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Abstract

In recent times, Unmanned Aerial Systems (UAS) have been employed in an increasingly diverse range of 
applications.  Numerous UAS market forecasts portray a burgeoning future, with many applications in both the 
military and civilian domains.  Within the civilian realm, UAS are expected to be useful in performing a wide 
range of missions such as disaster monitoring (e.g. wildfires, earth-quakes, tsunamis and cyclones), search and 
support, and atmospheric observation.   

However, to realise these civilian applications, seamless operation of UAS within the National Air Space (NAS) 
will be required.  Increasing the levels of onboard autonomy will help to address this requirement.  
Additionally, increased autonomy also reduces the impact of onboard failures, potentially lower operational 
costs, and decrease operator workload.   

Numerous intelligent control architectures do exist in the literature for mobile robots, space based robots and 
for UAS.  These include: the WITAS project, Open Control Platform, Remote Agent and TRAC/ReACT.  
However, none of these are specifically targeted at providing the required support for a wide range of civilian 
UAS missions.  Operation of UAS in the NAS for civil applications require robust methods for dealing with 
emergency scenarios such as performing forced landings and collision avoidance to preserve the safety of 
people and property.   

This paper presents a new multi layered intelligent control architecture.  The highest layer provides deliberative 
reasoning and includes situational awareness and mission planning subsystems.  The middle layers deals with 
navigational aspects (such as path planning and manoeuvre generation).  Finally, there is a functional control 
layer which comprises sensor and actuator subsystems and provides reactive functionality to enable forced 
landings and collision avoidance.  Collision avoidance and forced landing technologies are currently under 
development at the Australian Research Centre for Aerospace Automation (ARCAA). 
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Introduction

In recent times, UAS have been employed in an 
increasingly diverse range of applications.  
Numerous UAS market forecasts portray a 
burgeoning future, including predictions of a 
USD10.6 billion market by 2013 [1].  Within the 
civilian realm, UAS are expected to be useful in 
performing a wide range of airborne missions such 
as disaster monitoring, search and support, and 
atmospheric observation [2].   

However, to realise these civilian applications, 
seamless operation of UAS within the NAS will be 
required; this is a difficult problem.  Most literature 
[3, 4] indicate that an equivalent level of safety 
(ELOS) to that of a human pilot will be one of the 
requirements for integration of UAS into the NAS.  
The ELOS requirement, indicates that the system 
must be capable of replicating some of the 
capabilities of a human pilot; this leads to the need 
for a higher degree of onboard autonomy.   

A higher degree of onboard autonomy includes the 
ability to respond automatically to hardware 
failures and respond to changes in the environment 
through onboard replanning and execution.  These 
tasks are routinely performed by human pilots; 
automating these tasks results in a more robust 
UAS that is not as susceptible to onboard failures.  
Furthermore, it reduces the human operator’s 
workload and therefore potentially allows a single 
human to operate multiple unmanned aircraft 
instead of many human operators controlling one 
aircraft.  As well, it allows the operator to focus on 
the mission rather than piloting aspects.  Such 
autonomy could potentially lead to a decrease in 
operational costs. 

However, taking the human pilot out of an aircraft 
removes much sensory and decision making 
capability.  To demonstrate that a UAS still has an 
equivalent level of safety to a human piloted 
aircraft, this capability must be automated.  For this 
to occur, UAS will need to possess greater 
“intelligence” than they do today, aspiring to 
acquire the traits of the human pilot.  The UAS will 
need to acquire the capacity to monitor the 
vehicle’s internal systems and the outside world, 
and to detect any changes that affect the mission 
safety and mission outcome.  With this 
information, the UAS must then make rational 
decisions and take the necessary actions to preserve 
safety and achieve mission objectives.  This 
capability can be implemented through the use of 
an intelligent control architecture.

Defining Intelligent Control  

Intelligent control is a multi disciplinary field 
(Figure 1) that involves the use of techniques from 
the fields of Artificial Intelligence and Control 
within the context of the Operational Requirements 
of the task.  Intelligent control systems are 
generally structured in a hierarchical manner.  High 
level (Complex and abstract) tasks are decomposed 
into a series of time critical low level tasks (data 
rich and precise). This obeys the so called 
“principle of increasing precision with decreasing 
intelligence” [5]. 

