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As the 4th industrial revolution emerges at the forefront of 

South Africa’s national strategy, research areas like mapping and 

localization find importance in more fields than just robotics. The 

mining industry is well-positioned to be a potential beneficiary of 

these technological changes. By nature, mining settings could be 

labeled with a similar status to indoor areas as they are both GPS-

denied type environments. Mapping and localization algorithms 

using Simultaneous Localization and Mapping (SLAM) are 

proven to function in similar conditions. These SLAM-based 

algorithms are highly effective at mapping, yet they can be 

susceptible to registration, motion distortion, and drift issues if 

provided with no external odometry. Also, using mobile robots may 

not always be possible in these environment types for practical 

reasons. Employing a device with a different form factor, such as 

a mapping sensor pack, could be an option. This study evaluates a 

Lidar Inertial Odometry solution integrated on a LiDAR-based 

sensor pack developed for mapping and localization 

applications. For the chosen LiDAR Inertial Odometry (LIO) 

solution the Root Mean Squared Error was computed. This was 

found to be greater than the Root Mean Squared Error computed 

by the LiDAR sensor pack’s Eth-ICP Mapper implementation. 

However, the LIO solution produces pose estimates at a higher rate, 

which is beneficial for localization continuity and mapping. 

Keywords—LiDAR-Inertial, Odometry, SLAM, Mapping, 

Localization, ICP, Sensor pack. 

I. INTRODUCTION  

While the research area of Mapping and Localization has 
long been the purview of mobile robotics, its significance has 
not gone unnoticed within other industry sectors, such as 
manufacturing and mining. Applications that make use of 3D 
maps have emerged for GPS-denied environments [1, 2, 3].  
Stereo cameras and Light Detection and Ranging (LiDAR) 
sensors have found use in mapping applications [4, 5]. 
Nevertheless, mapping in GPS-denied environments has its 
own set of challenges. For example, the unreliability of GPS 
in indoor or underground environments results in unreliable 
position estimates for the mapping process [6, 7]. Additionally, 
mining environments are more unforgiving to mapping 
sensors, having narrow cross-sections, inconsistent 
illumination, and near-homogeneous surfaces. As a result, 
camera sensors are rendered less effective in these types of 
settings [8]. Comparatively speaking, LiDAR sensors are not 
invulnerable to the effects of mapping in GPS denied 
environments, owing to low vertical resolution, vulnerability 
to motion distortion, poor performance in degraded visual 
environments, and low update rate [11].  

Being able to self-localize a mapping sensor within these 
difficult conditions goes some way towards resolving these 

issues. Robotics research up to the present day has continued 
to drive the development of algorithms, which allow the robot 
to self-localize in the map it is generating, typically managed 
via the Simultaneous Localization And Mapping (SLAM) 
methodology [9]. SLAM is typically implemented through 
point cloud registration. Point cloud registration (also known 
as geometric registration) is often administered by the popular 
Iterative Closest Point (ICP) algorithm [2]. The ICP algorithm 
extracts and processes points in the environment to determine 
where the LiDAR sensor’s frame is relative to the map frame. 
It is important to note that the LiDAR sensor can typically 
obtain laser scans at a frequency of about 10Hz [10, 11], due 
to the rotational speed of the internal mechanism in 
conventional LiDAR sensors [12]. In addition, there is 
computational load due to the SLAM algorithm, as the map 
size increases throughout the mapping process.  In the 
mapping process, if the motion of the mobile robot is too rapid, 
the LiDAR sensor may not be able to adequately capture 
environment data in each scan. Missing data points in the 
LiDAR scan data give rise to motion distortion artifacts and 
registration issues, in the emerging point cloud. These issues 
are compounded if the features in  the mapped environment 
are sparse and if the environments have homogenous surfaces, 
with little texture.  

