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Abstract  

There is evidence that patients with Complex Regional Pain Syndrome (CRPS) have 

altered central sensorimotor processing. Sensory input can influence motor output either 

through indirect pathways or through direct connections from the sensory to motor 

cortex. The purpose of this study was to investigate sensorimotor interaction via direct 

connections in patients with CRPS and to compare the results with normal subjects’. 

 

Direct short-latency sensory-motor interaction was evaluated in eight patients with 

CRPS1 affecting a hand. Modulation of EMG responses to transcranial magnetic 

stimulation (TMS) induced by concomitant median nerve stimulation was measured, the 

so-called, short-latency afferent inhibition (SAI). Results were compared with eight 

normal subjects who were age and sex matched with the patients. As expected, all the 

normal subjects’ EMG responses to TMS with median nerve stimulation were smaller 

than responses to TMS alone.  In seven of the eight CRPS patients EMG responses to 

TMS were suppressed when paired with median nerve stimulation. Only one CRPS 

patient’s results showed no suppression of EMG responses. These results suggest that 

the disease mechanisms of CRPS1 do not typically affect the direct neural circuit 

between sensory and motor cortex and that normal sensorimotor interaction is occurring 

via this route.  
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Introduction  

Complex Regional Pain Syndrome (CRPS) is a painful, debilitating condition which 

may arise following trauma with major nerve damage (Type II) or without it (Type I); 

spontaneous onset has also been described (Veldman et al., 1993). Peripheral sensory 

and motor changes have been well documented in CRPS (Stanton-Hicks et al., 1995; 

Scadding, 1999; Harden, 2001; Stanton-Hicks et al., 2001). In addition more central 

phenomena such as changes in cortical representation and altered perceptions of the 

limb and body-schema have also been described (Galer et al., 1995; Rommel et al., 

1999; Galer and Jensen, 1999, Juottonen et al., 2002; Maihöfner et al., 2003; McCabe et 

al, 2003a; Főrderreuther et al., 2004; Lewis et al., 2004).  Although the understanding of 

the pathophysiology of CRPS is still far from being complete, it seems that the 

condition arises from impairments in both peripheral and central mechanisms via 

interaction between afferent and efferent signals (Jänig and Baron, 2003).   

The breakdown of sensory-motor interaction has been proposed as the mechanism at 

least partially responsible for development of CRPS (see Harris, 1999; McCabe et al., 

2003b; 2005).  This is supported by evidence that artificial generation of discordance 

between sensory input and motor output, via an optokinetic device, induces 

somaesthetic disturbances in healthy volunteers, whilst the provision of corrective 

sensory input, using the same device, induces an analgesic response in those with CRPS 

type 1 (McCabe et al., 2003b; 2005). Sensory inputs interact with the motor cortex 

through several pathways of varying complexity. The shortest and most direct of them 

involves monosynaptic connections that pass directly from sensory to motor cortex 

(Avendano et al., 1992; Widener and Cheney, 1997). The purpose of this study was to 

evaluate whether impairment in this pathway might be associated with CRPS 

symptoms.   



Sensorimotor interaction can be evaluated by coupling transcranial magnetic stimulation 

(TMS), a noninvasive method of stimulating the motor cortex, with peripheral nerve 

stimulation. The size of a muscle twitch (motor evoked potential –  MEP) induced by a 

TMS of the motor cortex is determined by the level of excitability of the stimulated 

cortex and can be modulated by electrical stimulation of a peripheral nerve innervating 

the area of the body where the muscle twitch is induced.  The actual effect of peripheral 

nerve stimulation on motor cortex excitability depends on the interstimulus interval 

(ISI) between the conditioning sensory stimulation and the subsequent test TMS. If the 

time between stimulation of the peripheral nerve and that of the motor cortex is near the 

time needed for the peripheral nerve afferent input to reach the cortex an inhibitory 

effect occurs (Figure 1). This is referred to as short latency afferent inhibition (SAI) 

(Sailer et al., 2003). It is thought that SAI is produced by cortico-cortical sensorimotor 

interactions (Tokimura et al., 2000; Abbruzzese et al., 2001).  

[Figure 1 near here] 

If in CRPS patients there is a breakdown in the sensorimotor interaction taking place 

within the direct sensorimotor pathway then the inhibitory effect will be smaller than 

normal. This study was designed to evaluate this hypothesis.  

