** 

0.399 
0.126  
0.324 

4.052 
-3.464 
-4.327 

0.000 
0.001 
0.000 

Soil type 6 
(Clay) 

-13.457*** 
-11.409*** 

-2.954*** 

0.000 
0.000  
0.001  

-1.947e+07 
-4.837e+06 
-4.528e+03 

0.000 
0.000 
0.000 

Soil type 7 
(Rocky Clay 
Loam) 

1.254*** 
-0.088

 0.966*** 

0.412 
0.135 
0.289 

3.042 
-0.648
 3.339 

0.002 
0.517 
0.001 

Soil type 8 
(Rock land) 

1.463*** 
-2.453*** 

-18.042*** 

0.401 
0.147 
0.000 

3.648 
-1.665 

-4.609e+07  

0.000 
0.000 
0.000 

Soil type 9 
(Wet) 

1.403***
 -2.836*** 

-22.729*** 

0.411 
0.194 
0.000 

3.412 
-14.580 

-1.164e+10 

0.001 
0.000 
0.000 

Statistical Significance, *p<0.05, **p<0.01, ***p<.001 

Overall, the validation confirms fire intensity holds the expected relationship with the different 
levels of SBS, which is the purpose of this analysis.  In place of validation using observed fire 
intensity data from a wildfire, this analysis supports the use of this data to inform stakeholder 
decision-making regarding wildfire. 
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D.3.10 Future Research: High Resolution Wildfire Behavior Modeling 
D.3.10.1 Infrastructure-specific hazard metrics 

In an ideal case, hazards would be defined by specific vulnerabilities of an asset.  However, the 
hazard metrics used in wildfire behavior modeling are originally developed to inform wildfire 
suppression practices and to prescribe mitigated burns.  While these metrics can be applied to 
assess wildfire severity, the metrics are not direct implications of damage to an asset.  Therefore, 
future research regarding the development of hazard metrics specific to TFS infrastructure 
could be useful for stakeholders to isolate at-risk locations.  For example, at the June 26, 2017 
workshop, stakeholders expressed interest in ground heat penetration to assess hazard with 
respect to subsurface TFS infrastructure.  Development of a formula dependent on subsurface 
depth, soil type and moisture, and surface fire behavior and residency time would directly 
imply damage to subsurface infrastructure.  Of course, the physical properties of the subsurface 
TFS infrastructure would have to be well known with regard to cracking and thermal fatigue in 
the heat affected zone. 

D.3.10.2 Object Based Wildfire Behavior and Fuel Models 

Following an assessment of specific vulnerabilities and corresponding wildfire hazards, 
stakeholders should conduct prescriptive mitigation to limit wildfire threat.  Object-based 
image analysis (5m or smaller) offers promise for accurate fuel classification, but the 
representative fuel models lag behind the image analysis techniques.  In the near future we 
would like to see the development of object-based fuel models.  This would likely be achieved 
by combining FARSITE and FlamMap to create a vector-based basic fire behavior module. 

Beyond application to mitigation, landscapes would more precisely represent reality as object-
based vectors.  Limitations to implementation are not computational, rather it is a limit of the 
fuel models used to represent surface fuels.  Fuel models were developed to represent large 
patches of heterogeneous land cover, hence our resampling of imagery from one meter to five 
meters.  The development of fuel models that represent homogenous ground objects would 
improve model precision, model applicability, and potentially model accuracy. 

D.3.10.3 Data Collection for Data Fusion 

Discrepancy between imagery and LiDAR collection dates is a source of error in classification.  
For example, consider a tree canopy expanding over a paved surface over two years between 
the collection of LiDAR and imagery.  If imagery were collected two years earlier than LiDAR, 
accurate classification would identify an impervious surface from imagery, and tree height for 
LiDAR, leading to misclassification as a building.  If LiDAR data were collected two years 
before imagery, accurate classification would identify the zero height of a paved ground, with 
spectral characteristics of vegetation, and output a misclassification as grass.  Similar error 
could arise for any area that underwent land cover change between collection of imagery and 
LiDAR data.  By using an object-based workflow that ascribed median height to segmented 
imagery, this error is limited in our analysis, but similar error could arise for any area that 
underwent land cover change during the time between imagery and LiDAR collection.  
Frequent and regular collection of airborne LiDAR would limit this error by enabling models to 
make practical use of the temporal frequency of imagery collection.  Alternatively, a data 
collection program that simultaneously collects spectral and elevation data could eliminate this 
error for future work. 

D-99 



 

 

 

 

  

D.3.10.4 Vegetation succession models for estimating future change in wildfire behavior 

In order to model future conditions of wildfire behavior, our model uses future estimates of 
climate to condition live and dead fuel moistures.  However, the model fails to account for 
changes in land cover affecting local wildfire behavior.  In order to create a more accurate--or at 
least more precise--estimate of future wildfire behavior, research should incorporate vegetation 
succession models that are functions of climate into fuel model projections. 
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D.5 Appendix D Acronyms 

BAER Burned Area Emergency Response 

BARC Burned Area Reflectance Classification 

BCSD Biased Corrected Statistical Downscaling 

BFB Basic Fire Behavior simulation module of FlamMap. 

BTU British Thermal Unit 

CAIFMG California Interagency Fuel Mapping Group 

CalFIRE FRAP or 
FRAP CalFIRE's Fire Resource and Assessment Program 

CFP California Fire Plan 

CHM Canopy Height Models 

DEM Digital Elevation Models 

DSM Digital Surface Models 

EDA Exploratory Data Analysis 

ESRI Environmental Systems Research Institute 

FARSITE A vector-based simulation software for estimates of wildfire spread. 

FBFM Fire Behavior Fuel Model 

FlamMap A pixel-based wildfire simulation software.  