These challenges are typically solved by algorithmically 
fusing motion data from additional motion sensors, such as 
Inertial Measurement Units (IMU) and optical wheel encoders, 
with LiDAR data. The optical encoders provide a measure of 
the change in position over time known as odometry [6]. 
Odometry is defined as an output of the following steps. 
Firstly, the encoders produce measurements relative to an 
origin position. Secondly, these measurements are converted 
into position estimates. Lastly, the position estimates are 
summed. That summed term is known as Odometry [6]. The 
IMU sensor also provides translation estimations by 
integrating accelerometer measurements and orientation 
estimations from gyroscope measurements [13]. Also, 
calculating the transformation between the sensor body frames 
and the body frame of a mobile robot allows the odometry to 
be produced to be relative to the robot. As a result, odometry 
is computed as the robot moves, in the case of a wheeled robot. 

In a lab setting, floor surfaces are usually level. As a 
result, light encoders record little motion drift due to wheel 
slippage. The sensor fusion also tempers the IMU’s inherent 
error gyroscope and accelerometer measurements [6]. 
Furthermore,  the IMU and the light encoder update rates 
provide odometry estimates faster than the SLAM algorithm 
can provide its position estimates, as it is delayed by its point 
cloud registration process. In this context, the speed of the 
mobile robot is usually thresholded.  
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In some circumstances, it is not always possible to have 
a mobile robot due to cost or the environment being unsuitable 
for a wheeled robot. Some examples are areas in underground 
mines or certain agricultural contexts, where it is rough, 
uneven terrain. Furthermore, wheel odometry data can be 
unreliable due to wheel slippage on these types of terrain [6]. 
While it may not be possible to utilize a mobile robot for each 
scenario, it may be possible to harness the mapping and 
motion sensors in a different form factor, such as a sensor pack, 
a handheld device, or an Unmanned Aerial Vehicle (UAV). 
These forms provide no access to wheel odometry; hence, a 
need exists for odometry to be obtained from additional 
sensors. From a functionality point of view, the LiDAR and 
IMU sensors used in robotic platforms lend well for usage in 
these devices, as they could perform double duty for mapping 
and producing odometry without the added weight of extra 
sensors.  

When employed individually, the LiDAR and IMU 
sensors have inherent weaknesses, as previously established. 
However, as previously mentioned, the fusion of the sensor 
data can be beneficial, compensating for the shortcomings of 
individual sensors [6, 10]. For example, when calculating 
odometry from a LiDAR alone, motion distortion can play a 
role when at speed. Also, the LIDAR odometry depends on an 
initial position estimate, which is hard to compute without 
extra sensors [15]. In contrast, the IMU sensor, which is 
superb at providing initial or prior pose estimates [16], 
publishes motion data at a rate of an order of magnitude 
(typically 100Hz and above) to that of the LIDAR. The 
odometry estimate produced by the fusion of these sensors is 
at a higher frequency than the LiDAR scan rate to counteract 
the motion distortion [17, 18, 27].  The type of odometry 
generated from IMU and LiDAR sensor fusions is termed 
LiDAR Inertial Odometry. In this paper, we present an 
evaluation of an open-source tightly coupled LIO software 
implementation proposed to address these types of issues. The 
remainder of the paper is structured as follows. Section II 
presents related works on LiDAR Inertial odometry and a brief 
overview of relevant 3D mapping techniques. Section III 
details the system overview of both the hardware and software. 
Section IV shows the experiments and results.  Section V 
concludes the paper with a brief discussion of the results and 
further work suggestions.  

 

Fig. 1. The hierarchy of self-localization approaches. 

II. RELATED WORK 

A hierarchy of self-localization strategies has emerged 

from research into sensor fusions, which are conceptually 

similar but differ in methodology [6].  Fig. 1 shows an 

equivalent diagram of the hierarchy of self-localization 

approaches [6], primarily focusing on the breakdown of 

experimentation under the LiDAR Inertial Odometry research 

area 

A. LiDAR Inertial Odometry 

LiDAR Inertial Odometry (LIO) stems from the intuitive 
research work conducted on the fusion of LiDAR sensors data 
with IMU sensor data to derive odometry estimations. In the 
last decade, LiDAR Inertial Odometry (LIO) research has split 
into two main research areas, namely tightly coupled and 
loosely coupled LIO [27]. 