  

Methods 

Subjects  

Eight adult patients (seven female) with unilateral upper limb CRPS type I were 

recruited to the study. They were identified from rheumatology clinics and wards at the 

RNHRD. All subjects met the IASP criteria for CRPS (Stanton-Hicks et al., 1995), had 



no contractures, which would compromise the accuracy of the assessment, and were 

judged as able to tolerate the experimental conditions.  CRPS subject’s details are given 

in table 1. 

Normal subjects who matched the patients’ age, gender and hand dominance were also 

recruited. These volunteers had no history of CRPS, arthritis or chronic hand pain. 

Mean (S.D.) age for each group was 45 (13) years.  

[Table 1. near here]  

The recordings took place at the Burden Neurological Institute (BNI). All participants 

gave their consent and all procedures were performed in accordance with a protocol 

approved by the Local Research Ethics Committees at RNHRD and at Frenchay 

Hospital in Bristol (providing Ethics approval for BNI).  

Procedures  

Design of the study   

For each subject the recordings were conducted in three steps. First, somatosensory 

evoked potentials (SEP) from the median nerve of the investigated limb were recorded, 

and the latency of the first cortical component (N20) was determined. Subsequently, the 

optimal parameters (i.e. site and intensity) for TMS inducing muscle twitches in the 

representative muscle (abductor pollicis brevis – APB) of the investigated limb were 

determined. Finally, the recording of electromyographic (EMG) responses to paired 

peripheral median nerve stimuli (medPS) and TMS was carried out. The median nerve 

stimulation was set to precede the TMS pulse with an inter-stimulus interval that 

equalled the latency of the N20 SEP. The test trials with paired stimulation were 

randomly intermixed with control trials when only TMS pulse was delivered. Six blocks 



of eight trials were recorded giving a total of 24 responses to TMS only and 24 

responses to paired, TMS + medPS, stimulation.  

Median nerve stimulation (medPS)  

The median nerve was stimulated over the wrist on the affected side in patients, and on 

the matching side in control subjects. Square pulse stimuli of 0.2 ms duration were 

delivered at a frequency of 2Hz via a Digitimer D57A constant current stimulator. 

Stimulation was at supramaximal intensity for large afferent fibres; sufficient to 

provoke a visible movement of the thumb.  

SEP recording 

Standard Ag/AgCl electrodes were attached, according to the IFCN recommended 

standards, over the brachial plexus (Erb’s point) of the limb tested and over the 

contralateral cortex, 2 cm anterior and 2 cm posterior to the C3/C4 electrode placements 

of the 10/20 system (Nuwer et al 1994). All electrodes were referenced to Fz. Epochs of 

64 ms length were recorded (filter settings: time constant 0.03s low pass filter 700Hz; 

digitisation rate: 8kHz) with the medPS triggered 1.25 ms into the epoch and 400ms 

inter-stimulus interval.   

EMG Recording 

EMG was recorded by 10mm Ag/AgCl electrodes placed in belly-belly montage (20mm 

inter-electrode distance) over the abductor pollicis brevis (APB) muscle. Impedance 

was maintained below 5K . The signal was amplified (x1000), band pass filtered (3Hz 

- 3.9 kHz), digitised (8 KHz), and full wave rectified. Epochs of 128ms length were 

collected, stored, and analysed off line using in-house software.  



Magnetic Stimulation  

A Magstim 200 stimulator (maximum output 2.0 T; Magstim Company, Dyfed, UK) 

with a figure of eight coil was used (outer diameter of each wing 95 mm). The coil was 

positioned over the head at the optimal site for obtaining a response in the resting 

contralateral APB muscle; this was judged by threshold and amplitude of the response. 

The coil was hand held while the weight of the coil and its power cable were 

counterbalanced by elastic bands suspended from the ceiling overhead. The location 

was marked on the head with wax pencil and the coil position was checked regularly 

with reference to the head marks and a spirit level on the coil to ensure that it remained 

stable throughout the session. The threshold for EMG responses in each muscle was 

defined as the intensity, (i.e. percentage of maximum stimulator output), required to 

produce clearly visible responses at the appropriate latency in three out of six sweeps. 

Threshold was measured in the passive, relaxed condition of the muscle.  

For the paired, TMS + medPS, recordings TMS  intensity was set to 20% above the 

threshold and TMS pulses were delivered in blocks of eight stimuli at a rate of 0.2 Hz. 