FPA FOD Fire Program Analysis Fire-Occurrence Database 

FRCC 
Fire Regime and Rotation Class product created by the LANDFIRE 
program 

GCM Global Climate Model or General Circulation Model 

GNDVI Green Normalized Difference Vegetation Index 

GPS Global Positioning System 

HFRC Historical Fire Rotation Class product created by CalFIRE FRAP 

las LiDAR data exchange file 

LiDAR Light Detection and Ranging 

LOCA Localized Constructed Analog model 

LULCcond 
Land Use Land Cover conditions present under specific population 
growth scenario modeled by Sleeter et al (cite) 

MEV 
Mean Estimated Values of area burned by wildfire for each 
GCM+PRCP+LULCcond modeled by Westerling, A. L. (forthcoming) 

MTBS Monitoring Trends in Burn Severity 

MWTR Modeled Wildfire Threat Rankings 

NAIP National Agriculture Imagery Program 
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NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NFDRS National Fire-Danger Rating System 

NIR Near-Infrared 

NLCD National Land Cover Dataset 

NSF National Science Foundation 

OBIA Object-Based Image Analysis 

OSAVI Optimized-Soil Adjusted Vegetation Index 

PFB Potential Fire Behavior product created by CalFIRE FRAP 

RAVG Rapid Assessment of Vegetation Condition after Wildfire 

RCP Representative Concentration Pathways 

SBS Soil Burn Severity 

SMS Segment Mean Shift algorithm 

SVM Support Vector Machine 

TFS Transportation Fuel Sector 

USDA United States Department of Agriculture 

USGS United States Geological Survey 

VCC Vertical Canopy Cover 

VIC Variable Infiltration Capacity model 

WFLC Wildfire Leadership Council 

WHP Wildfire Hazard Potential 

WTI Wildfire Threat Index product created by CalFIRE FRAP 
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APPENDIX E: Transportation Fuel Sector Stakeholder 
Data Collection Methods 

E.1 Introduction 

This section covers the TFS stakeholder engagement process and the iterative discussion 
sessions that led to a better understanding of how our models could inform exposure of the TFS 
to flooding and wildfire. Stakeholder engagement is recognized as a necessary resource for 
environmental management and policymaking (Freeman, 1984; Organisation for Economic Co-
operation and Development, 2004). Nevertheless, the term stakeholder engagement or 
stakeholder analysis has been used in many ways through with greater or lesser methodological 
rigor. There is considerable literature on methods for stakeholder analysis that generally defines 
it as a process to identify individuals, groups, and organizations who are affected or can affect 
the societal decision-making processes of a studied problem (Reed et al., 2009). A full 
stakeholder analysis of the TFS goes beyond the scope of this project.  The process described 
here is a pilot effort that helps delineate areas for further investigation into possible 
consequences of wildfire and flooding for the transportation energy industry business models, 
stakeholders, and regulation. 

Our stakeholder engagement process is designed with two general goals: a) identify when and 
where the TFS individual assets, its interconnected physical network, and its organizational 
network are most vulnerable to wildfire and flooding; and b) identify how this vulnerability 
could drive changes to the TFS regulatory framework. 

E.2 Stakeholder Engagement Process: Population Sampling and 
Milestones of Data Collection 

We define stakeholders as groups of private and public organizations in the transportation fuel 
sector that affect or are affected by proactive and reactive decisions regarding abrupt or 
incremental threats from flooding and wildfire. As explained in Chapter 4, our stakeholders are 
divided into TFS Core, TFS Dependent, and TFS Knowledgeable, which represent the 
organizational units of analysis. 

Three engagement mechanisms allow us to interact with the stakeholder population: the 
technical advisory committee, area/regional workshops, and stakeholder discussions. The 
Technical Advisory Committee (TAC), consists of representatives of industry stakeholders that 
own and operate key TFS assets (labeled TFS core), representatives of organizations that provide 
services on which the TFS core organizations rely heavily (labeled TFS dependent), and 
representatives of groups that regulate and or research TFS core organizations (labeled TFS 
Knowledgeable). We present preliminary plans and results to this TAC to ensure that the study is 
highly informed and includes as many types of stakeholders and assets as possible. The TAC 
serves as the starting point for identifying organizations to invite to the workshops and 
discussions (Figure E 1).  

We organize the workshops to collect information from the public and from the TFS 
stakeholders to improve our understanding of the assets in the TFS network, its internal and 
external interdependencies, and the stakeholders’ areas of concern from an extreme weather-
related event perspective. In addition to these workshops, we hold discussions with various 
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groups of TFS stakeholders to gain detailed insights into their TFS assets, potential 
vulnerabilities to extreme weather events, interdependencies within the sector and with other 
sectors, potential strategic plans already in place or being developed, etc. 

Figure E 1. Stakeholder s onology Stakeholder Discussions: 
Oct -Dec 2017 

Southern California Workshop: 
March 14, 2017 

TAC 
Ongoing 
interaction 

Northern California Workshop: 
June 24, 2017 

Interaction with stakeholders is the premise to making sense of the results of our flood and 
wildfire exposure modeling since exposure of the TFS assets to wildfire or flooding does not 
necessarily translate to asset damage. The stakeholder engagement process depended on how 
well we could communicate our projected wildfire and flooding scenarios and consequently, 
how well our stakeholders understood and relied on our models. Therefore, the continuous 
engagement process was designed to promote an iterative interaction with our stakeholders. 
The Northern and Southern California workshops provided the initial forums to disseminate 
exposure models to the stakeholders. 

As a common method of qualitative research, our stakeholder engagement process fits a 
purposive and snowball sampling technique. Unlike probability sampling, the purposive 
sampling technique allows us to select units of analysis that are strategic for answering our 
research questions. The snowball sampling technique starts with a small group of organizations 
that are relevant to our research question (i.e. the TAC). The TAC proposed new organizations 
or other individuals within their organizations who could help answer the research questions 
and this cycle continues.  Snowball sampling can be viewed as a form of convenient sampling, 
but it is often used to cover populations that are hard to access because they are not well 
defined (Byman, 2016). This scenario fits our research and the TFS, not only because of the 
fuzzy boundaries of this complex sector, but also because the nature of this business is highly 
competitive, publicly stigmatized, and thus closed to any unofficial stakeholder engagement 
processes.  

