
Embryonics: A Path
to Artificial Life?
n 2006 Massachusetts Institute of Technology
Xuegong Zhang

Gabriel Dragffy

Anthony G. Pipe
Faculty of Computing, Engineering

and Mathematical Sciences

University of the West of England

Bristol, Coldharbour Lane

Bristol, BS16 1QY, United Kingdom

Xuegong.Zhang@uwe.ac.uk

G.Dragffy@uwe.ac.uk

Anthony.Pipe@uwe.ac.uk

Keywords

Embryonics, cellular division, cellular dif-
ferentiation, cell elimination, immunotro-
nics, self-repair
Abstract Electronic systems, no matter how clever and intelligent
they are, cannot yet demonstrate the reliability that biological
systems can. Perhaps we can learn from these processes, which
have developed through millions of years of evolution, in our
pursuit of highly reliable systems. This article discusses how such
systems, inspired by biological principles, might be built using
simple embryonic cells. We illustrate how they can monitor their
own functional integrity in order to protect themselves from internal
failure or from hostile environmental effects and how faults caused
by DNA mutation or cell death can be repaired and thus full system
functionality restored.
1 Introduction
Living beings are extremely complex systems that evolved from relatively simple single-cell crea-
tures. They display intriguing characteristics, such as evolution, adaptation, and fault tolerance.
These are clearly very desirable features, but are extremely difficult to realize using conventional
engineering methodologies. Since the beginning of our civilization, humans have always been
curious, trying to understand the secret of life. Aristotle (384–322 B.C.), the first great biologist,
believed that all living things could be arranged in a hierarchical order. In the nineteenth century,
Charles Darwin devoted his life and work [9] to changing our views on life and on our place in the
living world. In the last century, molecular cell biology from different areas, such as energetics,
genetics, embryology, and immunology [8, 20, 1, 2] has provided us with clearer understanding of
how living systems grow and develop. Ever larger numbers of scientists, researchers, and engineers
are turning to nature and trying to adapt biological principles to build and maintain increasingly
complex artificial systems. Applications of such natural processes [21] are far ranging: from arti-
ficial neural networks, through genetic algorithms, to embryonics (embryological electronics) [12].
Embryonics, the main topic of this article, is based on the natural mechanisms found in the de-
velopment of the living embryo. Life starts from the zygote, a single fertilized egg, which contains
all the genetic information of the organism in its DNA. The zygote then multiplies and develops
into a living being. In a hardware of an equivalent embryonic electronic system its life also starts
from a single mother cell. The final organism (system) then, similarly to nature, is also developed
through the processes of cell division and cell differentiation by forming a two-dimensional cellular
array. This article will discuss how an embryonic-array-based system can be created and will also
demonstrate its reaction to faulty operation of the system and the consequent repair mechanisms
involved.
Artificial Life 12: 313–332 (2006)

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
2 Embryonic Development and Cell Repair

A clearer picture of how a nature-inspired embryonic system develops, its implementation in
hardware, and how in the presence of a fault it could repair itself may be obtained if we try to
understand the biological mechanisms involved. In biolog y, the cell is the basic structure and the
beginning of life [3]. With the exception of unicellular creatures, such as bacteria, a multicellular
embryo [36] is formed from a fertilized egg, a single cell, by repeated cell division, cell growth, and
cell differentiation. This process is called embryonic development.
2.1 The Basic Cell
Under the light microscope, a cell is no more than a tiny mass of inanimate material. Examined with
an electron microscope, it displays a wealth of intricate detail. It is then possible to identify in-
numerable chemical substances located in specific regions [28]. The concept of a ‘‘basic’’ or ‘‘typical’’
cell is probably only theoretical, as it is doubtful if such a cell really exists. It lacks the modification of
the specialized or differentiated cells found in biological systems, but it can help us to understand the
basic features common to every cell. Such an assumption can simplify the complexity of real cells, and
thus help in identifying equivalent hardware architectures, components, and processes.

A typical cell contains a nucleus, without which it would soon perish. Inside the nucleus are the
chromosomes, long, thin threads consisting mostly of deoxyribonucleic acid (DNA), so thin that
they are invisible under the light microscope except when the cell divides.

The DNA is the repository of much of the genetic information within the cell. The transcription
of this information from DNA to ribonucleic acid (RNA), and the RNA’s subsequent translation
into various proteins through protein synthesis, is the most important processing mechanism inside
the cell [7]. The resulting protein can then support all activities of the cell. It can either be further
processed or be ready to be used as enzymes, structural elements, antibodies, or hormones—
internally or externally.
2.2 Embryonic Development
No cell can live indefinitely. It either dies or divides. Cell division is one of the fundamental prop-
erties of living systems. The division of cells is the method that enables growth, replacement, and
repair of organisms. An increase in the number of cells is an obvious consequence of cell division.
This is one of the basic mechanisms underlying growth. There are two types of cell division:
mitosis and meiosis. One important difference between them is that after mitosis the two daughter
cells have exactly the same number of chromosomes as their mother cell has. After meiosis however,
the two daughter cells will only have half the number of chromosomes found in their mother cell.
During embryonic development, only mitosis takes place, guaranteeing that all newborn cells will
have the entire DNA, so that new tissues and organs can develop. Since meiotic cell division will
only take place in postembryonic development and in the mature body, it will not be discussed in
this article.

A fertilized egg, during the process of cell division, will develop into a multicellular embryo.
However, we do not know how cells that originate from the same progenitor cell can produce
different tissues and organs. The theoretical concept of a general cell derived from various cell
samples is insufficient. The cell, like a human being, is a unit of living matter. But cells also differ
from other cells in their structure and in their function within their ‘‘society,’’ just as people differ in
their size, shape, and contribution to human society. The answer to the above question lies in the
fundamental processes of developmental biology: cell differentiation, or cell specialization [19].