The TMS pulses were triggered 44 ms into the recorded EMG epoch.  

Data analysis 

The rectified EMG recordings were inspected sweep by sweep for EMG responses 

(motor evoked potentials – MEPs). The criterion for the presence of an EMG response 

to TMS was a peak occurring at normal latency for the APB. The peak had to be more 

than three times the mean level of background EMG, and larger than other peaks in the 

background. For each subject, all responses were superimposed and a time window for 

analysis was visually determined to include all single MEPs. Then for each single MEP 

the mean amplitude over the determined was measured as an index of MEP size. The 



distribution of MEP sizes was assessed by Kolmogorov-Smirnov test. Since some of the 

data sets did not follow the normal distribution, non-parametric Mann Witney U test 

was used.  For each subject, the MEPs with and without medPS conditioning were 

compared, and the MEP size suppression index was calculated as: (mean TMS&medPS 

– mean TMS only) / mean TMS only, and expressed as a percentage.  

[table 2 near here] 

Results 

The latency of N20 was within normal limits for all subjects and ranged between 18 and 

22ms. As expected, all the normal subjects’ EMG responses to TMS were suppressed 

when preceded by median nerve stimulation (see table 2). The difference in EMG 

response amplitudes between TMS alone and TMS&medPS was statistically significant 

(p<0.05) in six out of eight subjects. Similarly, the suppression of the EMG response 

was present in seven but significant in six of the eight CRPS patients. It is of note that 

one CRSP patient (patient 5) did not show any suppression of EMG response 

amplitudes with median nerve stimulation. This subject was much younger than the 

others and had CRPS for only six months. There was no significant difference between 

CRPS and normal subjects in mean MEP sizes in the TMS only condition. 

 

Discussion 

Suppression of EMG responses to TMS was significant in all but one of the CRPS 

patients. The results for CRSP patients were in no way different than for normal control 

subjects. These results suggest that the disease mechanisms of CRPS1 do not typically 



affect the direct neural circuit between sensory and motor cortex and that normal 

sensorimotor interaction is occurring via this route.  

The existence of a deficient response of motor cortex inhibition mechanisms to sensory 

stimuli in CRPS1 was suggested by the results of an earlier magnetoencephalographic 

(MEG) study which showed altered response of the motor cortex idling rhythm (20-Hz) 

following tactile stimuli in 6 patients with CRPS1 (Juottonen et al. 2002).  The 20-Hz 

rhythm is considered to reflect the level of motor cortex inhibition and normally 

displays a typical pattern of suppression and subsequent rebound following 

somatosensory stimulation (Salmelin and Hari, 1994). Juottonen et al. (2002) found 

considerable increase in suppression of this rhythm as well as a significant reduction in 

subsequent rebound in CRPS patients compared to healthy controls. However, a recent 

TMS study investigating cortico-cortical connections within the motor cortex of 12 

CRPS1 patients found that in those with upper limb CRPS the motor cortex 

contralateral to the affected limb displayed reduced inhibition and increased excitability 

on its own (Eisenberg et al., 2005). This would suggest that findings of Juottonen at al. 

(2002) may not be caused by impaired sensory-motor interactions but instead are due to 

intrinsically deficient inhibition within the motor cortex. Our findings of essentially 

normal short latency afferent inhibition in CRPS patients demonstrate that intrinsic 

weakness of motor cortex inhibition may not play a decisive role in sensory-motor 

interactions and that the explanation for the findings of Juottonen at al. (2002) has to be 

looked for elsewhere. In addition, the findings of Eisenberg et al. (2005) were similar to 

those demonstrated in patients who did not have CRPS, but whose wrists were 

immobilised for prolonged periods in splints after wrist fracture (Zanette et al., 2004). 

Self-imposed immobilisation of the affected limb is a common feature in CRPS due 

either to the high levels of pain or neglect-like phenomena. Thus, increased excitability 



and reduced inhibition found by Eisenberg et al (2005) may well not be related to the 

basic physiological mechanisms of CRPS but represent a secondary changes due to 

immobility and could be even due to a paucity of inhibitory sensory inputs due to 

immobilisation.   

The results of our study and those of Juottonen et al. (2002) leaves the question of 

where in the central nervous system does sensorimotor integration breakdown in CRPS.  

Most probably it occurs within other more indirect pathways e.g. via the basal ganglia 

and/or second and third order somatosensory cortical areas. In this study only direct 

short-latency sensory-motor interactions at the level of the cortex were evaluated. 