One of the strategies behind our sampling process was to target a variety of owners and 
operators of the key assets in the TFS, identified in Figure E 2.  We included stakeholders that 
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the TFS Core organizations are dependent on, as well as stakeholders that regulate and research 
TFS Core organizations. Stakeholder heterogeneity adds value to risk management in 
technological and organizational innovation (Hall, Bachor, & Matos, 2014), especially when 
their interests and functions are diverse (i.e. the nature of their responsibilities and relationship 
vis-a-vis the TFS). This heterogeneity also allowed us to gather information on specific oil and 
transportation assets even if we did not reach their owners or operators. This expansion also 
conforms with the snowball sampling design, as one of the results from our engagements with 
the Core organizations was the referral to Dependent and Knowledgeable organizations. 

To understand the representativeness of the stakeholders we engaged with, we also categorized 
them based on their TFS knowledge pool. This categorization was important to connect the 
nature of the stakeholder’s expertise to our TFS model (Figure E 2). 

Figure E 2. Core stakeholders:  TFS key oil and transportation assets 

This categorization illustrated that many of our stakeholders hold valuable experience and 
information on TFS assets and industry business segments that are not necessarily attached to 
their current job position within an organization (Table E 1).  
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Table E 1. TFS Stakeholder Knowledge Pools 

Commodity subsystem 

 Crude oil 

 Refining (includes all products + gasoil) 

 Motor vehicle fuels (gasoline, diesel, biofuels, 
LPG) 

 Jet fuels (kerosene, naphtha) 

 Marine fuels (marine gasoil, distillate marine 
diesel, residual oil) 

Key oil infrastructures (nodes) 

 Oil fields/gathering stations 

 Marine terminals/wharfs 

 Crude rail terminals 

 Refineries 

 Distribution terminals/ Bulk plants/ Breakout 
tanks 

 Motor vehicle fuel dispensing facilities 

 Airport fuel dispensing facilities 

 Marine fuel dispensing facilities 

Key transportation infrastructures (edges) 

 Pipelines 

 Railway 

 Roadway 

 Waterway 

Dependent infrastructure/ service 

 Water 

 Power 

 Emergency management 

E.2.1 Stakeholder Engagement Process: Data and Documents  
We used stakeholder-specific memos, maps, and tables as supporting documents for our 
stakeholder outreach initiatives. We presented data on estimated past, present, and future 
exposure of assets to support discussion with stakeholders regarding the vulnerability of 
exposed assets. Data and documents used to support engagement are described in the following 
subsections. 
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E.2.1.1 Supporting Wildfire Documents 

A memo describing the wildfire hazard metrics, as well as maps of historical wildfires, present 
threats, and predicted changes to exposures in the future, were generated to provide the 
stakeholders with insight into wildfire threats, as they are relevant to their assets. 

The purpose of the memo was to describe wildfire hazard metrics and to highlight the 
importance of providing information on instances of damages using historical wildfire maps 
and tables. The TFS stakeholders expressed a need for damage metrics that describe the 
potential impact of a wildfire on a terminal, refinery, pipeline, rail, or trucking corridor.  
However, our modeling metrics estimated potential wildfire, defined as hazard or potential 
exposure, without speculating on potential impact as a function of vulnerability of an asset. 
Understanding possible impact patterns of the wildfire behavior metrics on the TFS is one of the 
goals of the stakeholder engagement process, although correlations of fire risk and expected 
loss is far from being fully understood in post-fire effect research (Hardy 2005). 

Historical Wildfires near Stakeholder Assets 

Maps displaying historical wildfire perimeters that intersected or fell within a buffer distance of 
stakeholder assets were provided in stakeholder engagements.  The maps were provided with 
associated tables that listed the indexed wildfires on the map, event date, and the wildfire 
acreage burned.  The data was provided so stakeholders could identify any wildfires that 
intersected their assets and caused physical damage or disrupted the flow of product.  An 
instance of damage could highlight a potential vulnerability of the asset to wildfire in the 
future.  We would then use the high-resolution wildfire model to simulate wildfire behavior 
using pre-incident historical imagery and thereby estimate the combination of fire behavior and 
asset structure that would yield damage. 

The historical wildfires were collected from CALFIRE FRAP fire perimeter data, version 16_1. 
Wildfires within a buffer distance of a stakeholder’s assets and within a date range were 
included.  The buffer distance depended on the asset type.  For pipeline assets, a 0.8-km (0.5-
mile) buffer was used to account for potential damage from direct fire exposure or from 
excavation strikes.  For trucking and rail routes, wildfires within a larger 1.6-km (1-mile) buffer 
were included to account for potential flow disruption from smoke plumes that would 
presumably not affect pipeline operations. 

The range of years included in the query depended on the stakeholder history and the 
availability of pre-incident data.  Wildfires were included in the maps if they occurred while the 
stakeholder owned the asset.   However, since the LANDFIRE data used to model pre-incident 
conditions began in 2001, this is the earliest date of wildfires included in the analysis.  If a 
wildfire was of interest (defined as one that caused damage and occurred after 2008), National 
Agriculture Imagery Program (NAIP)—the primary imagery input to high-resolution wildfire 
behavior modeling—was used for modeling.  If wildfire damage was reported between 2001 
and 2007, wildfire behavior was estimated at 30-m (horizontal) resolution using the LANDFIRE. 