Figure 1 - Definition of Intelligent Control Discipline [6]

Intelligent Control and the Human Pilot 

Replicating the capabilities of a human pilot is not 
a trivial task.  For example, during a routine 
manned flight in civilian airspace, the pilot uses 
available data (e.g. terrain maps), sensor readings 
and instructions from air traffic management 
(ATM) to fly the aircraft safely to its destination.  
The pilot is capable of dealing with varying 
situations including and not limited to: turbulence, 
onboard failures (e.g. actuator, sensor, engine), 
performing a forced landing and avoiding potential 
collisions with terrain and other aircraft.  

To encapsulate the qualities of a human pilot 
within UAS, the intelligent control architecture 
must accurately model a pilot’s decision making 
process.  An example of aircraft pilots cognitive 
process [7] during routine flight is shown in Figure 
2.  The cognitive model is relatively complex but 
the reader should note that human pilots have their 
own sensors (e.g. vision, touch) and actuators (e.g. 
hands, feet).  Pilots use their own perception (e.g. 
recognition of obstacles) in conjunction with 
memory (prior experiences) to take appropriate 
actions in a broad range of scenarios. 
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The purpose of this paper is to combine the 
principles of the human cognitive process and the 
field of intelligent control to encapsulate the 
qualities of a human pilot.  In order to achieve this, 
a review of existing architectures is presented in 
the next section. 

Review of Intelligent Control 
Architectures

An overview of existing architectures in robotics, 
spacecraft and UAS is presented in this section to 
identify relevant architecture design methodologies 
and the benefits and shortcomings of different 
architectures.   

Robotics Architectures 

Traditionally, many architectures in the field of 
robotics have made use of the state-action model.  
The state action model is based on the idea that the 
system can be described as a set of states [8].  The 
agent (e.g. a ground based robot) transitions from 
one state to another through actions.  This is under 
the assumption that the environment remains 
constant unless acted upon by the robot.   

Bonasso [9] is the pioneer of a three tiered (3T) 
intelligent control architecture which has been 
successfully implemented on a variety of robotics 
platforms (Figure 3).  The deliberation layer 
evaluates goals, resources and timing constraints 
and outputs a partial list of ordered tasks called a 
Reactive Action Package (RAP).  The sequencing 
layer decomposes a selected RAP, into a sequence 
of skill sets (basic agent commands e.g. move left)
which are activated and deactivated to accomplish 
tasks.  This architecture does not provide any way 
of enforcing hard real time limits on these specific 
skill sets.  Furthermore, since all replanning 
(mission level and reactive) is performed by the 
deliberation layer, it is difficult to calculate the 
time required to generate a RAP as deliberative 
planners are generally symbolic in nature. This 
may not pose a problem for slow moving robots, 
but is a critical problem in UAS operations (e.g. 
reactive sense and avoid). 

Figure 3 - 3T Intelligent  Control Architecture [9] 

The ATLANTIS architecture by Gat [8] is very 
similar to Bonasso’s 3T architecture [9].  
ATLANTIS also includes planning and reactive 
skills to allow the robot to operate in dynamic 
environments.  The main difference is that 
ATLANTIS leaves the overall control of the 
system to the sequencing layer.  Deliberation is 
treated as an activity that is scheduled by the 
sequencing layer.  In situations where the 
computational urgency of the reactive component 
is greater (e.g. obstacle avoidance), the sequencer 
can temporarily suspend other ongoing deliberative 
activities.  However, ATLANTIS also lacks a 
method for enforcing real time constraints. 

Noreils [10] developed a three layer architecture 
with the aim of improving overall system 
reactivity.  The highest two layers (planning and 
control) correspond approximately to the top two 
layers of Bonasso’s 3T architecture [9] 
(Deliberation and Sequencing layers).  However, 
the Functional (reactive) layer of Noreils’ 
architecture includes sub-modules (Figure 4) 
which can independently trigger the appropriate 
actions (e.g. obstacle avoidance, target tracking) if 
the required command is not provided by higher 
layers in time.  As a result, the use of independent 
sub-modules increases the extensibility of the 
architecture.  Specialised modules are very 
beneficial for performing specific tasks which must 
meet real time deadlines.  However, using 
specialised modules also results in added 
complexity as adding additional functionality 
requires the addition of new sub-module 
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Figure 2 - Cognitive Model of an Aircraft Pilot’s Decision Making Process during flight 
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Arkin [11] presents an alternate architecture to the 
3T architecture [9], entitled AURA.  The 
deliberative layer here consists of a mission 
planner, navigator and pilot sub-system.  The 
navigator performs mission level path planning; the 
pilot then constructs a linear path through this free 
space by calling upon available sensors and motor 
schemas (motor schemas comprise of low level 
navigational tasks e.g.  trajectory tracking; similar 
to sub-modules found within Noreils’ Functional 
layer [10]).  The use of motor schemas limits the 
functionality of the agent to navigation only.  No 
mention has been made about the inclusion of 
onboard payload activity (e.g. onboard camera 
control) scheduling; an important component for 
civil UAS operations (e.g. surveillance, disaster 
monitoring). 