Investigation of changes in long latency afferent inhibition might provide a part of the 

response to this question. Long latency afferent inhibition is a consistent inhibition that 

can be recorded at longer ISIs, between 100 and 200 ms and it is thought to involve 

indirect pathways such as the basal ganglia or cortical association areas (Abbruzzese et 

al., 2001; Chen et al., 1999; Sailer et al., 2003). This will have to be a subject of another 

study.   

In this study, for eliciting SAI, we used a subject specific single ISI that was equal to 

the subjects N20 peak latency. In studies in which a range of ISIs have been used there 

has been some disagreement about the optimal ISI for producing maximal SAI. Kessler 

et al (2005) found maximal SAI at ISIs equal to both N20 latency and to N20+2ms. 

However Tokimura et al. (2000) found the largest SAIs at ISIs that were four seconds 

longer than the N20 peak latency. In all these studies, the SAI for ISIs equal to N20 

latency was typically detectable even if not maximum. This explains our findings in 

healthy controls where for two subjects SAIs, although quite clearly present (35.3 and 

34.4%), were not significant. However, this raises a question why we have chosen the 

N20 latency ISI in the first place.  



The choice of the ISI was determined by the specificities of the patients we studied. The 

patients with CRPS, by the very nature of their condition, find it very difficult to 

tolerate any sensory stimuli applied to the affected limb.  The median nerve stimuli used 

in this study were no exception. Thus, we had to limit the duration of testing and total 

number of median nerve stimulations to the necessary minimum.  Effectively, this 

meant to reduce the TMS&medPS to only a single ISI. However, as we know the ISI 

value for bringing about the maximal SAI varied between 0 and 4 sec + N20 latency in 

previous studies (Tokimura et al. 2000; Kessler et al 2005). Therefore, it typically 

requires testing across a range of ISIs to determine exactly the ISI that causes the larges 

SAI for a particular subject. Obviously, this approach would inevitably prolong the 

experiment and would require delivery of larger number of median nerve stimuli. Thus, 

it was considered unsuitable for our patients. On the other hand, N20 latency is an 

independent physiological variable, specific to a particular subject, and essentially 

independent from this study and its hypothesis. Therefore, the choice of an ISI equal to 

N20 latency seemed physiologically the "safest" option, the least open to doubts. Had 

we taken, for example, N20+2ms the questions might be why not +1, +3 or +4, and so 

on. Of course, had we found the inhibition absent or considerably weaker in patients, 

that testing of SAI at longer ISIs would be necessary. However, given that we have 

found essentially normal SAI in patients the issue is not of any practical relevance – 

even with ISIs that may does not produce maximal inhibition the CRPS patients had 

essentially normal results.  

The results of one CRPS subject (5) were different from the rest. The anomalous result 

could not be explained by any errors in determining the timing of the arrival of the 

afferent input to the motor cortex. This patient had a clear N20 somatosensory evoked 

potential from which to establish the interval needed between median nerve stimulation 



and TMS. Using the latency of N20 as the ISI worked for the other participants – 

patients and normal subjects. There were two differences noted in her presentation that 

might explain the difference in results. She was much younger, and she had CRPS for 

only six months duration. Further studies including patients in early and late stages of 

the condition are needed to determine whether the pathophysiology of CRPS might 

change with disease duration and to see if there is a subset of patients in whom the 

direct connections are involved.  It also remains to be seen whether any breakdown in 

sensory motor interaction is a consequence of or contributing factor to pain in CRPS.  
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Legends  

 Figure 1.  Inhibition of EMG responses to TMS of motor cortex by single 

electrical stimuli to the median nerve at the wrist in a relaxed subject. 

This example shows the average of 24 responses EMG responses evoked in the thumb 

muscle, abductor pollicis brevis, by TMS over the motor cortex in a healthy subject (top 

line) and the average of 24 responses when conditioned by a median nerve stimulus 

given 18 ms earlier (bottom trace). The sharp spikes 1 and 2 are artifacts in the EMG at 

the time of median nerve stimulus and TMS respectively. Onset latency of the EMG 

response to TMS are 24.6 ms (i.e. after the artifact spike 2). The large peaks 

immediately after the median nerve stimulation (spike 1) on the bottom trace are the 

immediate motor response, which are visible as muscle twitch. 

 

 

 