Current Wildfire Threat to Stakeholder Assets 

Current wildfire threat to assets was represented by intersecting the CALFIRE FRAP Threat 
Map (2017) with each stakeholder’s infrastructure.  A half-mile buffer was used to show the 
threats nearest to stakeholder assets.  The raster Threat dataset is at 30-meter horizontal 
resolution and is a function of likelihood of wildfire and the potential wildfire severity.  
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Likelihood is defined as fire rotation, or the time-step between historical wildfires in a given 
area.  Potential wildfire hazard is represented in the dataset as fuel rank, which is a function of 
topography and land cover type. 

Estimated Changes in Future Wildfire Exposure 

In addition to historical instances of wildfires near assets and current estimated threat to assets, 
the data used for Wildfire Projections (See Appendix E, Section 2) were summarized into 
thirteen intersection maps.  Five maps showed the estimate of threat for double-decadal periods 
between 2000 and 2099.  Four maps showed the change in wildfire threat such that 2000-2019 
was used as a baseline, and one map showed the change in threat between the baseline and 
each subsequent double-decadal period.  Four additional maps were created to display the 
change in risk between each period (i.e. the difference between threat in 2000-2019 and 2020-
2039, the difference between 2020-2039 and 2040-2059, and so on). The threat for each double-
decadal period was created using data produced by Leroy Westerling for the Fourth 
Assessment.  For each GCM, RCP, and population projection, the median projection of 
projected area burned per year was presented for each double-decadal period (See Appendix D 
Section 2). 

Medians were used to represent conservative estimates to stakeholders. Similar to current 
wildfire threat maps, future wildfire projections were included to elicit stakeholders’ 
perceptions of future wildfire risk, changes in future wildfire risk, and to inspire interest in 
targeted high-resolution wildfire behavior hazard modeling. 

E.2.1.2 Supporting Flood Documents 

To summarize inland and coastal flooding projections (See Appendix C) relevant to individual 
stakeholder assets, flooding exposure projection maps were created for seemingly vulnerable 
study sites.  The flood maps were produced by simulations using the median sea-level rise, 
storm, and rainfall scenario to represent a conservative estimate of potential exposure, similar to 
the wildfire projection maps. Two maps for each potentially vulnerable study site were 
generated, one for the median scenario in 2040 and one for the median scenario in 2100.  The 
goal of stakeholder engagement using these maps was to solicit information about any assets 
that could be inundated, specifically if and how the exposed assets would be vulnerable to 
damage from inundation. 

E.3 Discussion Formats and Goals 

After the initial interactions with stakeholders, more specific research topics were defined: 

1) Understand the TFS as a critical interconnected infrastructure with physical and 
organizational networks. 

2) Link the measured outputs of hazard models to damage propensity of the stakeholder’s 
exposed assets and supply and demand chain network. 

3) Identify these stakeholder’s strategic planning for weather related hazards in the context 
of climate change. 

These goals guide the stakeholder discussions. The information provided by the stakeholders 
depends highly on the understanding of our modeled wildfire and flooding scenarios. Since not 
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all of the stakeholders that attended the discussions participated in our exposure modeling 
descriptions during workshops, visuals or even full presentations by the wildfire and/or flood 
modeling teams were sometimes necessary. As a result, there are three types of discussion 
formats (Table E 2). 

Table E 2. Discussion Formats 

A IN-DEPTH STAKEHOLDER DISCUSSIONS  

AB IN-DEPTH STAKEHOLDER DISCUSSIONS WITH HAZARD MODEL VISUAL SUPPORT 

B PRESENTATION OF WILDFIRE AND FLOODING MODELS FOLLOWED BY SHORT DISCUSSION 

We conduct 21 discussions in the A-AB-B format covering 18 different organizations: 13 Core, 4 
Knowledgeable, and 1 Dependent3. A number of topics were raised during the discussions, 
organized in a manner similar to semi-structured interviews. The variety of stakeholders and 
the exploratory nature of this procedure demand a great deal of flexibility in how the 
discussions were set up. The goal was to steer the discussions so that the stakeholders could 
explain how they frame the modeled hazard scenarios presented to them. 

E.4 Discussion Guide Description  

Our stakeholder discussions require map-elicitation, as some of the questions are grounded 
using our modeled hazards in maps of flooding and wildfire scenarios. These maps help anchor 
questions about linking the outputs of our hazard models to the expectation of damage to the 
stakeholder’s asset portfolio. Due to this heavy emphasis on map-elicitation, the preparation for 
the actual discussion involves personalization of the model results to organization-specific asset 
types and supply chain networks. 

Vignette-type questions were also a major component of our discussions as they are very useful 
to realistically elicit reactions to certain scenarios (Bryman, 2016). By describing an event or 
scenario in words, stakeholders’ strategic planning for specific climate change threats were 
addressed. 

E.4.1 Guide Narrative 
The TFS was globally defined in this project as the physical, organizational, and institutional 
factors that enable the supply and distribution of transportation fuel in California. This 
conception consists not only of physical elements (assets) and material designs, but also 
includes organizational framework for management, control, and institutional systems that 
constraint and support the operation of these assets. This definition leads to a specific 
investigation process and design that are intended to follow the potential impact propagation of 

3 Asides from the numerous informal meetings and interactions with the TAC members that helped us 
outline the discussion procedures and goals, we also conducted three piloting discussions beforehand, 
one for each Stakeholder category that are not included in this count. 
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the exposure to wildfire and flooding from physical components (A and B) to more abstract 
dimensions of the TFS (C and D) (Figure E 3). 

Figure E 3. Approach to understanding the different vulnerabilities of the TFS to modeled hazards 

The dimensions can be further described as: 

A. Individual Assets: Physical units of the infrastructures that form the TFS. If 
we are looking at pipelines for example, these assets can 
relate to microscale assets such as specific joints; mesoscale 
assets such as valves or pumps and macroscale assets such 
as specific buildings like breakout tanks or offices. 

B. Physical Network:  The systemic infrastructural view of the TFS, where all 
assets are functionally linked from fuel flow perspective. 

C. Organizational network:   The inter- and intra-organizational relations that are 
formed to reliably operate and manage transportation fuel 
supply and distribution. 