Brooks [12] presents another architecture known as 
Subsumption, which decomposes the control 
system problem into multiple modules (a module is 
an independent subsystem which is focused on 
completing a specific task), also referred to as 
behaviours.  The simplest module is implemented 
first, and subsequently more complex modules are 
then implemented above it, providing more 
functionality (Figure 5).  As more functionality is 
added to the robot, the system can quickly become 
very complicated.  Furthermore; this architecture 
lacks flexibility, where once a complete system is 
implemented, it becomes very difficult to change 
the system functionality as each module is very 
task specific.   

In addition, there are no provisions for fault 
detection and accommodation (FDA) in the 
robotics architectures reviewed here.  This may not 
an issue for operations in controlled environments, 
but is a critical issue for UAS operations over 
populated environments (e.g. urban terrain). 

Figure 5 – Brooks’ Subsumption Architecture [12] 

The architectures reviewed in this section represent 
the most common architectures used in robotics. A 
review of the architectures used in space based 
robotics is presented in the following section. 

Space Based Architectures 

A wide variety of architectures for onboard 
intelligence have been developed for space based 
systems.  The operation of spacecraft bears many 
similarities to that of UAS; both deal with a remote 
semi-autonomous system that operate in the natural 
environment and must therefore deal with dynamic 
changes and uncertainty.  The need for robustness 
in space-based applications is important, due to the 
significant financial cost of failure.  Furthermore, 
both are constrained by finite resources (such as 
fuel and battery energy) and must meet stringent 
real time computational requirements.  Both UAS 
and spacecraft are currently heavily reliant on 
human operation and receive commands for low 
level control (such as manoeuvre control) from 
manned ground stations.  Consequently, both fields 
can benefit greatly from increased onboard 
autonomy.  A brief overview of several key 
projects in space-based automation is presented 
here. 

Sensors 

Reason about Behaviour of Objects 

Plan Changes to the World 

Identify Objects 

Monitor Changes 

Build Maps 

Explore 

Wander 

Avoid Objects 

High Level 
(Abstract) 

Low Level 
(Precise) 

C
om

pl
ex

ity
 

Actuators 

Control Level
Supervisor

Executive
Diagnostics and Error 

Recovery

Functional Level

Geometric 
Modelling

Trajectory 
Planner

Topological 
Modelling

Topological 
Planner

Laser Localisation Vision 
Localisation

Laser 
Module

Perception 
Module

Vision 
Module

Pilot 
Module

Odometer 
Module

Sonar 
Module

Internal Status 
Monitor

Visual 
Tracking

Wall
Following

Obstacle 
Avoidance

Task 
Planner

Planning Level

Surveillance Manager

Control Level
Supervisor

Executive
Diagnostics and Error 

Recovery

Functional Level

Geometric 
Modelling

Trajectory 
Planner

Topological 
Modelling

Topological 
Planner

Laser Localisation Vision 
Localisation

Laser 
Module

Perception 
Module

Vision 
Module

Pilot 
Module

Odometer 
Module

Sonar 
Module

Internal Status 
Monitor

Visual 
Tracking

Wall
Following

Obstacle 
Avoidance

Task 
Planner

Planning Level

Surveillance Manager

Figure 4 - Noreil's Architecture [10]



An Intelligent Control Architecture for Unmanned Aerial Systems (UAS) in the National Airspace System (NAS)

2nd Australasian Unmanned Air Vehicle Systems Conference – 20-21 March 2007 

NASA’s Autonomous Science-craft Experiment 
(ASE) [13] demonstrated automated scheduling 
and planning routines on the EO-1 Satellite 
launched in late 2000.  This was the first time a 
space based mission was conducted autonomously 
using an intelligent control architecture (Figure 6) 
implemented onboard the spacecraft.  

