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Co-evolving Memetic Algorithms: A review and
progress report

J.E. Smith

Abstract— Co-Evolving Memetic Algorithms are a family of
meta-heuristic search algorithms in which a rule-based rep-
resentation of local search is co-adapted alongside candidate
solutions within a hybrid evolutionary system. Simple versions of
these systems have been shown to outperform other non-adaptive
memetic and evolutionary algorithms on a range of problems

This paper presents a rationale for such systems and places
them in the context of other recent work on Adaptive Memetic
Algorithms. It then proposes a general structure within which a
population of local search algorithms can be evolved in tandem
with the solutions to which they are applied. Previous research
started with a simple self-adaptive system before moving on
to more complex models. Results showed that the algorithm
was able to discover and exploit certain forms of structure
and regularities within the problems. This “meta-learning” of
problem features provided a means of creating highly scalable
algorithms. This work is briefly reviewed to highlight some of
the important findings and behaviours exhibited. Based on this
analysis new results are then presented from systems with more
flexible representations which again show significant improve-
ments. Finally the current state of, and future directions for,
research in this area is discussed.

I. I NTRODUCTION

T HE performance benefits which can be achieved by
hybridising Evolutionary Algorithms (EAs) with Local

Search (LS) operators, so-calledMemetic Algorithms(MAs),
have now been well documented across a wide range of
problem domains such as optimisation of combinatorial, non-
stationary and multi-objective problems (see [1] for a review,
[2] for a collection of recent algorithmic and theoretical work
and [3] for a comprehensive bibliography). Commonly in these
algorithms, a Local Search improvement step is performed
on each of the products of the generating (recombination and
mutation) operators, prior to selection for the next population.
There are of course many variants on this theme, for example
one or more of the generating operators may be null, or the
order in which the operators are applied may vary, but these
can easily be fitted within a general syntactic framework [1].

In recent years it has been increasingly recognised that
the particular choice of Local Search operator will have a
major impact on the efficacy of the hybridisation. Of particular
importance is the choice of move operator, which defines the
neighbourhood function, and so governs the way in which new
solutions are generated and tested. Points which are locally
optimal with respect to one neighbourhood structure may not
be with respect to another (unless of course they are globally
optimal). It therefore follows that even if a population only
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contains local optima, then changing the LS move operator
(neighbourhood) may provide a means of progression in
addition to recombination and mutation. This observation has
led a number of authors to investigate and propose mechanisms
for choosing between a set of predefined local search operators
which may be used during a particular run of a meta-heuristic
such as an EA (see Section II for a further discussion).

Previous papers have reported initial results from a system
within which the definitions of Local Search operators applied
within the MA may be changed during the course of optimi-
sation. This was named the COevolving Memetic Algorithm
(COMA). It maintains two populations: one of genes encoding
for candidate solutions, and one of memes encoding for Local
Search operators to be used within the MA. This paper places
the COMA framework in the context of algorithmic advances
by other authors, and then reviews the progression of research
and results from the initial simple systems [4]–[6] to the more
complex, truly co-evolutionary systems tested in [7].

In those investigations the emphasis had been placed on
evolving the rule-based neighbourhood definition but leaving
much of the rest of Local Search algorithm fixed. This restric-
tion is then removed. Results and analysis are presented from
a benchmark testing of the developed systems on a commonly
used NP-Hard problems: MAX-3SAT. The rest of this paper
proceeds as follows:

• Section II draws some parallels between this work and
related work in different fields, in order to place this work
within the more general context of studies into adaptation,
development and learning.

• Section III describes the proposed approach, and how it
can be used to represent a range of algorithms.

• Section IV summarises the results and analysis of a set
of preliminary experiments using a simple self-adaptive
model. These investigate whether, and if so how, the use
of adaptive variable lengths rules benefits optimisation.

• Section V reviews experiments considering more general
co-evolutionary forms of the model. It examines the
effect of different pivot and pairing strategies and noise
tolerance within credit assignment, and identifies two dif-
ferent modes of behaviour that benefit search: discovering
and exploiting of regularities in the search space and
continuously changing neighbourhood definitions.