D. Institutional framework:  The systems of formal laws, regulations, procedures, and 
informal conventions, customs, and norms, that 
shape socioeconomic activity and behavior within the TFS 
organizations. 
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The discussions’ introductory questions are designed as a warm up, usually covering 
information we should be able to convey before the meeting. The introductory section is also 
important for us to identify the knowledge pools of the stakeholders.  

The next step is to present projected wildfire and flooding scenarios overlaid with organization-
specific TFS asset information (please see Figure E 4 and Figure E 5 as examples). This is also 
done with historic wildfire burn perimeters overlaid with the stakeholders’ assets. This exercise 
sets the stage for the next three topics that rely on map-elicitation for driving the conversation 
and grounding the stakeholders’ answers. 

Figure E 4. Example of map-elicitation on flooding scenario used during discussion 

The first set of map-oriented questions (dimension A) have the objective to understand how our 
modeled hazards results could help identify damage propensity to the individual assets that are 
directly exposed. 
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Figure E 5. Example on map-elicitation for flooding scenario used in discussion 

In this section, we also connect metric hazard outputs to damage propensity. Our aim is to 
assess if these assets have any unique operating thresholds or sensitivities that can either be 
measured through rate of spread, fire line intensity, or flame length for wildfire hazard, or 
measured through depth and duration for flooding hazards. 

Questions 8 to 13 of the discussion guide (part E.8) are designed to understand how the damage 
to individual assets could have an indirect effect on interconnected assets (dimension B). This 
also involves understanding the perceived direct impact to assets that are not operated by the 
stakeholder but are connected to their assets in the supply and demand chain. These questions 
help assess the interconnectedness of certain organizations but also, by cross-comparison of 
different discussion results, this indicated the awareness of the interdependency between 
“neighbors”. 

Questions 14 to 16 were developed to understand how the possible damages identified though 
the previous questions would affect the inter-organizational structure in an emergency and 
recovery situation. 
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Questions 17 to 19 intend to uncover how the possible damages discussed above have induced 
any changes in internal procedures or strategic planning, or if the organizations see any need 
for change in the current institutional framework that regulates their operation from a critical 
infrastructure point of view.  

The last section is designed to elicit discussion around our research questions in the advent that 
the scenarios presented were not successful (questions 20 to 24). 

In general, our introductory, first-, and second-block questions addressed the initial research 
question for understanding and describing the TFS; the second- and third-block questions 
addressed our second research question making sense of the exposure models, while third-, 
fourth-, and concluding blocks revolved around answering our third research question on 
strategic planning. 

It was difficult to find one stakeholder we were able to elicit discussions to the full spectrum of 
topics designed. The topics addressed usually demand the participation of multiple individuals 
in the same organization. 

E.5 Challenges of the Applied Process and Lessons Learned 

Since the methods discussed above were applied to a heterogeneous group, there were a 
number of challenges experienced during the application of the stakeholder engagement 
process.  

Stakeholder Specific Vocabulary 

Depending on the stakeholders involved in the discussions, a simple shift from the word 
“organization” to the word “company” or “firm” or vice versa would make a difference in the 
quality of our discussion. 

Not all organizations with in the TFS use the same name or label for specific assets. This led to 
confusion on which asset stakeholders were actually referring to. For example, a “terminal” is 
defined by some organizations as any multi-modal transloading point. For others, it as a 
transloading point regardless of mode or it just represents a storage point with no transloading 
at all. This was problematic as the terminals represent a key oil infrastructure that we have as a 
unique layer in our models. Since the discrepancy was noted after a number of discussions, it 
impacted the characterization of TFS connectivity in our maps. 

Reaching Full-breadth of Stakeholders 

a. Individuals Do Not Fully Represent an Organization  

A person representing an organization during a discussion is also an individual with his or her 
own belief system. Another challenge that arises is identifying in each organization which job 
position or professional background of the individual would be the most appropriate to help us 
answer our research questions or even link us to the person that would do so. This gets 
increasingly complicated when there was no one single person that could address the range of 
questions we developed, which was often the case.  Controlling for specific job positions of the 
stakeholders was attempted in an overarching way, although this is almost contradictory to 
snowballing sampling technique. 

b. Lack of resources to reach all levels within an organization 
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To properly answer our third question on strategic planning, we aimed for the highest levels of 
decision makers from the TFS Core and TFS Dependent stakeholders. However, our sample was 
small. We also did not include shareholders of these companies in our sample.  

Since the scope of the project focused on Californian territory only, there were logistical and 
financial limitations if an interesting stakeholder organization had its headquarters in another 
state. Moreover, even if there is a clear identification of the job titles and professional 
background we are profiling, this would not necessarily translate to the exertion of influence 
that is perceived by a certain professional position. It is not uncommon to misrepresent the role 
of a person in an organization (Harvey, 2011). 

E.6 Conclusion  

The stakeholder engagement process revealed itself as a useful tool for better understanding the 
TFS and reciprocally provided insight for the organizations to understand the risks associated 
with climate change, specifically flooding and wildfire. Communicating climate change science 
for pragmatic decision-making is complex because of the weight of uncertainties. Developing a 
dialogue about climate change with industries that are stigmatized as major causes of this 
problem adds a layer of complexity to this process.  Our iterative engagement procedure 
coupled with organization-personified high-resolution modeling results for wildfire and 
flooding seemed to have raised fruitful engagement with some specific companies as is 
developed in Chapter 4 of this report. 