The cornerstone of the ASE architecture is the 
Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) [13] module 
which employs a repair based technique to: create a 
plan (which resolves conflicts that violate 
spacecraft constraints); propose a set of resolutions 
for a chosen conflict using a genetic algorithm; and 
choose the desired solution using heuristics.  This 
process occurs iteratively until no more conflicts 
remain.  The Spacecraft Command Language 
(SCL) uses rule based checking to convert this high 
level plan into low level commands.  Therefore, 
even though the general concept is useful, the 
architecture itself is not focused on path planning 
and is instead concerned with scheduling of 
activities; which are critical aspects of UAS 
operations.1

Figure 6 - NASA ASE architecture [13] 

Another NASA based architecture is the 
Automated Planning/Scheduling Environment 
(ASPEN) [14] system which is essentially a 
software based application framework.  It is an 
object oriented framework based on C++ that can 
intelligently schedule activities onboard the 
spacecraft.  Activities are represented using state 
action models with the actual scheduling decisions 
performed using a parameter dependency network.  
This is similar in concept to a temporal constraint 
network [15] but extends its capabilities to include 
physical resources.  A temporal constraint network 
is a graph based method for scheduling where 
nodes represent instances in time and edges 

                                                
1
http://www.nasa.gov/mission_pages/hurricanes/m

ultimedia/index.html

represent time delays.  ASPEN has been tested in 
numerous scenarios including onboard the New 
Millennium Earth Observing One (NM EO-1) 
satellite and Navy UHF Follow On One (UFO-1) 
satellite.  Again, this architecture is targeted at the 
scheduling of activities rather than the path 
planning and execution problems, so important for 
UAS. 

NASA’s Remote Agent [16] is another intelligent 
control architecture designed for use onboard 
satellites.  It employs a three tiered hierarchy 
similar to that presented by Bonasso [9].  The 
remote agent contains a set of decision making and 
scheduling tools to synthesise responses to 
unexpected situations which may arise during the 
mission (Figure 7).  The Mission manager 
determines achievable goals both in the long term 
and current short term.  The Planner/Scheduler 
takes these goals and uses a heuristic guided 
backtracking search to create an execution schedule
of activities.  Like ASPEN, plans are generated 
using temporal constraint network related methods.  
The Smart Executive plays a similar role to the 
sequencing layer in Bonasso’s model and also 
makes use of Reactive Action Packages to 
implement these activities.  Additionally, there is a 
Mode Identification and Reconfiguration 
subsystem that provides dynamic information on 
the status of the spacecraft.  This provides an added 
layer of robustness as the execution of plans is 
dynamically modified by the perceived health of 
the spacecraft.  Unlike the ASE and ASPEN 
scheduling systems, this architecture is more 
comprehensive as it includes methods for handling 
changes in the spacecraft’s internal state as well as 
the external state.  However, again, it is more 
focused on activity scheduling rather than path 
planning.   

Figure 7 - NASA's Remote Agent Architecture [16] 

The architectures reviewed in this section represent 
the most common architectures used in spaced 
based operations. A review of the architectures 
used within UAS is presented in the following 
section. 
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UAS Architectures 

Intelligent control architectures implemented 
onboard UAS are generally extensions of 
architectures found in robotics.  However, many 
robotics architectures cannot be directly 
implemented in UAS. Firstly, UAS operate in 
highly dynamic environments where atmospheric 
changes can occur almost instantaneously; 
therefore, the agent’s response must meet real time 
constraints.  This is further compounded by the fact 
that aircraft typically travel at much greater 
velocities than ground based robots. Secondly, 
UAS dynamics can be highly non-linear and thus 
require careful consideration in the controller 
design and how this will interface to other 
subsystems onboard the aircraft.  Finally, failures 
onboard UAS can be catastrophic and result: in loss 
of the UAS; property damage; and in the worst 
case, loss of human life as these robots are exposed 
to the general public. 

A UAS can be thought of as a special type of robot 
that takes directives asking it to move from one 
location to another within a certain timeframe. 
Generally, there are two types of UAS: 
rotary/helicopter UAS that have the ability to brake 
and hover, and fixed wing UAS. Rotary UAS 
generally have shorter flight times while fixed wing 
UAS often have greater endurance but must always 
maintain some minimum (greater than stall) 
velocity. 