With every embryonic cell having the potential through its genome to become any type of adult
cell, the reasons for cell differentiation and its mechanisms must lie in the immediate environment of
the cell. It is not difficult to visualize how different effects on a cell could arise through the
differences in its location within the embryo. In the embryo of a chicken, for example, the location of
cells will decide the availability of food (yolk) and oxygen to each cell. Such differences must then
Artificial Life Volume 12, Number 3314

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
lead to differences in cell metabolism. Thus, if different substrates and metabolites are presented to
similar cells, then not only will the enzymes involved in protein synthesis be different, but the
products of their activities will also be different and, most importantly, the genes involved will also be
different. Even though, during embryonic development, the differences between cells are relatively
slight and few in number, if cell differentiation occurs, the embryo will eventually become a body
with fully differentiated tissues and organs.
2.3 Cell Death and Cell Repair
As mentioned earlier, no cell can live forever. Section 2.2 discusses the first phase of the cell’s
development, where continuous cell division will result in the development of the embryo—its
tissues and organs. There is, however, another phase in the development cycle of a cell: its death.
Here we can examine the aging of an organism. Aging in a typical multicellular organism entails
distinctive changes in both its extracellular and cellular components [4]. Extracellular components
include the soluble and insoluble molecules that contribute to the structure and function of tissues.
Cellular components are the units inside the cells that allow expression of the genome, which in turn
defines the characteristics of the organism. A simplified view (Figure 1) of the aging process
considers that both cellular and extracellular components undergo age-dependent changes. Cells may
also be viewed as belonging to one of two classes: postmitotic cells, which cannot divide, and mitotic
cells, which are competent to divide when the need arises.

Whatever the initiating cause, if the changes from extracellular or cellular components affect the
information in the DNA and the consequent processes of protein synthesis, this will eventually lead
to cell death or malfunction. Aging results in changes (increase or decrease) in cell proliferation, cell
death, and/or cell function. Aging is characterized by a loss of mitotic and postmitotic cells or
functions. Mitotic cells can die in response to damaging agents. However, in contrast to the potential
effects of cell death in postmitotic tissue, cell death may have a positive effect on the health of
mitotic tissue. Because mitotic cells can proliferate, dead cells can be readily replaced. However, there
is no way to replace lost or dysfunctional postmitotic cells. Cell death or malfunction can therefore
severely compromise tissues. Some tissues contain stem cells that can replace postmitotic cells when
they are lost due to damage or trauma. However, if postmitotic tissue proliferation is no longer
possible, then there are only three possible outcomes: complete repair, continued survival of a
dysfunctional cell, and apoptosis. The last is a suicidal pattern, referred to as programmed cell death.
In mitotic cells and postmitotic cells, a damage-responsive checkpoint exists to provide a means for
deciding whether to repair and then carry on the functionality, or to undergo apoptosis.

The DNA in living cells is subject to many alterations. Certain wavelengths of radiation, highly
reactive oxygen radicals produced by the body, and chemicals in the environment are all agents that
can damage the DNA. If such changes are not corrected, the alterations can result in the production
of faulty proteins at an unacceptable rate (e.g., in cancer). The evolutionary response to this problem
Figure 1. Component aging in higher eukaryotic organisms [4].

Artificial Life Volume 12, Number 3 315

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
has been a mechanism of the body that can repair the faulty DNA. DNA repair [20] is a cell-initiated
internal repair mechanism. Figure 2 shows repair alternatives of damaged cells.

3 Related Work

In a generic embryonic model, nature’s three-dimensional realizations of systems, because of current
limitations of available technology, have to be ‘‘flattened’’ to systems built from two-dimensional
homogeneous arrays of identical cells, which are interconnected so as to create the required
functionality of the organism (Figure 3a). Perhaps if we succeeded in applying some fundamental
biological processes of nature to the world of electronics, namely multicellular organization, cellular
division, and cellular differentiation [21], then we could build nature-like systems that could grow,
develop, evolve, and learn.

In embryonics, as in nature, the basic building block of any system is a cell. It is clear that the
design of an embryonic cell architecture and associated system requires rigorous examination of the
constraints imposed by environmental differences (e.g., the three-dimensional human body versus
the two-dimensional silicon) and by process differences (e.g., protein synthesis versus gate synthesis),
under which a biological cell and its proposed electronic counterpart has to function. Quite clearly
the creation of an embryonic cell and system that is a pure generic equivalent of a biological cell and
organism is not possible. However, a great deal can still be learned from nature, and from the way
biological and physiological structures and processes have evolved. We may hope that by adapting
this knowledge we can solve engineering problems that have hitherto frustrated us.

Hugo de Garis in 1991 was the first scientist who defined and discussed embryonics [12]. He
also implemented an artificial embryo [12, 11, 13] on a Darwin machine [10, 16]. Inspired by
nature, this was the first ever attempt to ‘‘grow’’ an embryo on a two-dimensional cellular system
using an artificial embryonic development mechanism to form some desired functionality. Later,
he also demonstrated the feasibility of cellular differentiation [14] and self-reproduction in cellular
automata [15, 18, 17]. In 1993 Mange and Stauffer [21] discussed the concept of embryonics,
which they and others further developed [26] in greater detail. They identified the three funda-
mental properties of living things that an electronic system, if inspired by nature, must also satisfy:
multicellular organization, cellular differentiation, and cellular division. Using MUXTREE cells
[24], they illustrated the mechanism of self-repair [27, 22, 25] and proposed four levels of
Figure 2. Alternatives for dealing with damaged postmitotic cells [4].