• Section VI details new experiments in which more of
the local search definitions are made open to adaptation.
The effects of these changes are assessed in a benchmark
comparison on the classic Max-3SAT problem.

• Finally, Section VII discusses the implications of these
results, draws conclusions and suggests future work.
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II. RELATED WORK

The COMA system can be related to a number of different
branches of research, all of which offer different perspectives
and means of analysing its behaviour. These range from
Multi-Memetic Algorithms and the Self-Adaptation of search
strategies, through co-evolutionary, learning, and developmen-
tal systems, to the evolution of rules in Learning Classifier
Systems. The more important are briefly outlined below.

A. Memetic Algorithms with Multiple Local Search Operators

Although the author is not aware of other algorithms in
which the LS operators used by an MA are adapted in this
fashion, there are other recent examples of the use of multiple
LS operators within evolutionary systems. Ong et al. [8]
present an excellent recent review of work in the field of what
they term “Adaptive Memetic Algorithms”. This encompasses
the works of Krasnogor in “Multi-Memetic Algorithms” [9]–
[12], Ong and Keane (who term their approach “meta-
lamarkian memetic algorithms”) [13], and Hyper- Heuristics
[14]–[17]. In an interesting extension to the use of a set of fixed
strategies, Krasnogor and Gustafson have recently proposed
a grammar for “Self-Generating MAs” which specifies, for
instance, when local search takes place [18], [19]. Essentially
all of these approaches maintain a pool of local search
operators available to be used by the algorithm, and at each
decision point make a choice of which to apply. There is
a clear analogy between these algorithms and the Variable
Neighbourhood Search algorithm [20], where a heuristic is
used to control the order of application of a set of predefined
local searchers to a single improving solution. The difference
here lies in the population based nature of MAs, so that not
only do we have multiple local searchers but also multiple
candidate solutions, which makes the task of deciding which
LS operator to apply to any given one more complex.

The classification of Ong et al. uses the terminology devel-
oped elsewhere to describe adaptation of operators and para-
meters in Evolutionary Algorithms [21]–[23]. They categorise
algorithms according to the way that these decisions are made.
One way is to use a fixed strategy, this is termed “static”.
another is to use feedback of which operators have provided
the best improvement recently. This is termed Adaptive, and
is further subdivided into external, local (to a deme or region
of search space), and global (to the population) according
to the nature of the knowledge considered. Finally they note
that LS operators may be linked to candidate solutions (Self-
Adaptive). In this terminology, the COMA algorithm may be
local-Adaptive or Self-Adaptive.

B. Self-Adaptation and Co-Evolution

As noted above, the COMA algorithm maintains two popu-
lations – one of genes and one of memes. If the populations are
of the same size and selection of the two is tightly coupled then
this instantiation of the COMA framework can be considered
as a type of Self Adaptation. This also will be referred
to as “linked” below. The use of the intrinsic evolutionary
processes to adapt mutation step sizes has long been used

in Evolution Strategies [24], and Evolutionary Programming
[25]. Similar approaches have been used to self-adapt mutation
probabilities [26], [27] and recombination operators [28] in
genetic algorithms as well as complex generating operators
which combined both mutation and recombination [29].

If selection is performed separately for the two populations
then COMA is a co-operative co-evolutionary system, where
the fitness of the members of the meme population is assigned
as some function of the relative improvement they cause in the
“solution” population. Paredis has examined the co-evolution
of solutions and their representations [30]. Potter and DeJong
have also used co-operative co-evolution of partial solutions
in situations where an obvious problem decomposition was
available [31]. Both reported good results. Bull [32] conducted
a series of more general studies on co-operative co-evolution
using Kauffman’s static NKC model [33]. In [34] he examined
the evolution of linkage flags in co-evolving “symbiotic”
systems and showed that the strategies which emerge depend
heavily on the extent to which the two populations affect
each others fitness landscape, with linkage preferred in highly
interdependent situations. He also examined the effect of dif-
ferent pairing strategies [35], with mixed results, although the
NKC systems he investigated used fixed interaction patterns.
Parker and Blumenthal’s “Punctuated Anytime Learning with
samples” [36] is a recent approach to this problem of deciding
how to pair members of different populations using periodic
sampling to estimate fitness