Various architectures have been proposed that are 
specifically targeted at UAS.  Schaefer [17] for 
example, presents a multi-layered UAS decision 
making architecture known as “Technologies for 
Reliable Autonomous Control (TRAC)”.  This is a 
variation of the 3T architecture pioneered by 
Bonasso [9] that has been augmented with another 
layer known as the Meta-Executive layer.  The 
meta-executive layer is used to coordinate and 
synchronise interactions between the deliberative 
(which is goal driven e.g. performing a set of tasks 
based on accomplishing a particular goal) and 
execution (which is event driven e.g. performing a 
set of tasks based on a schedule) layers. 

The TRAC architecture (Figure 8) revolves around 
a central data communications and storage module 
named the Active State Cache. The topmost, 
deliberative layer is called Closed Loop Execution 
and Recovery (CLEaR).  This is responsible for 
high level mission management and task 
sequencing.  Plans created by CLEaR are acted 
upon by the Autonomous Command Executive 
(ACE) which oversees the execution of mission 
plan elements.  Beacon-based Exception Analysis 
(BEAM) and Spacecraft Health Inference Engine 
(SHINE) are subsystems that monitor the health of 

the unmanned vehicle in real time.  The TRAC 
architecture is an extension of that developed in the 
NASA Remote Agent project.  Significant 
emphasis has been placed on the importance of low 
level fault detection and Identification (FDI) 
through the inclusion SHINE and BEAM 
subsystems.  The ACE subsystem can deal with 
some reactive situations, but this is limited to 
terrain avoidance and stability corrections during 
wind gusts [18]. There is no specific subsystem 
onboard to deal with reactive collision avoidance, a 
necessity for flight operations within the NAS. 

Figure 8 - TRAC System Structure [19] 

The NASA APEX software robotics Architecture 
[19] is also based on Bonasso’s 3T architecture [9].
This architecture has been successfully applied to a 
range of applications, notably that of NASA’s 
Autonomous Rotorcraft Project.  The upper two 
layers of APEX are collectively referred to as 
Reasoning and Control Services (RCS).  This 
architecture emphasises reusability through 
modularity and thus separates RCS procedures 
(which are the most reusable) from lower layer 
modules which are less reusable.  

Boskovic [20] presents a UAS architecture which is 
optimized for navigation, in similar fashion to the 
upper layers of AURA [11].  The layers within this 
architecture are defined with respect to specific 
UAS functionalities rather than generic functions in 
robotics.  The highest layer (Figure 9) in this 
hierarchal four layered model is the Decision 
Making layer.  This layer uses a priori information 
in conjunction with information obtained from 
sensors to make appropriate decisions to achieve 
mission goals.  The next level is the Path Planning 
Layer which generates mission waypoints.  If an 
obstacle is detected that was not known a priori, 
then the waypoints are recomputed online.  There is 
no communications subsystem to give the operator 
any decision making capability throughout the 
mission. Again, there is no specific subsystem to 
deal with reactive collision avoidance. 
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Figure 9 - Boskovic's UAS Decision Making Architecture [20]

The WITAS UAS project [21] presents yet another 
intelligent control architecture which has 
deliberative, reactive (like sequencing) and control 
layer components. It is best to view this as a 
reactive concentric architecture as the individual 
processes at the various levels of abstraction are 
executed concurrently at different latencies (high 
level path planner runs at higher latency than low 
level controllers). The deliberative layer here 
contains a collection of path and trajectory 
planners, predictors and recognition packagers.  A 
set of flight control modes such as hovering, 
dynamic path following and take-off and landing, 
are automated using sets of Task Procedures 
(similar to a RAP in 3T).  However, in order to 
switch between autonomous flight modes, it is 
necessary for the UAS to brake and hover before 
executing the next Task Procedure. Doing so 
decreases the operational efficiency the UAS; 
furthermore, this strategy is infeasible for fixed 
wing UAS. Finally, there is no explicit provision 
for handling collision avoidance. 

The open control platform (OCP) [22] is similar to 
APEX in that it too is a software robotics 
architecture based on Bonasso’s 3T architecture 
[9], which can potentially be applied to UAS 
operations. The top layer here comprises of 
supervisory tasks such as: data management; event 
detection and situation awareness.  The middle 
layer (reconfigurable control) performs mode 
transitioning stability control (e.g. use of an 
adaptive control algorithm during transition 
between approach and landing phases) whilst the 
lower level is dedicated to trajectory tracking (low 
level controller implantation).  All internal 
communications makes use of middleware 
(CORBA) with custom extensions implemented to 
ensure hard real time execution of commands.  This 
also allows the architecture to operate as a 
distributed network (similar to the WITAS Project) 
and different components can be written in 
different languages.  Similar to other UAS 

architectures, there are no specific subsystems to 
deal with external communications. 