B. Loosely Coupled LiDAR-Inertial Sensor Fusion 

In the loosely coupled category, LiDAR inertial 

Odometry fuses LiDAR motion estimates and IMU 

integration results. The following works detail certain aspects 

of the background of LIO. The most notable works in literature 

for Loosely coupled LIO are LOAM [20] and LeGO-LOAM 

[21]. In LOAM [20], the focus is on using the LiDAR 

odometry obtained from an ICP implementation, extracting 

features, namely planes or edges. In this case, the IMU is used 

to deskew point clouds from the rotating LiDAR sensor, 

provide initial pose estimates, and counteract the LiDAR 

sensor's motion distortion. LeGO-LOAM [21] builds on [20] 

by dropping questionable points from the point cloud in a 

process called point cloud segmentation.  In addition, LeGO-

LOAM also performs loop-closure. In LOAM and LeGO-

LOAM, IMU bias remains, under the assumption that its effect 

is negligible over a short duration. Other works include using 

extended Kalman filters to fuse LiDAR and IMU data for 2D 

AND 3D maps [22, 23, 24]. In general, EKF based methods 

are computationally efficient. However, they are sensitive to 

information loss, imprecise estimates, and also capturing 

outlier data points. 

C. Tightly Coupled LiDAR-Inertial Sensor Fusion 

The LiDAR and IMU sensors are used in the tightly 
coupled category to generate odometry based on raw 
measurements. The tightly coupled methodology is broken 
down further into the filter-based sensor fusion approaches 
and the optimization-based sensor fusion approaches [25, 26]. 
Regarding the area of filter-based sensor fusion, the following 
works are noteworthy. Firstly, the Gaussian particle filter 
(GBF) is used to fuse from a planar 2D LiDAR and an IMU 
[28]. However, Kalman filters are viewed as more favorable 
to use, as the GBF’s computation complexity increases along 
with the increasing number of features identified in the 
scanned point cloud [29]. Among the Kalman filters, the 
Extended Kalman filter (EKF) is the most popular, as seen in 
LINS [30] and R-LINS [31]. In these works, the error-state 
Kalman filters are used iteratively with a robocentric model to 
provide an ego-motion estimation and improve state 
estimation. [32] presents an implementation of the error-state 
Kalman filter with IMU bias estimation, used with a Digital 
Elevation Model (DEM) to provide quality state estimations. 
Recursive use of the EKF in Fast-LIO [29] reduces the effect 
of linearization errors and the computational time inherent in 
LiDAR-IMU fusion. The most prominent optimization 
method for tightly coupled LiDAR-Inertial sensor fusions is 
Factor Graph Optimization (FGO). FGO tightly coupled 
approaches are superior to EKF-based estimators at linking 
data in successive periods, as they can handle delayed 
measurements [33]. These delayed measurements can be 
additional factors to the factor graph. Geneva et al. [34] use 
IMU pre-integration measurement data, with plane feature 
points from their LiDAR data, to constrain their FGO 
implementation, similarly to Yang et al. [35]. Tixiao et al., 
with their LIO-SAM [36] framework, fuses IMU pre-
integration data with LiDAR measurements using FGO. LIO-
SAM suffers in narrow self-similar settings, for example, 
corridors. LIO-SAM  is useful for sensor fusion as 



supplementary sensor measurements can be added to the 
factor graph as new factors. The use of specific keyframes 
coinciding with newly computed Lidar odometry minimizes 
the effect of older LIDAR scans, providing real-time 
performance. Contrastingly, the LiLi-OM [37] solution uses 
two separate factor graphs of different sizes. The larger factor 
graph adds particular keyframes for the pre-integrated IMU 
data and sliding window optimization. In contrast, the smaller 
factor graph retrieves the poses from other keyframes within 
the sliding window.  