There has also been a large body of research into com-
petitive co-evolution (see [37] for an overview). Here the
fitnesses assigned to the two populations are directly related to
how well individuals perform “against” the other population -
what has been termed “predator-prey” interactions. Luke and
Spector [38] have proposed a general framework within which
populations can be co-evolved under different pressures of
competition and co-operation. This uses speciation both to aid
both the preservation of diversity and as a way of tackling the
credit assignment problem.

In all the co-operative and competitive co-evolutionary work
cited above, the different populations only affect each other’s
perceived fitness, unlike the COMA framework where the
meme population can directly affect the genotypes within
the solution population. This raises the question of whether
the modifications arising from Local Search should be writ-
ten back into the genotype (Lamarckian Learning) or not
(Baldwinian Learning). Although the pseudo-code and the
discussion below, assumes Lamarckian learning, this is not
a prerequisite of the COMA framework. However, even if a
Baldwinian approach was used, COMA differs from the co-
evolutionary systems above because there is a selection phase
within the local search, so that if all of the neighbours of
a point defined by the meme’s rule are of inferior fitness,
then the point is retained unchanged within the population.
If one was to discard this criterion and simply apply the rule
(possibly iteratively), the system could be viewed as a type of
“developmental learning” akin to the studies in Genetic Code
e.g. [39] and the “Developmental Genetic Programming” of
Keller and Banzhaf [40], [41]
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III. A R ULE-BASED MODEL FOR THEADAPTATION OF

MOVE OPERATORS

A. Specifying Local Search

The Local Search step can be illustrated by the pseudo-
code in the first box, and has three principal components.
The first is the choice of pivot rule, which can beSteepest
Ascent or Greedy Ascent. In the former the “termination
condition” is that the entire neighbourhoodn(i) has been
searched, (counter =|n(i) |), whereas the latter stops as soon
as an improvement is found; i.e. the termination condition is
(counter =| n(i) |) ∨ (best 6= i). Note that some authors
resort to only considering a randomly drawn sample of size
N <<| n(i) | if the neighbourhood is too large to search.

The second component is the “depth” of the Local Search,
i.e. the “iteration condition”. This lies in the continuum be-
tween only one improving step being applied (iterations = 1)
to the search continuing to local optimality ((counter =|
n(i) |) ∧ (best = i)). Considerable attention has been paid to
studying the effect of changing this parameter within MAs e.g.
[42]. Like the choice of pivot rules it has been shown to have
an effect on the performance of the Local Search algorithm,
both in terms of time taken and of quality of solution found.

Local Search(i) :
Begin

/* given a starting solution i */
/* and a neighbourhood function n */
set best = i;
set iterations = 0;
Repeat Until ( iteration condition is satisfied )
Do

set counter = 0;
Repeat Until ( termination condition satisfied )
Do

generate the next neighbour j ∈ n(i);
counter = counter +1;
If ( f(j) is better than f(best)) Then

set best = j;
Fi

Od
set i = best;
set iterations = iterations +1;

Od
End.

The third, and primary factor that affects the behaviour of
the LS is the choice of neighbourhood generating function.
This can be thought of as defining a set of pointsn(i) that
can be reached by the application of some move operator to
the pointi. One representation is as a graphG = (v, e) where
the set of verticesv are the points in the search space, and
the edges relate to applications of the move operator i.eeij ∈
G ⇐⇒ j ∈ n(i). The provision of a scalar fitness value,
f , defined over the search space means that we can consider
the graphs defined by different move operators as “fitness
landscapes” [43]. Merz and Freisleben [44] present a number
of statistical measures which can be used to characterise fitness
landscapes, and have been proposed as potential measures of
problem difficulty. They show that the choice of move operator
can have a dramatic effect on the efficiency and effectiveness
of the Local Search, and hence of the resultant MA.