Finally, the non-probability nature of the sampling method applied here does not qualify our 
results for generalization to the TFS organizations.  Although it is important to underscore that 
the complexity of the TFS organizational network, the heterogeneity of stakeholders, and the 
nature of this industry make generalizations of stakeholders very difficult from a quantitative 
perspective. A proposition for further developing this specific portion of the project would be to 
apply the lessons learned from this exploratory stakeholder engagement process, which 
includes using a set of questions and language for specific stakeholder profiles and expanding 
the sampling method to have significant coverage of our TFS Core, Dependent, and 
Knowledgeable population. 
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E.8 Discussion Guide 

Introductory Topics: 

1.Where does the organization fit in our conceptual TFS model? 
2.What products does the organization work with and in what way? (i.e. crude oil, gasoline, 
diesel, jet fuel, etc.) 

3.Has the organization had any wildfire or flooding incidents? 

I. Topics associated with damage to individual assets (i.e. depth damage curves). 

4.What specific infrastructure is the organization worried about in relation to wildfire and flooding 
exposure? 

This might relate to: 

o “microscale” assets such as specific joints; 
o “mesoscale” assets such as valves or pumps; 
o “macroscale” assets such as specific building/tank or office, i.e. Control Rooms 
o “system” assets such as entire pipeline systems 

5.When considering wildfire and flooding, what information is more valuable to the organization to 
prevent and mitigate adverse events due to exposure? Why? 

o Wildfire hazard metrics: Rate of Spread/ Fireline Intensity (BTU) /Flame length 

o Flood hazard metrics: Depth / Duration/ Scouring 

6.If the asset is permanently damaged how difficult, financially and/or time‐wise, would it be to 
replace it? 

II. Topics associated with damage to network functionality/ flow of fuel (criticality metrics) 

7. What are the origins and destinations of the products the organization works with in this mapped 
area? 

8. How are normal operations defined? 
9.How would a disruption and failure of operations of the organization be defined? Due to wildfire 
or flooding? 

10. Assuming assets that could suffer damage from flooding and wildfire, how would this damage 
cause disruption of operations? How likely would the damage cause failure of operations? 

11.In what way(s) would this disruption or failure affect other assets of the organization? Would 
this affect other organization’s assets? 

12.If another organization’s asset is permanently damaged, how long would it take to affect the 
operations of this organization? (If dealing with transport infrastructure type use nearby 
fixed infrastructure damage scenario or vice versa) 
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III. Topics related to organizational structure while facing wildfire/flooding 

13.Considering the damage scenario, what position(s) in the organization are responsible for 
responding to the incident and returning assets to normal operations? What actions would be 
taken? 

14.Which external organizations would this organization need to contact or work with in order to 
recover normal operations? What position at that organization would be responsible and what 
actions would be taken by that organization? 

15.Does the organization undertake near or long‐term planning with any other interconnected (TFS 
or not) organizations with regards to wildfire and flooding scenarios? How so, and what 
organizations/industries does this include? 

IV. Topics related to institutional framework 

16. What are the organization’s planning horizons? 
17. What is the organization’s level of interest in undertaking near or long‐term planning for 
wildfire and flooding risk with relation its assets? 

18. How is interaction with TFS industries/organizations enabled or restricted by procedures, 
licensing & regulation when dealing with wildfire and flooding risk? 

Concluding Topics 

19. What would be a worst‐case scenario/ nightmare for the operations of the organization? (not 
necessarily wildfire or flooding) 

20. How does the organization plan around this? 
21. Does planning involve interaction with people within the organization but from other 
sectors/premises? 

22. Does this involve interaction with people outside the organization? Which organizations and 
function? What actions are taken? 

23. What other organizations in the TFS have dealt with wildfire or flooding events or that engage 
with strategic planning around these risks? 
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APPENDIX F: Vulnerability of Alternative 
Transportation Fuels to Coastal Flooding and Wildfire 
in California: Hydrogen Fuel Case Study 

F.1 Introduction 

Alternatives to legacy petroleum-based liquid fuels such as electricity, compressed natural gas, 
ethanol, liquified natural gas, propane, biodiesel, and hydrogen only represent less than 6% of 
current transportation energy demand in California (Lawrence Livermore National Laboratory, 
2014). Nevertheless, California is the leading State in the U.S. on investment and development 
of alternative transportation fuel stations, currently equipped with over 5,500 private and public 
fuel stations representing more than 10 times the national average (U.S. Department of Energy, 
2018). Hydrogen fuel is available in less than 1% of these distribution stations in California, but 
at a national level, the State is the leading investor in and developer of this alternative fuel type 
with more than 70% of operational stations in the U.S. California has an eminent role in 
alternative transportation fuel development and specifically hydrogen fuel, which is reinforced 
by the high number of incentives and regulations that are specific to the implementation of 
hydrogen fuel infrastructure.  

To take into account this distinct feature of California’s TFS, this appendix will present an 
overview of hydrogen fuel infrastructure in the State, existing and planned hydrogen fueling 
stations’ exposure to wildfire and coastal flooding, and finally the perspectives of hydrogen fuel 
stakeholders regarding their industry's vulnerability to near- and long-term wildfire and 
flooding hazards. This case study is also relevant in the context of growing incentives on 
climate change mitigation solutions, such as zero-emission vehicles (ZEVs). ZEVs have 
experienced notable market penetration, overwhelmingly representing plug-in electric vehicles 
(PEVs) rather than fuel cell electric vehicles (FCEVs). In 2014, the first FCEVs were released for 
wholesale and retail markets of California with cumulative sales of more than 4,600 vehicles. As 
hydrogen fuel is a new and growing industry, it has a unique opportunity compared with the 
existing conventional fuel sector to consider current and projected exposure to extreme weather 
hazards in the industry's initial investment and incorporate it into the future investment cycles. 

F.2 Overview of the Hydrogen fuel’s regulations and infrastructure in 
California. 

F.2.1 Hydrogen Fuel Infrastructure Regulation  
For almost three decades, the investment in and development of alternative fuels has intended 
to reinforce the country’s transportation energy efficiency and vehicle emissions reduction in 
the interest of mitigating climate change effects and improving air quality (ZEV Mandate, 
CARB 1990; Energy Policy Act of 1992, 1992). California has a leading role in incentives and 
regulations for the entry and increase of alternative fuels in the TFS, with more than one third 
directly related to hydrogen fuel (U.S. Department of Energy, 2018). 