Artificial Life Volume 12, Number 3316

Figure 3. (a) Multicellular organization. (b) Embryonic cell.

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
organization for an embryonic system [23]: the molecular level, cellular level, organism level, and
population level. In 1998, based on the MUXTREE principle of hardware realization, Ortega
and Tyrell recommended a different embryonic model [29] that only applied a two-level structure,
with a cellular level and an organism level. Both approaches meet and fulfil all three fundamental
properties of their biological counterparts.

In any living being each and every one of its cells carries the same DNA that describes the entire
characteristic of the organism. Therefore the DNA of a generic hardware equivalent of a biological
cell should also contain the entire behavior of the system. However, to meet this requirement in
hardware is hugely impractical. It would simply mean that every single cell should contain the desired
behavior—the genome—of the entire system. For example, let us consider a hypothetical
implementation, requiring one million embryonic cells, where every cell’s gene is transcribed onto
one byte of binary behavior (configuration data). Under these circumstances, each cell would also be
expected to hold the one million bytes of DNA behavior of the complete system. In practice,
however, a cell would never need to hold more information than the gene it synthesizes and genes of
adjacent cells that it might be required to synthesize, in a system self-repair process, if an error in its
functional operation was detected.

The limitations of this strategy are obvious, and there are two clear alternatives to it. First, we
could restrict the size of the system or subsystem, namely, the number of cells it uses. In fact,
applications to date have only considered small systems that use a rather limited number of
embryonic cells. For example, the BioWatch [34, 32] on the BioWall [33] has only eight cells (six
system cells and two spare cells); the Khepera robot controller [6] is implemented with six cells (one
system cell, one immune cell, and four spare cells). In all these cases, the number of genes that each
cell can carry imposes a natural constraint on the size of the system. An alternative approach [42] is
to restrict the information content held by each embryonic cell, so that it no longer exactly mimics
the structure and behavior of the biological cell, but will still maintain most of its system-building
characteristics. This is the approach proposed in this article and by the others [37–40, 42].

4 Embryonics

4.1 The Embryonic Cell
Figure 3b illustrates the internal structure of one cell. The multicellular organization of cells
when a system is being realized is shown in Figure 3a. Cell-to-cell communication and detailed
Artificial Life Volume 12, Number 3 317

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
system interconnection are discussed in [37]. Internally every cell contains eight functional modules:
a DNA segment memory, a DNA-repair unit, a function unit, diagnostic logic, an I/O router, a
coordinate generator, a reconfiguration unit, and a core register. The coordinate generator cal-
culates both the DNA segment memory’s pointer address and the cell’s own address in the array.
The latter is dependent on its relative position with respect to its neighboring cells. The memory
pointer is used to select one set of configuration data (gene) from a segment of the system’s
DNA. The I/O router forwards to the function unit three input signals from the four neigh-
boring cells and will connect its output to one of those cells. The function unit contains a 2 : 1
multiplexer-based universal logic element and a D-type flip-flop. Any error in the function unit
is detected by the diagnostic logic. The DNA-repair unit detects and repairs any transient error
in the DNA segment memory. Finally, depending on the status of the core register, the recon-
figuration unit may kill the cell and reconfigure the array so that the faulty cell is replaced by a fully
functional one.

The task of the function unit is similar to the protein synthesis found in a biological cell. It
will decode and transcribe the information of a segment of the DNA to an expected logic function.
In a previous implementation [39, 38, 37] the function unit simply consisted of two 2 : 1 multiplexers
and one D-type flip-flop. It was found, however, that cell functionality could be greatly improved
if the number of multiplexers was increased to seven (Figure 4). Instead of the multiplexers
an appropriate lookup table (LUT) could also be employed. The core of the function unit (i.e.,
the 2 : 1 multiplexer for combinational logic and the D-type flip-flop for sequential function
realisation [39]) will remain, but, with read/write control, the D type could also serve as a one-bit
memory element. This change will not affect the size of the DNA and its genes, that is, the cell’s
configuration data.

In addition to the A, B, X, Clock, and SEQ (the last is a bit in the gene that defines whether
sequential functionality is required) inputs and a single output E, there are three further inputs: N,
Pulse, and SET0. The signal N is an output from the function unit of a neighboring cell. Should the
neighboring cell die, then this cell, during reconfiguration, will take over its functionality. The Pulse
signal is equal to 1 for one clock cycle of the reconfiguration period, and 0 at all other times. If
sequential mode of operation is required then, through the second bit of the gene, the SET0 sig-
nal will instruct the function unit to operate either as a synchronous element (SET0 = 1, and the
flip-flop is controlled by the system Clock) or as an asynchronous element (SET0 = 0, and flip-flop is
controlled by signal A). The selection is controlled by multiplexer MUX_3 in Figure 4. This means
that, in order to meet both functional requirements of the cell, the gene definition will need to be
slightly modified. The cell’s functionality is not affected, and it will continue to operate, as before,
either in a functional mode or in a bypass mode. In the latter case, the function unit is inoperative
and the cell only provides signal routing to and from other cells. The two modes of operation are
illustrated in Tables 1 and 2 [39].
4.2 Cellular Division and Cellular Differentiation
Cell division is the initial step of populating an embryonic array with functionally configured cells. A
mother cell, or zygote, will download the genome and distribute it to its adjacent cells, which, in turn,
will pass this information to their neighboring cells. The process will continue until the whole array is
populated. In the natural world, a biological cell needs time to gather enough nutrition to breed
daughter cells. In the meantime, the hereditary material (i.e., the genome in the mother cell) will pass,
during cell division, to the daughters. In the electronic world of embryonic arrays the mother cell will
not breed new cells; these cells are fabricated during silicon processing. However, as in the natural
world, the mother cell will still pass the genetic information on to its daughter cells. This procedure is
called cellular division.