Summary of Findings 

From the literature review, it was found that the 
vast majority of architectures were hierarchical.  
This approach was often used to separate slower, 
deliberative planning processes from faster, time-
critical hardware control systems [9].  Additionally, 
it allows for abstraction of complexity from one 
layer to the next; this is useful not only in reducing 
subsystem complexity, but also helps in software 
reusability [19].  The vast majority of architectures 
employed some variation of Bonasso’s 3T 
hierarchy [9] which had separate layers for 
deliberation, sequencing of actions and control 
execution. 

Ideally, a human operator should only need to 
interact with the high level deliberative layer.  In 
this scenario, the operator performs high level tasks 
such as specifying mission goals and the schedule 
associated with these goals.  In these instances, 
there is a need for a communications subsystem 
that provides the link between the remote agent and 
the ground station.  Such a communications 
module is incorporated into the ASE, APEX and 
Remote agent architectures [13, 16, 19]. 

It was found that in many UAS and spacecraft 
based architectures that an important capability was 
a method for monitoring the agent’s internal state 
(i.e. the health of the vehicle) and its impact on 
vehicle performance.  This was implemented as a 
form of Fault Detection and Accommodation 
(FDA) in TRAC, Remote Agent and OCP and in 
Boskovic’s architecture [16, 17, 20, 22]. 

At the same time, it is important to have accurate 
knowledge of the external environment in which 
the agent is situated.  It was found that even though 
all architectures made provisions for a sensing 
mechanism, very few explicitly explored the 
computational complexities involved in processing 
sensor information for use in higher level planning 
algorithms.  Obviously, very little processing is 
required for low level control systems as raw data, 
such as position and velocity can feed directly into 
an actuator control module.  However, avoiding 
dynamic obstacles when generating manoeuvres 
requires predictions of the current and future state 
of the dynamic obstacle.  Therefore, analysis of 
sensor data is required to transform it into a form 
usable by the higher level algorithms through 
sensor fusion.  There is currently no UAS 
architecture which explicitly separates the sensor 
data requirements between lower (raw sensor data) 
and higher layers (accurate state information 
calculated through sensor fusion methods). 
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As the majority of UAS operations require 
positioning the aircraft in the right place at the right 
time, it can be seen that there is a need for a robust 
architecture that provides this path planning and 
execution functionality.  It was found that the 
majority of architectures focus on only the mission 
execution component of UAS operations and do 
not explicitly provide for a method of ensuring the 
safety of the aircraft and the minimisation of risk to 
other aircraft and people on the ground.  There has 
been some work in the areas of fault tolerance and 
reliability, but risk mitigation (actions to reduce the 
impact of a risk) has not fully been addressed 
(Figure 10). 

Furthermore, the vast majority of architectures do 
not provide a complete end to end architecture from 
goal deliberation to planning to action execution 
(with the exception of Boskovic [20]). However, 
Boskovic’s architecture does not address the 
problem of managing risks in during UAS 
operations. There is no communications subsystem 
to give the operator any decision making capability 
throughout the mission. Also, there is no specific 
subsystem to deal with collision avoidance. A 
proposed architecture is presented in the following 
section addressing these critical issues. 

Proposed Architecture

We propose an architecture for civil UAS 
operations based on Boskovic’s [20] architecture.  
This architecture not only accommodates path 
planning and FDA, but also includes provisions for 
intelligent execution of activities not explicitly 
involved in path planning.  As well, it also 
encompasses modules dedicated to ensuring the 
safety of the aircraft.  At this point in time, all 
aspects of high level decision making however, are 

left to the responsibility of the Human Operator 
(e.g. choosing which goals to pursue).  In terms of 
efficiency, this architecture provides the potential 
to reverse the current Civilian UAS trend from 
many operators monitoring a single UAS, to a 
single operator monitoring multiple UAS. 

To allow the human operator interaction with the 
onboard high level deliberative layer, a 
communications subsystem has been included to 
allow real time interaction between a human 
operator and UAS activities (e.g. uploading new 
mission goals) during the flight operation.   

In the previous section, it was concluded that, none 
of the current UAS architectures explicitly separate 
the sensor data requirements between lower and 
higher layers.  In the proposed architecture, raw 
sensor data is forwarded to lower layers (which 
have real time requirements) in an effort to 
minimise any lag which may occur with processed 
data.  Raw sensor data is also forwarded to a sensor 
fusion subsystem which generates an accurate 
approximation of the aircraft state.  This data is 
stored within the Integrated Shared State Memory 
(ISSM – similar to Schaefer’s Active State Cache 
[17])  which can be accessed by the relevant layer.