Considering the multiple advantages of ZEVs in achieving climate goals and air quality 
standards, California Executive Order B-16-2012 was issued as a milestone for alternative fuel 
incentives that set long-term targets for the number of ZEVs in the State’s motor vehicle count 
and emissions reduction goals. The ZEVs Promotion Plan directed all State agencies, with 
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emphasis on the California Energy Commission (CEC), the California Public Utilities 
Commission (CPUC), and the California Air Resources Board (CARB) to facilitate and accelerate 
the entry of ZEVs into vehicle market, in conjunction with the private sector through the 
California Fuel Cell Partnership (CFCP). One of the major challenges for the expansion of ZEVs 
in California is the insufficient number of  hydrogen fueling stations for FCEV drivers 
(Chiladakis, Crowfoot, & Winston, 2013). Therefore, improving the mobility of FCEVs through 
the proliferation of refueling stations remains critical to the expansion of ZEVs in California 
(Orenberg, 2018). On January 26th, 2018, the policy was updated to outline new goals for the 
hydrogen fuel sector in California to include 200 hydrogen fueling stations constructed by 2025 
and five million ZEVs on California roads by 2030 (Office of Governor Edmund G. Brown, Jr., 
2018) 

California has 35 public operational hydrogen fueling stations and 26 public stations currently 
planned, commissioned, or under construction (U.S. Department of Energy, 2018) for a total of 
61 public hydrogen refueling locations (Figure F 1). Following the tendency observed with the 
conventional TFS hubs in Northern and Southern California (Ch.2), most of the stations have 
been sited in the San Francisco Bay Area and Los Angeles. Other stations are being developed 
on the highways connecting the two major metropolitan areas in California, as well as the 
Sacramento Valley to Reno (NV) along the roadways belonging to the National Alternative Fuel 
Corridors (Turchetta, Purcell, & Nyhan, 2018) 
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Figure F 1. Current and Planned Hydrogen Fueling Stations in California (Source: (California Fuel 
Cell Partnership, 2018) 

F.2.2 California’s Hydrogen Fuel Supply-Chain 
Compared to traditional motor vehicles, one of the advantages of FCEVs is found in the 
abundance of hydrogen fuel sources. Hydrogen is the most frequently occurring element 
known in the universe, therefore the main effort in its production as fuel depends upon the 
separation of hydrogen molecules from molecules where it naturally occurs. In the U.S. 
hydrogen fuel demand in transportation comes from not only private and government FCEVs, 
but also from industrial utilitarian fleets (forklifts) and space rockets (U.S. Energy Information 
Administration, 2018). Other major producers and users of hydrogen are petroleum refineries 
(CH.2.3) that possess on-site steam reforming of natural gas also known as steam methane 
reforming (SMR).   
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The hydrogen industry has a great variety in fuel production methods. Electrolysis is 
considered as a renewable pathway for hydrogen fuel production based on the splitting of 
hydrogen molecule from other molecules (most commonly water) with electricity or microbial 
biomass (Office of Energy Efficiency & Renewable Energy, 2018a).  At present, SMR is still the 
most common method employed to produce bulk hydrogen fuel, and it is responsible for 95% 
of the US hydrogen fuel production (Office of Energy Efficiency & Renewable Energy, 2018b). 
According to the CEC's Advanced Vehicle Infrastructure Office Hydrogen Station sourced 
database (March 2018), this significant proportion is also the case in California with 92% of 
hydrogen fueling station sources coming from SMR and only 8% from electrolysis. 

When compared with conventional fuels, hydrogen has a much simpler supply chain (Figure F 
2) from production origins (SMR or electrolysis plants) to its final destination in one of the 
35hydrogen fueling stations currently operating in California. An innovative aspect of the 
hydrogen fuel supply chain is that there are several fully integrated hydrogen fueling stations 
in California designed to produce hydrogen on-site. Most of on-site production relies on 
electrolysis production method, but there is one station at the Los Angeles International Airport 
that has on-site SMR production. Although on-site production technology exists, the volume 
produced does not suffice the FCEVs' current demand. Therefore, 92% of hydrogen fuel 
consumed in stations comes from off-site production, including out-of-state sources (CEC-
Advanced Vehicle Infrastructure Office data-base, 2018). The transportation from these off-site 
SMR facilities is primarily executed by truck, even though it is moved via pipeline in some rare 
cases. 

Figure F 2. Hydrogen Fuel Supply Chain 
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F.3 Statewide Exposure of Hydrogen Fueling Stations in California to 
Wildfire and Coastal Flooding 

F.3.1 Coastal Flooding Statewide Exposure 
The statewide exposure assessment of hydrogen fueling stations to coastal flooding is based on 
projected sea level rise and storm surge at 50 m (164 ft) spatial resolution using 3Di 
hydrodynamic model (for more information see main body Section 3.2.1. and Appendix C). As 
modeled for the conventional TFS, the following results represent the median flooding event 
among the combined RCP 4.5 and RCP 8.5 scenarios. From the 61 stations, only two currently 
open stations located in the San Francisco Bay Area are exposed to flooding (Figure F 3). The 
Mill Valley station is exposed to flooding starting in the 2000-2020 period, and the South San 
Francisco (SF) station is exposed starting at 2040-2060 period. Figure F 4 shows details of the 
South SF hydrogen station's exposure to coastal flooding according to the high-resolution 
model (5 m or 16.4 ft) for the 2020-2040 and 2080-2100 periods. 

Figure F 3. Coastal flooding exposure of Hydrogen (H2) Fueling Stations in the San Francisco Bay 
Area (50m resolution) 
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Figure F 4. South S.F. Hydrogen Fueling Station Exposure to Coastal Flooding at High-Resolution 
(5m) for 2020-2040 and 2080-2100. 