As illustrated in Tables 1 and 2, if intercell communication is conducted via 13-bit-wide data
buses and signal transmission is controlled by a global system clock, then a 13-bit gene can be
downloaded into the mother cell during one clock cycle. Fundamentally, irrespective of whether
Artificial Life Volume 12, Number 3318

Figure 4. Improved function unit.

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
multiplexers or LUTs are used for data transmission, they behave as combinational logic elements.
The consequence of this is that as soon as the mother cell receives a gene, it will immediately
broadcast it to all its daughter cells. These will, in turn, pass on the genetic information to all their
associated cells, and the process continues until the entire array is populated.

The time taken for this is the sum of all propagation delays in the longest chain of combinational
elements. This must, in the worst case, be less than one clock cycle. In large and complex systems the
time taken to populate the array may still become quite long. For such eventualities new population
algorithms are currently under investigation.

The process of cell division is shown in Figure 5. The DNA segment memory of each cell
contains a counter. The cell’s own address and the position of the counter will determine which
genes of the overall DNA structure each cell will hold in its segment memory. On completion of the
Artificial Life Volume 12, Number 3 319

Table 1. Functional mode definition.

Bits Field Description

0 BP 0 Cell in functional mode

1–3 IN1,IN0,SET0 First group of input signals (A):

0X1 A = IN0 (SEQ = 0)

0X1 Flip-flop uses default clock signal

(SEQ = 1)

1X1 A = Z ****

000 A = E0 *

010 A = S0 *

100 A = W0 *

110 A = N0 *

4–6 IN3,IN2,SET1 Second group of input signals (B):

0X1 B = IN2

1X1 B = Z ****

000 B = E0 *

010 B = S0 *

100 B = W0 *

110 B = N0 *

7–9 IN5,IN4,SET2 Third group of input signals (x):

0X1 x = IN4

1X1 x = Z ****

000 x = E0 *

010 x = S0 *

100 x = W0 *

110 x = N0 *

Artificial Life Volume 12, Number 3320

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe

Table 1. (continued)

Bits Field Description

10–11 OUT1,OUT0 Output signal group (E):

00 E1 = E **

01 S1 = E **

10 W1 = E **

11 N1 = E **

12 SEQ Flip-flop control bit:

0 Flip-flop is not used

1 Flip-flop is used

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
cellular division process, a default memory pointer address will be computed by the coordinate
generator. The gene that is currently executed by each cell will be selected as the right uppermost
entry in DNA-segment memory, as shown in Figure 7 discussed within Section 4.3.2).

4.3 Cell Repair Strategies
There are two different types of repair mechanisms dealing with damaged cells in a biological system
(Figure 2): DNA repair, which is internal to a cell, and repair via complete cell replacement. These
mechanisms are the result of changed internal or external environmental conditions that adversely
affect either the DNA information or the protein synthesis of the cell. Embryonics applies both of
these processes in systems that it implements, when erroneous operation is detected.

4.3.1 DNA Repair
In living things many cells that possess a slow rate of reproduction, or for which cell division is not
possible (postmitotic cells), will have to use their DNA information for weeks, months, or perhaps
years (e.g., liver and brain cells). However, the DNA in living cells is subject to many alterations.
Certain wavelengths of radiation, highly reactive oxygen radicals produced by the body, and
chemicals in the environment are all agents that can damage the DNA. If the genetic information
in the DNA is to remain uncorrupted, then such changes must be corrected. Uncorrected base
changes in the DNA could result in the production of faulty proteins at an unacceptable rate (e.g., as
in cancer). The evolutionary response to this problem has been the creation of a mechanism of the
body that can repair the faulty DNA.

DNA-repair mechanisms [34] have been studied most extensively in E. coli (a bacterium) using a
combination of genetic and biochemical approaches. Repair mechanisms can be divided into two
broad categories: direct-repair and excision-repair. In the first category, the body’s enzymes directly
repair the damaged DNA. In the second category, the damaged region is excised (removed) by
specialized nuclease systems and then the gap is filled by DNA synthesis.

There is one major area where the DNA-repair mechanism of a hardware implemented cel-
lular system must differ from its biological counterpart. Our bodies, for example, are made up
of approximately 6�1013 (sixty trillion) cells. Each cell stores the entire DNA that characterizes a
human being. In the case of an electronic system, however, composed perhaps of millions of embry-
onic cells, it would not only be impractical, but highly inefficient, for each cell to contain the entire
genetic behavior (DNA) of the organism. Each cell only acts upon and executes one, or at most a few,
Artificial Life Volume 12, Number 3 321

Table 2. Bypass mode definition.

Bits Field Description

0 BP 1 Cell in bypass mode

1–3 IN1,IN0,SET0 First bypass input signal group:

X00 No signal selected at all

X10 Fat cell (SP must be set to 1)

001 Select E0 * as input signal

011 Select S0 * as input signal

101 Select W0 * as input signal

111 Select N0 * as input signal

4–6 IN3,IN2,SET1 Second bypass input signal group:

XX0 No second signal selected

001 Select E0 * as input signal

011 Select S0 * as input signal

101 Select W0 * as input signal

111 Select N0 * as input signal

7–9 OUT3,OUT2,SET2 Second output bypass signal group:

XX0 No signal selected

001 Select E1 ** as output signal

011 Select S1 ** as output signal

101 Select W1 ** as output signal

111 Select N1 ** as output signal

10–11 OUT1,OUT0 First output bypass signal group:

00 Select E1 ** as output signal

01 Select S1 ** as output signal

10 Select W1 ** as output signal

11 Select N1 ** as output signal

Artificial Life Volume 12, Number 3322

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe

Table 2. (continued)

Bits Field Description

7–9 OUT3,OUT2,SET2 10 Select W1 ** as output signal
12 SP Spare cell flag

0 Normal cell

1 Spare cell

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
genes of the genome that are associated with it as a result of system self-repair. Consequently, the cell
does not need to detect errors in other parts of the genome and only needs to recognize them in the
genes it may have to execute. This will reduce the complexity of the DNA-repair unit.