To incorporate risk mitigation strategies within the 
proposed architecture, specific modules (similar to 
Noreil’s Architecture [10]) to deal with sense and 
avoid and forced landing situations were used.  The 
sense and avoid module performs detection of 
obstacles within the immediate vicinity of the 
aircraft. This data is used by the manoeuvre 
generation layer to perform the appropriate 
collision avoidance manoeuvres.  Likewise, the 
forced landing site classifier module is used to 
detect potential landing sites during critical 
onboard failures. 

Figure 10 - Summary of the functional requirements for an architecture during civilian UAS operations 
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Currently, Boskovic’s architecture does not include 
any functionality for scheduling and control of 
payloads (e.g. camera, lights) as it is focussed 
purely on the navigational aspects of UAS 
operations.  The proposed architecture includes an 
activity scheduler and controller.  The activity 
scheduler creates a schedule of payload activities 
by synchronising start and finish times using 
mission time and aircraft state.  The activity 
controller activates and deactivates the relevant 
payload.  This feature allows the UAV to perform a 
range of missions including and not limited to 
surveillance, disaster monitoring and search and 
support.  A detailed representation of the Proposed 
UAS Architecture is presented in Figure 11
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Figure 11 - Proposed Civilian UAS Architecture

Virtual Operator 

The Virtual Operator (VO) is concerned with 
providing mission goals to the lower layers and 
simultaneously monitoring the state of the UAS in 
assessing whether these goals have been achieved 
or not. When communicating with the mission 
flight planner, the VO provides a set of prioritised 
goals which may be defined in terms of spatial 
position, velocity, aircraft orientation and time. The 
mission flight planner calculates a path based on 
these goals and returns the costs (in terms of fuel 
and time for example). With this information, the 
VO can then make a decision as to whether to 
continue the mission using the current plan or to 
reject this plan and create a new one by changing 
one or more mission goals. A similar process is 
necessary for interaction with the Activity 
Scheduler. When communicating with the Activity 
Scheduler, the goals the VO provides are instead 
activities that need to be performed when the UAS 
reaches certain states. For example, an activity 
could be to turn on the camera and begin capturing 
images when the aircraft is at a specified location.   
In the case that the VO is the human operator, the 
operator has the full authority (and accountability) 

to choose the order of operations. Once the 
operator has decided on an operations schedule, the 
schedule can be uploaded to the unmanned aircraft 
via the communications channel and stored in 
onboard memory.  The VO has the authority to 
update the operations schedule and the maps used 
for planning (e.g. terrain maps) throughout the 
mission.  In the absence of certifiable decision 
making techniques that can meet the requirements 
of such a VO, it is envisaged that a semi-
autonomous VO module, coupled to a Human 
Machine Interface (HMI) and human operator 
would constitute the VO shown in this architecture.   

Mission Flight Planner 

The Mission Flight Planner is in essence a multi-
objective path planner that evaluates multiple 
criteria in determining an optimal path for the 
aircraft.  It receives goals, which may comprise 
multiple prioritised waypoints from the VO.  As 
well, it obtains information about the environment 
through multi-resolution maps stored in the 
memory module.  These maps could include terrain 
data, risk data (risk associated with overflying 
certain areas) and predictions of dynamic obstacles 
(such as other aircraft).   

Additionally, the planner also obtains from this 
dynamic memory the current aircraft position, fuel 
load and other related constraints (such as the need 
to maintain within line of sight of the operator).  
The VO is informed of the costs involved in 
reaching each waypoint and of any unreachable 
waypoints.  At the same time, the mission flight 
planner passes to the Manoeuvre Generation 
subsystem a path which effectively consists of a 
series of intermediate goals (or waypoints).  When 
there are changes to the environment (which is 
reflected in the data obtained from dynamic 
memory), or significant deviation of the aircraft 
from the planned route as reported by the 
Manoeuvre Generation subsystem, the mission 
flight planner replans a new flight path.  If any of 
the intermediate goals are unachievable, the 
Manoeuvre Generation subsystem modifies the 
maps in memory and marks these unachievable 
regions as no-go. 