B. Adapting the Specification of Local Search

The aim of this work is to provide a means whereby the
definition of the LS operator used within a MA can be varied
over time, and then to examine whether evolutionary processes
can be used to control that variation so that a beneficial
adaptation takes place. Accomplishing this aim requires the
provision of five major components, namely:

• A means of representing a LS operator in a form that can
be processed by an evolutionary algorithm, i.e. a meme.

• A means for initialising a population of memes, and a set
of variation operators to be applied to them.

• A means of assigning fitness to the meme population
• A choice of population structures and sizes, selection and

replacement methods for managing the meme population.
• A set of experiments, problems and measurements to

permit evaluation and analysis of the system.

The representation chosen for the memes is a tuple
<Iterate Condition, TerminateCondition, Pairing, Move>.
Once this representation is chosen, this leads naturally to
the choice of variation operators to act on that representation
within an evolutionary setting, and can readily encompass all
of the other requirements identified above. The pseudo-code in
Figure 1 illustrates the algorithm which was used to undertake
the research reported in this paper. Note that although this
pseudo-code assumes equal sized populations and synchronous
evolution, this need not in general be the case.

The two conditions in the tuple have been described above,
and can be easily mapped onto an integer or cardinal represen-
tation as desired, and manipulated by standard genetic opera-
tors. The elementPairing indicates how the choice of which
members of the two populations to combine for evaluation is
managed. The purpose of this element is to allow the system
to be varied between two extremes. One is a fully unlinked
system, in which although still interacting the two populations
evolve separately. The other is a fully linked, self-adapting
system. Here the memes are effectively extra genetic material
inherited and varied along with the problem representation.
As is illustrated in theIf..Elsesection of the pseudo-code, this
range of behaviours can be achieved by encoding the pairing as
a value taken from the set{Linked, Random, FitnessBased}.
This value governs the choice of parents of the meme to be
used to perform Local Search on a given offspring candidate
solution.

The representation chosen for the move operators was as
condition:actionpairs, which specify a pattern to be looked
for in the problem representation, and a different pattern it
should be changed to. Although this representation at first
appears very simple, it has the potential to represent highly
complex moves via the use of symbols to denote not only
single/multiple wild-card characters (in a manner similar to
that used for regular expressions in Unix) but also the specifi-
cations of repetitions and iterations. Further, permitting the use
of different length patterns in thecondition and action parts
of the rule gives scope forcut and splice operators working
on variable length solutions.
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COevolving Memetic Algorithm for Binary Coded Problems :
Begin

/* given a starting population P of µ solutions and a same-sized population M of memes */
initialise P with randomly selected binary genes;
initialise M with randomly selected memes;
set generations = 0;
set evaluations = 0;
Repeat Until ( run termination condition is satisfied )
Do

/* Create µ offspring in each population */
For child := 1 To child = µ Do

/* Create offspring by selection, recombination and mutation, storing the parents id’s */
set FirstParent[child] = Select One Parent(P);
set SecondParent[child] = Select One Parent(P);
set Offspring[child] = Recombine(FirstParent[child],SecondParent[child]);
Mutate(Offspring[child]);

/* Select parents of the new meme */
set Pairing = Get Pairing(M,child);
If (Pairing = Linked) Then

set FirstMemeParent[child] = FirstParent[child];
set SecondMemeParent[child] = SecondParent[child];

Fi
Else If (Pairing = Fitness Based) Then

set FirstMemeParent[child] = Select One Parent(M);
set SecondMemeParent[child] = Select One Parent(M);

Fi
Else

set FirstMemeParent[child] = RandInt(1, µ);
set SecondMemeParent[child] = RandInt(1, µ);

Esle

/* Create new meme from these parents using recombination and mutation */
set NewMemes[child] = Recombine(FirstMemeParent[child],SecondMemeParent[child]);
Mutate(NewMemesffspring[child]);