The direct DNA repair that living things are capable of cannot be easily implemented by
electronic hardware. Excision repair, however, offers us an alternative way both to detect and to
repair DNA errors in hardware-implemented embryonic cells [40]. This is also the first time that
such DNA repair in an embryonic cell has been implemented. The process steps involved are similar
to those found in biological systems:
� First a DNA double helix is created (the cell’s gene is copied into the DNA-repair unit).

� The error in the gene used by the cell is detected, and the entire mutated gene is cleaved.

� The DNA-repair unit removes the gene from the cell’s DNA memory.

� Finally, the memory content is replaced by an undamaged copy of the strand, and the gene
is recovered.
The functional behavior of the unit is shown in Figure 6.
The DNA-repair unit can repair any type of transient error in the gene that was to be executed by

the embryonic cell. If the error it finds is a result of memory gene mutation, then a backup gene is
used for the repair. Of course, no permanent faults found in the hardware could ever be repaired by
this mechanism, and the unit is not capable of distinguishing between different types of transient and
Figure 5. Process of cellular division.

Artificial Life Volume 12, Number 3 323

Figure 6. DNA-repair mechanism.

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
permanent faults. Therefore, in order to avoid the attempted repair of a permanent fault that will
create an endless loop in the DNA-repair process, only a fixed number of DNA-repair iterations will
be allowed to take place. Any further repair attempts are likely to be caused by faults that are
permanent and therefore unrepairable. If the number of repairs exceeds a preset value, then an error
flag and a cell ‘‘kill’’ signal will be set in the cell. Control of the cell, in this case, is handed over to the
reconfiguration unit, which, via cell elimination [37], will restore the fault-free functionality of the
embryonic array.
4.3.2 Cell Replacement Repair
When either the diagnostic logic above, or the DNA-repair logic, detects a fatal fault in any one of
the cells, a reconfiguration mechanism is triggered. The integrity of the system, however, is not
affected, so it can carry on functioning correctly while the error is corrected. This is because for
error detection and repair, run-time algorithms are employed that use only combinational-elements
and require less than a clock cycle. To achieve this, various cell replacement repair methodologies
have been studied and implemented. Currently three types of cell replacement methods are
employed: row elimination, row and column elimination, and cell elimination.
� Row elimination: In a two-dimensional array of logic elements, the failure of one cell
provokes the elimination of the corresponding row, which is replaced by the row to the
north (above). Cells are then logically shifted upward until a spare row is reached and
a new functional array is configured. Column elimination and row elimination in a 2D
array are equivalent strategies.

� Row-and-column elimination: First row elimination (or column elimination) will be triggered by
the failure of a cell. If the cell does not configure correctly, then the column (or row)
containing this cell will also be eliminated and it becomes transparent.

� Cell elimination: In the first instance spare cells on the right side of the array will replace
faulty cells in the same row. Then, when the number of faulty cells in a row exceeds the
number of spare cells assigned to that row, the whole row is eliminated.
Artificial Life Volume 12, Number 3324

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
Currently implemented systems employ all of the above cell replacement repair strategies.
Cell elimination for molecular repair of a cell was first proposed by Mange et al. [25, 31]. In their
system molecules represented the bottom-level ‘‘primitives’’ from which cells were built. When the
numbers of spare molecules were exhausted and no more faulty molecules could be replaced,
the whole cell was eliminated. On the higher, cellular level only one of the cell-elimination steps
is used [22, 31]. Row elimination was first proposed by Ortega and Tyrell [29, 30]. Finally, row-
and-column elimination is used by Canham and Tyrell [6, 5]. On comparing the three elimination
mechanisms, cell elimination appears to be the most efficient. It is for this reason that the authors of
this article propose the use of cell elimination during cell replacement repair [37].

Once the type of cell repair strategy to be used has been decided, the required size of a cell’s
DNA-segment memory can be determined. Figure 7 shows a 5�4 embryonic array. The expected
system functionality of the organism as configuration data is described by its Genes matrix (Figure 7).
During cell division, the mother cell (0, 0) will transmit the genetic data to its daughter cells
(Figure 5). Cell differentiation is achieved by each cell executing the right uppermost configuration
data (gene) in its memory bank. Its address location is calculated and is pointed to by the cell’s
coordinate generator. Currently executed genes of the cells (Figures 7 and 8) are shown in the top
right hand corner of the cell. Spare cells are located on the right hand side and on the top of the
array, forming one spare column and one spare row of cells.

Let us consider the case of a fatal fault in cell 10 of Figure 7, the address of which is (2, 2). Cell
elimination is undertaken in two steps (Figure 8a and b). First, it will be replaced by cell 11. Its
address, which was previously (2, 3), will now change to (2, 2). The address pointer of cell 11 will also
be modified so that it will now select the genetic code segment 332, which was previously executed
by cell 10. With this final step, cell replacement is complete, the array is repaired, and normal system
functionality continues uninterrupted.

In Figure 8b it is assumed that a further fatal error develops, for example, in cell 9 of row 3.
Clearly this cell will also need to be killed now. As a consequence, the second step of cell elimination
is triggered, and the entire row of the faulty cell is deleted. When a cell or an entire row is eliminated,
it becomes ‘‘transparent.’’ The cells in question will no longer provide any further functionality to the
system, and they will merely be used for signal routing purposes by maintaining inter-cell
Figure 7. Embryonic array after cellular division and cellular differentiation.