Manoeuvre Generator  

The Manoeuvre Generation Layer generates a 
feasible local path between a set of intermediate 
waypoints given by the Flight Mission Planner.  A 
feasible path is one that is collision free and which 
satisfies aircraft dynamic and kinematic 
constraints.   

 Basic Manoeuvres (e.g. flying straight and level, 
pitching, rolling and yawing motion) can be 
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combined together to create more complex 
manoeuvres.  Representing aircraft motion as a set 
of manoeuvres is essential for flight in civilian 
airspace.  For example, consider a scenario 
whereby the UAS is instructed to reach a higher 
altitude to avoid other aircraft, but is not physically 
able to do so due to the constraints of restricted 
airspace and the limitations of the aircraft’s 
manoeuvrability (insufficient rate of climb). A 
candidate solution in this situation is to perform a 
spiral manoeuvre. 

A sense and detect capability within UAS is 
essential for flight in segregated airspace.  The 
sense and detect subsystem uses onboard sensors 
(e.g. vision) for detection of obstacles (static and 
moving).  The manoeuvre generation algorithm 
then uses the data provided by the sense and detect 
unit to generate collision free path segments, and to 
perform emergency collision avoidance 
manoeuvres if necessary.  Carnie [23] is currently 
investigating the use of machine vision to provide 
sense and detect capabilities onboard UAS at the 
Australian Research Centre for Aerospace 
Automation (ARCAA). 
The forced landing classifier is used to detect 
potential landing sites during flight, in case the 
UAS needs to perform an emergency landing due 
to onboard failures which cannot be accommodated 
(e.g. engine failure).  This information is input to 
the Manoeuvre Generation algorithm, which 
provides the adaptive controller with a suitable 
landing trajectory for tracking.  Fitzgerald [24] has 
conducted research into detection and classification 
of potential forced landing sites at ARCAA. 

Adaptive Controller

The low level controllers are designed to ensure 
aircraft stability at all times.  A broad range of 
techniques are available to create the desired 
response including: Proportional, Integral and 
Differential (PID); State Space; Fuzzy; Optimal; to 
mention a few [6]. 

Small scaled UAS generally, do not have the 
available onboard payload capacity to include 
sensor redundancy.  If sensor failure occurs without 
detection, this can lead to critical failure as the 
stability controllers will receive incorrect or no 
state information.  Critical Failure can also occur if 
an actuator becomes inoperable. 

Fault Detection and Accommodation algorithms 
(FDA) are used to detect if a particular sensor is 
providing erroneous data, and allowing 
continuation of operations by disable the erroneous
sensors operation.  This however leads to reduction 
in aircraft performance, as fewer sensors are now 
available to provide an estimation of the UAS state.  

This information is conveyed to the Dynamic 
Constraints Subsystem for recalculation of new 
UAS dynamic and kinematic constraints.  Cork 
[23] is currently investigating FDA techniques to 
reduce the effects of erroneous sensors at ARCAA. 

Concluding Remarks

It is apparent that the operation of UAS in civilian 
applications requires an equivalent level of safety 
to that of manned aircraft.  Achieving this level of 
safety requires, in addition to system robustness, an 
intelligent system that is capable of both tactical 
and strategic planning to minimise the risk 
involved when undertaking a mission.  At the same 
time, the system must also be able to execute 
emergency procedures in the event of hardware 
failures.   

Through an investigation of existing architectures 
in unmanned aircraft, space based systems and 
robotics, it was found that few offered a framework 
that catered for the path planning and manoeuvre 
generation aspects of onboard intelligence in light 
of the needs of sensor integration.  Many have 
considered mission scheduling and fault detection 
and accommodation, but few have integrated this 
with the aforementioned path planning and 
execution elements with a focus on emergency 
scenarios; including and not limited to collision 
avoidance and forced landings.  Furthermore, even 
fewer have considered the multiple criteria, in 
terms of airspace regulations, mission objectives 
and mission safety that must be considered in civil 
UAS operations. 

To address these deficiencies, an intelligent control 
architecture for UAS was devised that addresses 
the requirements of intelligent planning, execution 
and handling of emergency scenarios. This 
architecture encompasses many subsystems that are 
currently being developed at ARCAA.  It is 
envisaged that the integration of the various 
components in this architecture would help 
increase the level of intelligence onboard 
unmanned aircraft in terms of mission efficiency 
and increased safety.  This is not only paramount to 
the acceptance of UAS in the NAS, but will also 
allow for decreased operator workload and thus 
reduce operational cost.   
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