The Lidar Inertial odometry (LIO) and mapping [11] 
algorithm termed “LIO-Mapping” evaluated in this study also 
uses graph optimization. Here, the algorithm uses a maximum 
a posteriori (MAP) formulation to optimize both LiDAR and 
IMU measurements jointly within a sliding window. 
Rotational constraints to improve the final pose within a 
generated 3D Map. Here the raw imu data is used via state 
prediction step to deskew the incoming raw LiDAR data and 
as a pre-integrated input to the joint non-linear optimization 
cost function. In the next phase, features are extracted from the 
deskewed LiDAR data to build and update a local map, using 
previously obtained LiDAR features and  transform estimates

Fig. 2. The LIO-mapping framework diagram. 

from the state prediction step. These relative LiDAR 
measurements are simultaneously acquiring relative LiDAR 
measurements,  along with a LiDAR to world passed along 
with the previously mentioned pre-integrated IMU 
measurements to a Mahalanobis-based cost function, which is 
minimized in an optimization step to compute a MAP 
estimation of the new IMU state and the transforms between 
the IMU frame and the LiDAR frame. Furthermore, the 
transforms, from a previous iteration, namely the imu frame to 
lidar frame and the world to IMU frame, are used to update the 
local map, along with the extracted features. Subsequently, the 
output from the optimization step feeds back into the state 
prediction step to prevent IMU drift. Lastly, the acquired 
LiDAR poses are constrained to a fixed world frame by 
registering the feature points to the global map.  In the process, 
the execution of the steps recursively provides the required 
odometry. Fig. 2 shows a simplified version of the LIO-
mapping framework [11].  

D.  Mapping and Localization 

Historically, Mapping and Localization is a well-studied 
research area [46] [47]. The Simultaneous Localization and 
Mapping (SLAM) approach [40] is synonymous with 
Mapping and Localization research and has led to a variety of 
implementations [43] [44] [45 ]. The SLAM is a self-reflexive 
process, which uses a LiDAR or stereo camera-sensor to build 
a map of an environment and simultaneously determine its 
position within said map [40]. SLAM comes in different 
flavors, such as fastSLAM or EKF-SLAM [39] [40] and uses 
the Iterative closest point (ICP) algorithm [41], a form of 
geometric registration. The ICP algorithm builds maps by 
merging smaller point cloud data sets after identifying features 
and attributes in successive LiDAR point cloud scans. These 
features pertain to the geometric shapes of objects within the 
environment and attributes which are key descriptors for the 
data points in the point cloud. A close to optimum 
transformation is computed from features in consecutive data 
sets as the LiDAR sensor scans the environment. The 
limitations of LiDAR sensors are well documented [10] [11] 

[12] and indicate a need for external odometry to combat the 
registration, motion distortion, and drift issues that come with 
using these sensors on their own.  

III. SYSTEM OVERVIEW 

A. LiDAR Sensor pack Hardware  

The hardware employed for this study is a LiDAR-based 

sensor pack. The sensor pack comprises of the following 

components: a Velodyne puck (VLP16) LiDAR sensor [46], a 

Microstrain 3dm-gx3-25 IMU sensor [47], a 3rd generation 

core i7 CPU with mini-ITX form factor, a DC-to-DC 

convertor as well as two 12V batteries. The puck sensor has 

the following specifications: a measurement range of up to 

100m, a range accuracy of up at ± 3cm, a vertical Field of view 

(FOV) of ± 15°, a horizontal FOV of 360°, a vertical angular 

resolution of 2°, horizontal angular resolution ranging 

between 0.1° to 0.4° and a rotation rate of between 5 to 10Hz.  

Fig. 3. The LiDAR sensor pack. 

The extensive 3dm-gx3-25 sensor specifications are available 

online [47].  

VLP16 LiDAR sensor 

Markers 



MX-T40 cameras 

cameras 

Fig 3. shows an image of the LiDAR sensor pack used 
for this study. The sensor pack has retro-reflective markers on 
its body, to track it in the volume of the motion capture system, 
as explained in the next section.  