Artificial Life Volume 12, Number 3 325

Figure 8. (a) First step and (b) second step of cell elimination.

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
communication [37]. In the unlikely event that a fault in the cell’s I/O router module develops and
thus it cannot even support inter-cell communication, then signals will be rerouted through the cell’s
supervisory innate-immune system [41].

The above example also indicates that there is a direct relationship between the size of the
memory each cell requires and the cell-elimination strategy employed, namely, the numbers of spare
rows and spare columns of the array. For example, besides its own genetic information, cell 14 will
also need to store the genes of cells 9, 10, and 13. In case of an error, cell 14 will never be required to
replace the functionality of any other cells apart from these, and therefore no other gene and
configuration data needs to be stored in its memory. From this observation, if the number of spare
columns is c and that of spare rows is d, the required size of memory that each cell should have can
easily be calculated [42]:

m ¼ ðc þ 1Þðd þ 1Þ ð1Þ

A fault-tolerant cellular organism can be built if both cell repair mechanisms—DNA repair and cell
replacement—are present in the system. Figure 9 summarizes these mechanisms and shows the
general relationship between cellular division, cellular differentiation, and cell repair.

5 Example: A 32-bit Static RAM

SRAM (static RAM) is read-write random access memory (RAM) that retains data bits in its mem-
ory for as long as power is supplied. Unlike a DRAM (dynamic RAM), which stores bits in cells
consisting of a capacitor(s) and a transistor(s), SRAM does not have to be periodically refreshed.
SRAM provides faster access to data, but it can be more expensive than DRAM.

Figure 10 [35] shows a one-bit memory cell. It has three inputs (IN, SEL_L, and WR_L) and
one output (OUT). When the memory cell is selected (SEL_L = 0) and a write command is
Artificial Life Volume 12, Number 3326

Figure 9. Cell repair strategies.

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
issued (WR_L = 0), any data present on the line (signal IN) will be stored in memory. If a read
command is issued (WR_L = 1) and the memory cell is selected, the memory will output the value it
has stored on output OUT. The output of each memory, to access a data bus, needs to be tri-state.
Figure 11 shows a 32-bit SRAM module organized as a 4-byte system. It includes a 2-to-4 decoder, the
inputs of which are connected to an address bus (A1 and A0). The decoder calculates the required
addresses and issues a selection signal to the required byte. The system is enabled by a CS_L chip select
signal. When the memory module is selected (CS_L is 0) and a write command is received, data
present on DIN7 to DIN0 will be stored in the memory under an address location specified by A1 and
A0. When the output is enabled (OE_L is 0) and a read command is received, the content of the
memory, as specified by A1 and A0, will be placed on the data bus DOUT7 to DOUT0.

A 32-bit memory system organized as 4 bytes was implemented using 1536 embryonic cells. The
system occupies an array that consists of 64 rows and 24 columns. It also includes 2 spare rows
placed on the top and 1 spare column placed on the right hand side of the array (Figure 13). The size
of the DNA-segment memory is given by Eq. (1) as 6 (2�3). It is important to note that the size is
independent of the number of cells (1536) in the array. As a consequence, the DNA-segment
implemented system achieves a 99.61% and a 93.75% saving in required memory resources with
respect to the Mange and Ortega systems, respectively. There is no limitation of or practical con-
straint on the total number of cells that our proposed embryonic array could have.

Simulation results of the memory module are shown in Figure 12. After cellular division and
cellular differentiation the SRAM is loaded with a data stream F3, DE, 4B, and B5 for bytes 0, 1, 2,
and 3 under corresponding address locations. At 3088 ns, a simulated error is injected into cell 258
located at row 10, column 18 (Figure 13). As the first step of cell elimination, cells are shifted right
and the functionality of cell 258 will be taken over by cell 262. At 3092 ns, a second error is injected,
but in this case into cell 253, located at row 10, column 13. Since there are no more spare cells in
Figure 10. Static RAM cell.

Artificial Life Volume 12, Number 3 327

Figure 11. 4-byte static RAM system.

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
row 10, the row will be eliminated. The functionality of all rows from 10 to 61 will now shift upward
by one row, and thus normal error-free operation of the array can continue unhindered.

6 Conclusions

Embryonics is inspired by biological embryonic processes, during which a fertilized egg develops
into an embryo, a multicellular organism. The birth of an artificial-life-based electronic system takes a
similar route. The hardware platform is a ‘‘sea of cells’’ in a two-dimensional silicon array. Embry-
onic processes of cellular division and differentiation will ultimately result in an organism—an
electronic system—which behaves according to some specific requirement. The behavior of the
system, similarly to nature, is defined by its DNA. The individual genes are downloaded and
distributed over the array by a mother cell. Its daughter cells and their offspring will successively be
assigned functional roles, via the encoded genes (Tables 1 and 2), and the collection of these roles
Figure 12. Self-repair results of a 4-byte SRAM, implemented by 1536 (24�64) embryonic cells.

Artificial Life Volume 12, Number 3328

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
Figure 13. 4-byte SRAM implemented by 1536 (24�64) embryonic cells.

Artificial Life Volume 12, Number 3 329

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
will ultimately deliver the expected behavior of the organism. Should an error in the overall operation
of the system be detected, then, according to the type of error, the faulty cells may first try to repair
their DNA segments internally. If the cells are not repairable, then, through array reconfiguration,
normal, error-free operation of the system continues.