/* Finally apply local search to Offspring Using Memes */
set original fitness = Get Fitness(Offspring[child]);
/* Applying the rule part of a meme to an offspring produces a set of neighbours */
set Neighbours = Apply Rule To Offspring(Offspring[child],NewMemes[child]);
Evaluate Fitness(Neighbours);
/* Pivot rule of meme determines choice of neighbour */
set Offspring[child] = Apply Pivot Rule To Neighbours(Neighbours,NewMemes[child]);
/* Finally update meme fitness according to increase in solution fitness */
set ∆fitness = Get Fitness(Offspring[child]) - original fitness;
Update MemeFitness(NewMemes[child], ∆fitness);
set child = child +1;

Od
set evaluations = evaluations +1 + |Neighbours |;
set P = Offspring;
set M = NewMemes;

Od
End.

Fig. 1. Pseudo-Code Definition of COMA algorithm

IV. I NITIAL PROOF OFCONCEPT: ANALYSIS OF

DIFFERENTFIXED AND VARYING SIZED RULES

A. Initial Implementation

Initial experiments were restricted to considering a simple
system, and examining its behaviour on a well understood
set of test problems. They were designed to find out whether
the system was able to evolve useful rules when the rule
length naturally matched the structure of the problem, and
then further to that whether the system was able to adapt
to an appropriate rule length for different problems. For this
reason it was decided to avoid the various issues concerning
population management, pairing strategies and credit assign-

ment, and instead work with a single improvement step, a
fully linked self-adaptive system and a greedy pivot rule. These
choices were coded into the chromosomes at initialisation, and
variation operators were not used on them.

The initial systems only used rules where theconditionand
action patterns were of equal length and were composed of
values taken from the set of permissible allele values of the
problem representation, augmented by a “don’t care” symbol
(#) which is allowed to appear in thecondition part of the
rule but not theaction. The neighbourhood of a pointi then
consists ofi itself, plus all those points where the substring
denoted byconditionappears in the representation ofi and is
replaced by theaction.
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To give an example, a rule1#0 → 111 matches the binary
string 1100111000 in the first, second, sixth and seventh
positions, and the neighbourhood is the set{1100111000,
1110111000, 11111111000, 1100111100, 1100111110}. Note
that the string is not treated as toroidal, and the neighbours are
evaluated in a random order so as not to introduce positional
bias into the local search when greedy ascent is used.

In practise, each rule was augmented by a valuerule length
specifying the number of positions in the pattern string to
consider. This permitted not only the examination of the effects
of different fixed rule sizes, but also the ability to adapt via the
action of mutation operators on this value. This representation
for the rules allows the use of “standard” genetic operators
(uniform/1 point crossover, point mutation) to vary this part
of the memes’ chromosomes.

B. The Test Suite and Experimental set-up

In order to examine the behaviour of the system it was used
with a set of variants of test functions whose properties are
well known. The first of these was a sixty four bit problem
composed of 16 subproblems of Deb’s 4-bit fully deceptive
function [45]. The fitness of each subproblemi is given by its
unitationu(i), that is the number of bits set to “one”:

f(i) =
{

0.6− 0.2 · u(i) : u(i) < 4
1 : u(i) = 4 (1)

In addition to this “concatenated” version (4-Trap), a second
“distributed”version (Dist-Trap) was used in which the sub-
problems were interleaved i.e. sub-problemi was composed
of the genesi, i + 16, i + 32, i + 48. This separation ensured
that in a single application even the longest rules allowed in
these experiments would be unable to alter more than one
element in any of the sub-functions. A third variant of this
problem (Shifted-Trap) was designed to be more “difficult”
than the first for the COMA algorithm, by making patterns
which were optimal in one sub-problem, sub-optimal in all
others. Since unitation is simply the Hamming distance from
the all-zeroes string, each sub-problem can be translated by
replacingu(i) with the Hamming distance from an arbitrary 4
bit string. There were 16 sub-problems so the binary coding of
each ones’ index was used as basis for its fitness calculation.