B. Vicon Motion Capture System  

A Vicon Motion Capture System (MCS) [51] with 12 

MX-T40 cameras, which has submillimetre accuracy was used 

to provide ground truth for the LiDAR sensor pack. The MCS 

can track objects within a  7m  × 8m × 3m volume. The object 

(in this case the LiDAR sensor pack) is defined by placing 

markers in different positions of the object’s body.  Figure 4 

shows an image of the Vicon MCS setup in the CSIR’s Centre 

for Robotics and Future production Systems (CRFP) lab. Our 

other work shows an illustration of how the sensor pack is 

tracked within the Vicon capture volume [2]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The Vicon motion capture system 

C. Software System Overview 

The LiDAR sensor contains a mapping and localization 
software package, which includes an implementation of the 
open-source Ethz-asl ICP Mapper [48] package, to perform 
SLAM. The onboard software package combines subsequent 
LiDAR point cloud scans to form a map and simultaneously 
provides position estimates. For the LiDAR Inertial Odometry, 
an open-source LIO-mapping software package [49] was 
chosen, which provides auxiliary LIO (odometry) when 
integrated the with mapping and localization software package. 

 

Fig. 5. The flow of data diagram for ‘No Odometry’ and ‘LIO ’ modes. 

 
Fig 5. shows a diagram that explains the flow of data 

from the sensor data inputs to the pose estimate outputs a  

frequency of 0.5Hz. On the other hand with the LIO 
enabled the software package provides regular interim 
position estimates at a frequency of 3.3Hz. 

.  

D. Frames and Transformations  

Fig. 6 shows the main system frames (i.e. the map, odom, 
and lidar frame), for the integrated system. The above- 
mentioned Mapping and Localization software package 
computes the pose estimates of the “odom frame” with the 
“map frame” via a transformation. The LIO-mapping package 
provides the LIO (odometry) of the “sensor pack frame” 
within the “odom frame”. Before movement at the starting 
position, all the frames are aligned, but as the sensor pack is 
moved the “odom frame” moves relative to the map frame and 
the sensor pack frame moves relative to the odom frame 
respectively. The transformations between the frames were 
previously computed and are available when the package is 
executed for the mapping and localization process.  

Fig. 6. Main system frames. 

IV. EXPERIMENTS AND RESULTS 

The LiDAR sensor pack was placed on a trolley and pushed 

in figure 8 path around two obstacles in the CRFP lab. 

A. Pose estimates Tests 

The LiDAR sensor pack was placed on a trolley and 

pushed in figure 8 path around two obstacles in the CRFP lab. 

The experimental setup is shown in Fig. 7.  

Fig. 7. The experimental setup 

 

Obstacles 

Trolley 



B. Pose estimates Results 

For the figure 8 path test, the position estimates data is 
from two sources, namely the Vicon MCS and the onboard 
mapping and localization software package. After the LIO 
integration, the software package provides position estimates 
in two modes. The first mode is the ‘No odometry’ mode, 
which provides Mapper pose estimates. The second mode is 
the ‘LIO’ mode, which produces both the LIO and the LIO + 
mapper pose estimates, as illustrated in Fig. 5.  The following 
pose estimates types were captured for the pose estimates test, 
namely the Mapper, the LIO, the LIO + mapper, and the Vicon 
pose estimates respectively. For the designated figure 8 path, 
the LiDAR sensor pack moved at an average velocity of ~0.44 
m/s, about the path. The average velocity value was computed 
using the timestamped Vicon pose estimates.  Fig. 8 shows the 
plots of the pose estimates. The plots of the position estimates 
show a rougher path produced by the LIO pose estimates, 
while a smoother path is produced by the Mapper and the 
LIO+ Mapper pose estimates. The Mapper pose estimates path 
adheres more closely to the produced Vicon (ground truth) 
path.  