Storing only a segment of the DNA in the memory of each cell overcomes complexity and
information processing bottleneck problems that previously suggested embryonic systems possess.
Furthermore, the size of the array and that of the system will no longer put an adverse constraint on
the size of the memory, nor will the DNA memory limit the size of the system to be implemented.
At the same time, sufficient information will be held by the DNA-segment memory at all times so
that cell elimination can take place without the need of gene transmission between cells while the
system is under repair. The overhead in terms of the support and repair logic required to undertake
DNA repair and that required to supervise faultless cell operation is at present too high. Future
research, using genetic computation, is aiming at reducing this complexity in order to arrive at
economically more viable solutions.

The example of a SRAM, implemented by 1536 embryonic cells, illustrates the unique power of
embryonics and a possible way forward in building larger and more complex self-repairing fault-
tolerant systems based on an artificial life approach. Currently cell elimination can only be triggered
in our proposed embryonic-cell-based system by errors detected either in the cell’s function unit or in
its DNA-segment memory. Erroneous operation in any of the other modules of the embryonic cell
cannot at present be reliably detected. To remedy this, work is currently being undertaken [41] by the
authors using an enhanced immunoembryonic model.
References

1. Balinsky, B. I., & Fabian, B. C. (1981). An introduction to embryolog y, (5th ed.). New York:

CBS College Publishing.

2. Benjamini, E., Coico, R., & Sunshine, G. (2000). Immunolog y: A short course, (4th ed.). New York: Wiley.

3. Bradfield, P., Dodds, J., Dodds, J., & Taylor, N. (2003). AS level biolog y. New York: Pearson
Education Limited.

4. Campisi, J., & Warner, H. R. (2001). Aging in mitotic & post-mitotic cells. In B. A. Gilchrest &
V. A. Bohr (Eds.), Advances in cell aging and gerontolog y, Vol. 4 (pp. 1–16). Amsterdam: Elsevier Science.

5. Canham, R. O., & Tyrell, A. M. (2002). A multilayered immune system for hardware fault tolerance
within an embryonic array. In J. Timmis & P. J. Bentley (Eds.), 1st International Conference on Artificial
Immune Systems, ICARIS2002 (pp. 3–11). University of Kent at Canterbury Printing Unit.

6. Canham, R. O., & Tyrell, A. M. (2003). A hardware artificial immune system and embryonic array for
fault tolerant systems. In Genetic Programming & Evolvable Machines, 4(4), 359–382.

7. Carlson, B. M. (1981). Patten’s foundations of embryolog y, (4th ed.). New York: McGraw-Hill.

8. Curtis, H., & Barnes, N. S. (1989). Biolog y, (5th ed.). New York: Worth Publishers.

9. Darwin, C. (1998). The origin of species, edited with and introduction and notes by G. Beer.
Oxford, UK: Oxford University Press.

10. de Garis, H. (1990). Genetic programming: Modular evolution for Darwin machines. In Proceedings
of International Joint Conference on Neural Networks (pp. 194–197). Mahwah, NJ: Lawrence Erlbaum.

11. de Garis, H. (1991). Brain building: The genetic programming of artificial nervous systems and
artificial embryos. In O. M. Omidvar (Ed.), Progress in Neural Networks, Vol. 4. Amsterdam: Ablex.

12. de Garis, H. (1991). Genetic programming: Artificial nervous systems, artificial embryos and
embryological electronics. In H. P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature.
Berlin: Springer Verlag.

13. de Garis, H. (1992). Artificial embryology: The genetic programming of an artificial embryo.
In B. Soucek (Ed.), Dynamic, genetic, and chaotic programming (Chap. 14). New York: Wiley.

14. de Garis, H. (1992). Artificial embryology: The genetic programming of cellular differentiation.
In Artificial Life III Workshop. http://www.cs.usu.edu/~degaris/papers/ALife92.pdf.
Artificial Life Volume 12, Number 3330

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
15. de Garis, H., Iba, H., & Furuya, G. (1992). Differentiable chromosomes: The genetic programming
of switchable shape-genes. In R. Männer & B. Manderick (Eds.), Parallel Problem Solving from Nature
(pp. 489–498). Amsterdam: Elsevier Science.

16. de Garis, H. (1993). Evolvable hardware: The genetic programming of a Darwin machine. In
R. F. Albrecht, C. R. Reeves, & N. C. Steele (Eds.), Artificial neural nets and genetic algorithms (pp. 441–449).
Berlin: Springer-Verlag.

17. de Garis, H. (1993). Evolving a replicator: The genetic programming of self reproduction in cellular
automata. ECAL-93: Self-organisation and life: From simple rules to global complexity (pp. 274–284). Université
Libre de Bruxelles.

18. de Garis, H. (1999). Aritificial embryology and cellular differentiation. In P. J. Bantley (Ed.), Evolutionary
design by computers (pp. 281–295). San Mateo, CA: Morgan Kaufman.

19. Kalthoff, K. (1996). Analysis of biological development. New York: McGraw-Hill.

20. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., & Darnell, J. (1998). Molecular cell
biolog y, (3rd ed.). New York: W. H. Freeman.

21. Mange, D., & Stauffer, A. (1994). Introduction to embryonics: Towards new self-repairing and
self-reproducing hardware based on biological-like properties. In N. Magnenat Thalmann &
D. Thalmann (Eds.), Artificial Life and Virtual Reality (pp. 61–72). Chichester, UK: Wiley.

22. Mange, D., Goeke, M., Madon, D., Stauffer, A., Tempesti, G., & Durand, S. (1996). Embryonics:
A new family of coarse-grained field-programmable gate arrays with self-repair and self-reproducing
properties. In E. Sanchez & M. Tomassini (Eds.), Towards evolvable hardware: The evolutionary engineering
approach. Berlin: Springer-Verlag.