F.3.2 Wildfire Statewide Exposure  
The exposure of the 61 current and projected hydrogen fueling stations to large wildfires is 
presented in Figure F 5 and Figure F 6. As modeled for the conventional TFS, this assessment 
uses the Modeled Wildfire Threat Rating (MWTR) system developed by Westerling 
(forthcoming). At 6.2 km wildfire forecasting cell resolution (3.8 mi), this method captures the 
outputs of probabilistic wildfire forecasting. In this section the MWTR system describes the 
relative threat of large wildfire occurrence throughout the State over five 20-year periods from 
2000 to 2100 for the locations of 61 hydrogen stations currently sited. Although our results 
depict that the total proportion of California's territory with an "Extreme" MTRW classification 
increases between 2000-2020 and 2080-2100 (See Figure 17 Ch.3.2.2.1.), none of the currently 
open or planned hydrogen stations fall under this threat class. The majority of hydrogen 
stations assessed here fall in areas where the exposure to large wildfire is negligible, because 
they are located in dense urban areas or near large bodies of water. The total number of 
hydrogen fueling stations that are exposed slightly diminishes throughout the different time-
horizons, and only one of the 35 currently open stations becomes exposed to "Very High" 
MWTR class from 2020 onwards. None of the planned stations that are exposed to wildfire fall 
under "High" or "Very High" threat rate. 
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Figure F 5. Total number of Hydrogen Fueling Stations Exposed to Wildfire. Exposure based on 
Modeled Wildfire Threat Rating – MWTR (see Ch.3.2.2.1). 

Figure F 6. Location of Hydrogen Fueling Stations Exposed to Wildfire. Exposure based on 
Modeled Wildfire Threat Rating – MWTR (see Ch.3.2.2.1). 

F.4 Hydrogen Fuel Stakeholder Engagement 

Discussions were held with hydrogen fuel stakeholder organizations to understand their 
perspective on wildfire and flooding threats to their industry. These stakeholders were sampled 
from the California Fuel Cell Partnership list of providers, developers, operators, designers, and 
State regulators working in the hydrogen fuel sector. From the initial sample of 31 stakeholders, 
we held discussions with seven private companies and one State regulatory organization. The 
discussions were framed by three major topics: 

1) The organization's historical impacts from wildfire and flooding events;  
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2) The organization's asset vulnerability to future wildfire and flooding events; 

3) The organizations’ current or future actions and policies designed to address potential 
impact from wildfire or flooding. 

For topics 1 and 2, the majority of discussions led to very few historical incidents of operational 
impact from wildfire or flooding. Most organizations stated that their market entry is too recent 
to have experienced any disruptions from these extreme weather events, or that they are not 
exposed to one or both hazards. In a few cases, there have been local disruptions with low 
consequences to the station operations related to the flooding of pumping stations and on-site 
pipelines. Most stakeholders did mention that disruptions have been reported from wildfires 
and flooding due to closed roadways that impacted the truck supply of hydrogen fuel to the 
stations. In discussions around future vulnerability for topic 2, stakeholders indicated very 
limited damage propensity for the hydrogen fueling stations to flooding and wildfire. Several 
organizations noted concern over future stations projected for suburban areas with varied 
topography that constitutes a higher wildfire risk. Throughout the discussions with 
stakeholders, there were frequent mentions of vulnerability from roadways threatened by 
wildfires that would potentially disrupt the supply and distribution of hydrogen fuel.  

For topic 3, all of the private organizations mentioned that complying with local permitting 
regulations represents the most common pathway at their level for mitigating extreme weather-
related hazards. Some organizations identified policies that require compliance with rainfall-
return periods of 50 and 100 years for storm water drainage structures designed to address 
flooding hazards. The stakeholders reported that there are no regulations to address threats 
from wildfire. 

As mentioned in the beginning of this section, there are many incentives designed to facilitate 
the development of hydrogen fuel infrastructure. One example described by stakeholders was 
the CEC's Alternative and Renewable Fuel and Vehicle Technology Program that targets gaps 
in the development and deployment of alternative fuels through grant programs that scale up 
to 20 million dollars each year. To help the ZEV industry in the identification of areas with the 
greatest need for infrastructure development, CARB developed the California Hydrogen 
Infrastructure Tool (CHIT). The CHIT functions as a GIS planning tool that evaluates the 
relative need for hydrogen Infrastructure based on gap analysis between projected ZEV 
demand and current alternative fuel infrastructure (Martinez, 2015). During our stakeholder 
discussions, the CHIT was referred to as a valuable resource for the hydrogen fuel sector to 
inform the siting of stations and represents an opportunity for incorporating extreme weather 
models to make better investment decisions for transportation fuel infrastructure. 

F.5 Conclusions 

The exposure of California's currently operating or planned hydrogen fueling stations to 
wildfire and coastal flooding remains low, and only a few stations are sited in prospective 
flooded areas or areas with high wildfire threat ratings. Nevertheless, it is important to realize 
that the current supply chain for hydrogen fuel is directly dependent on roadways and truck 
transportation. It is therefore critical to take into consideration the exposure of roadways to 
extreme weather hazards--an issue projected to increase throughout the end of this century (see 
Figure 14(a) and Figure 18 in Ch. 3.2.1.). Concerns with transportation and supply of hydrogen 
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fuel by trucks was also noted by hydrogen fuel industry stakeholders during our engagement. 
Another critical part of the supply chain are the sources of hydrogen fuel. Measuring the 
exposure of SMR and electrolysis hydrogen producing plants that supply to hydrogen fueling 
stations would be a next step in the vulnerability analysis of the State's hydrogen fuel sector. 
Finally, current State policy directs the planning and construction of at least 139 additional 
hydrogen fueling stations in the next seven years, which can benefit from integrating the results 
of wildfire and coastal flooding exposure models into the industry's siting and decision-making 
tools such as the CHIT. 
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