Fig. 8. The plot of x and y position estimates on a figure 8 path 

From Fig. 8, it can be seen that the LIO pose estimates do 
not improve on the Mapper pose estimates position accuracy. 
However, it produces more than twice the number of pose 
estimates compared to the Mapper pose estimates in the 'No 
Odometry' case. Passing the LIO pose estimates to the Eth 
Mapper produced an improved position accuracy, as seen by 
the black LIO mapper plot. In the ‘No Odometry‘ and ‘LIO’ 
modes the 3D point clouds produced were indistinguishable, 
meaning the LIO mapper position estimates produced were 
accurate enough for the 3D Mapping process. 

C. Root Mean Square Error Values 

Calculating the Root Mean square error (RMSE) values 

for the Mapper, the LIO, and the LIO mapper pose estimates 

relative to the Vicon values indicate that, the software 

package is more accurate at producing position estimates 

when in ‘No Odometry’  mode, than when in the ‘LIO’ mode,  

as shown in TABLE 1. Taking Fig. 8 into consideration along 

with the RMSE values confirms that the output LIO + mapper 

pose estimates attain accurate values, though not as accurate 

as the inherent Eth Mapper implementation when no 

odometry is available. Essentially, the LIO pose estimates are 

provided to the Eth Mapper at a faster rate than when in the 

‘No Odometry‘ mode,  resulting in an improved RMSE value 

for the LIO mapper pose estimates. While the LIO pose 

estimates are produced at a higher frequency of ~ 3.3 Hz, the 

computation times of the Eth Mapper remain the same 

producing LIO mapper pose estimates at ~ 0.5 Hz. 

TABLE I.   ROOT MEAN SQUARE ERROR VALUES 

D.  3D Mapping Trolley Speed Tests 

The tests included pushing the LiDAR-based sensor 

pack through the CRFP lab on a trolley to visualize if possible 

motion distortion or point cloud registration issues.  In the 

case of the ‘No Odometry’ mode, the resultant 3D point cloud 

(as seen in Fig. 8) showed motion distortion artifacts and 

could not accurately localize the sensor pack. In the case 

when the ‘LIO’ mode was enabled, the resultant 3D point 

cloud showed no signs of motion distortion or registration 

issues and could accurately localize the sensor pack. The 3D 

point cloud with the ‘LIO’ mode is shown in Fig. 9. The 3D 

point clouds indicate that with the LIO enabled the software 

package was found to be more speed tolerant, due to its 

publishing of position estimates at a higher frequency. The 

3D point clouds in Fig. 9 and 10 use the same LiDAR and 

IMU input data. That been said, there is a marked difference 

in how the Mapping and Localization software handles the 

3D map generation at speed when the LIO is enabled. The 

highest recorded speed was at about 2.4 metres per second 

(m/s), with the LIO enabled. 

3D point cloud generated at speed in the ‘No Odometry’ mode. 
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Fig. 9. 3D point cloud generated at speed in ‘LIO’ mode. 

II. CONCLUSIONS AND FUTURE WORK 

In the case when the LiDAR Inertial Odometry (LIO) is 
enabled, it produces decent enough pose estimates,  though not 
as accurate as the pose estimates produced by the sensor 
pack’s Eth-ICP Mapper. However, the position estimates are 
sufficiently accurate as there is no visible difference in the 3D 
point clouds produced in both position estimation modes. In 
addition, the LIO position estimates are produced at a  higher 
frequency, which provides invaluable resistance to motion 
distortion and registration issues while the sensor pack is at 
speed. The highest speed recorded from pushing the sensor 
pack on a trolley was 2.4 metres (m/s). In contrast, the 
Mapping and Localization software without LIO enabled 
suffers from motion distortion, registration issues, and can not 
properly localize itself at these higher recorded speeds. The 
recommended future works are as follows: 

• Running further pose estimate tests, including more 
complex motions with roll, pitch, and yaw features.     

• Conducting the speed tests at higher velocities than 
possible on a trolley, for example, strapping the sensor 
pack to a vehicle. 
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