23. Mange, D., & Tomassini, M. (Eds.) (1998). Bio-inspired computing machines: Towards novel computational
architectures. Lausanne, Switzerland: Presses Polytechniques et Universitaires Romandes.

24. Mange, D., Stauffer, A., & Tempesti, G. (1998). Embryonics: A microscopic view of the
molecular architecture. In M. Sipper, D. Mange, & A. Pérez-Uribe (Eds.), Evolvable systems: From
biolog y to hardware (pp. 185–195). Berlin: Springer-Verlag.

25. Mange, D., Stauffer, A., & Tempesti, G. (1998). Embryonics: A macroscopic view of the cellular
architecture. In M. Sipper, D. Mange, & A. Pérez-Uribe (Eds.), Evolvable systems: From biolog y to
hardware (pp. 174–184). Berlin: Springer-Verlag.

26. Mange, D., Sipper, M., Stauffer, A., & Tempesti, G. (2000). Towards robust integrated circuits:
The embryonics approach. Proc. IEEE, 88(4), 516–541.

27. Marchal, P., Nussbaum, P., Piguet, C., Durand, S., Mange, D., Sanchez, E., Stauffer, A., &
Tempesti, D. (1996). Embryonics: The birth of synthetic life. In E. Sanchez & M. Tomassini (Eds.),
Towards evolvable hardware: The evolutionary engineering approach. Berlin: Springer-Verlag.

28. McKenzie, J. (1976). An introduction to developmental biolog y. Boston: Blackwell Scientific.

29. Ortega-Sanchez, C., & Tyrell, A. (1998). MUXTREE revisited: Embryonics as a reconfiguration strategy
in fault-tolerant processor arrays. In M. Sipper, D. Mange, & A. Pérez-Uribe (Eds.), Evolvable systems:
From biolog y to hardware. Berlin: Springer-Verlag.

30. Ortega-Sanchez, C. A. (2000). Embryonics: A bio-inspired fault-tolerant multicellular system. Ph.D. thesis.
University of York.

31. Prodan, L., Tempesti, G., Mange, D., & Stauffer, A. (2000). Biology meets electronics: The path to a
bio-inspired FGPA. In J. Miller, A. Thompson, P. Thompson, & T. C. Fogarty (Eds.), Evolvable systems:
From biolog y to hardware (pp. 187–196). Berlin: Springer-Verlag.

32. Stauffer, A., Mange, D., Tempesti, G., & Teuscher, C. (2001). A self-repairing and self-healing
electronic watch: The BioWatch. In Y. Liu et al. (Eds.), Proceedings of the 4th International
Conference on Evolvable System: From Biolog y to Hardware (ICES2001) (pp. 100–111). Berlin:
Springer-Verlag.

33. Tempesti, G., Mange, D., Stauffer, A., & Teuscher, C. (2002). The BioWall: An electronic tissue
for prototyping bio-inspired systems. In A. Stoica, J. Lohn, R. Katz, D. Keymeulen, & R. S. Zebulum
(Eds.), Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH’2002) (pp. 221–230).
Piscataway, NJ: IEEE Computer Society.

34. Teuscher, C., Mange, D., Stauffer, A., & Tempesti, G. (2003). Bio-inspired computing tissues:
Towards machines that evolve, grow, and learn. BioSystems, 68(2–3), 235–249.
Artificial Life Volume 12, Number 3 331

Embryonics: A Path to Artificial Life?X. Zhang, G. Dragffy, and A. G. Pipe
35. Wakerley, J. F. (2000). Digital design principles and practices, (3rd ed.), pp. 854–857. Upper Saddle
River, NJ: Prentice Hall.

36. Wolpert, L., Beddington, R., Brockes, J., Jessell, T., Lawrence, P., & Meyerowitz, E. (1998). Principles
of development. Oxford, UK: Oxford University Press.

37. Zhang, X., Dragffy, G., Pipe, A. G., Gunton, N., & Zhu, Q. M. (2003). A reconfigurable self-healing
embryonic cell architecture. In T. P. Plaks (Ed.), Proceedings of the 2003 International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA’03).

38. Zhang, X., Dragffy, G., & Pipe, A. G. (2003). Bio-inspired reconfigurable architecture for reliable systems.
In H. R. Abnia & L. T. Yang (Eds.), Proceedings of the 2003 International Conference on VLSI (VLSI’03)
(pp. 28–33). Las Vegas, NV: CSREA Press.

39. Zhang, X., Dragffy, G., Pipe, A. G., & Zhu, Q. M. (2003). Ontogenetic cellular hardware for fault
tolerant systems. In H. R. Arabnia & L. T. Yang (Eds.), Proceedings of the International Conference on
Embedded Systems and Applications, ESA’03 (pp. 144–150). Las Vegas, NV: CSREA Press.

40. Zhang, X., Dragffy, G., & Pipe, A. G. (2004). Repair of the genetic material in biologically inspired
embryonic-cell-based systems. In H. R. Arabnia, M. Guo, & L. T. Yang (Eds.), Proceedings of the
International Conference on VLSI, VLSI’04 (pp. 316–324). Las Vegas, NV: CSREA Press.

41. Zhang, X., Dragffy, G., Pipe, A. G., & Zhu, Q. M. (2004). Artificial innate immune system: An instant
defence layer of embryonics. In G. Nicosia et al. (Eds.), Artificial Immune Systems, Third International
Conference, ICARIS 2004 (pp. 302–315). Berlin: Springer-Verlag.

42. Zhang, X., Dragffy, G., Pipe, A. G., & Zhu, Q. M. (2004). Partial-DNA supported artificial life in an
embryonic array. In T. P. Plaks (Ed.), Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms, ERSA’04 (pp. 203–208). Las Vegas, NV: CSREA Press.
Artificial Life Volume 12, Number 3332