A generational genetic algorithm, with deterministic binary
tournament selection for parents and no elitism was used.
One Point Crossover (with probability 0.7) and bit-flipping
mutation (with a bitwise probability of 0.01) were used on
the problem representation. These choices were taken as
“standard” from the literature, and no attempt was made to
tune them to the particular problems at hand. Mutation was
applied to the rules with a probability of 0.0625 of selecting
a new allele value in each locus (the inverse of the maximum
rule length allowed to the adaptive version).

For each problem, 20 runs were made for each population
size{100, 250, 500}. Each run was continued until the global
optimum was reached, subject to a maximum of 1 million
evaluations. Two performance metrics were considered; the
Success Rate (SR) which is the number of runs finding the
global optimum, and the Average Evaluations to Success

(AES) which is the mean time taken to locate the global
optimum on successful runs. The reason for the large cut-off
value was to try and avoid skewing results as can happen with
an arbitrarily chosen lower cut-off, rather than to be indicative
of the amount of time available for a “real world” problem.
Note that since one iteration of a local search may involve
several evaluations, this allows more generations to the GA,
i.e. algorithms are compared strictly on the basis of the number
of calls to the evaluation function.

The algorithms used (and the abbreviations which will be
used to refer to them hereafter) are as follows:
• A “vanilla” GA with no Local Search (GA).
• A simple MA using a bit-flipping neighbourhood, with

one iteration of greedy ascent (SMA).
• A version of COMA using a random rule in each appli-

cation, i.e. with the learning disabled (RandCOMA).
• Variants of COMA using rules of fixed lengths in the

range [1,10] (1-COMA,. . .,10-COMA),
• A adaptive version of COMA (A-COMA), in which the

rule lengths are randomly initialised in the range [1,16].
During mutation, a value of +/- 1 is randomly added with
probability 0.0625, subject to staying in range.

C. Results on “4-Trap” function

The results obtained showed that the GA, SMA, and 1-
COMA algorithms frequently failed to find the optimum unlike
the other COMA variants, which always did. On these prob-
lems there was a clear benefit to using adaptive neighbourhood
local search, although since the RandCOMA algorithm found
the optimum on every run, the Success Rate metric did not
provide conclusive evidence that learning was taking place.

Considering the AES, the GA, SMA and 1-COMA algo-
rithms took longer to locate the optimum, particularly for the
smaller population sizes. For all population sizes there was
greater variance in the performance of these three algorithms.
Applying Tamhane’s T2 test pairwise to the AES results
showed that performance of the GA, SMA and 1-COMA
algorithms was significantly worse than the rest with 95%
confidence for a population of 100 or 250. For a population
of 500 2-COMA joined the significantly slower group.

In short, it could be observed that for fixed rule lengths of
between 3 and 9, and for the adaptive version, the COMA
system derived performance benefits from evolving LS rules
according to both metrics on this function.

D. Results on Variants of Trap Function

For the “Shifted” trap function, the performances of the GA
and SMA were not significantly different from those on the un-
shifted version. This was because these algorithms solved the
sub-problems independently and so were “blind” to whether
the optimal string for each was different.

The COMA results exhibited the same pattern of behaviour
noted above; fast, reliable problem solving for all but 1-COMA
and 2-COMA, and even for these two the AES results were
statistically significantly better than GA or SMA.

Considering Dist-Trap, the GA, SMA and Rand-COMA
failed to solve the function to optimality in any run, regardless
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of population size. While the Success Rate for COMA was
less than for the other problems (typically 10-15/20 for pop.
size 100 and 15-20/20 for pop. size 250), the same pattern was
observed of better performance (SR and AES) for the adaptive
version and fixed rule lengths in the range 3-5, tailing off at
the extremes of the length range.

E. Evolution of Rule Base

The results above are promising from the point of view of
improved optimisation performance, but require some analysis
and explanation. The deceptive functions used were specifi-
cally chosen because GA theory suggests they are best solved
by finding and mixing optimal solutions to sub-problems. Thus
the GA failed to solve the function when the crossover operator
was not suited to the representation (Dist-Trap).

Considering the action of a single bit-flipping LS opera-
tor on these “trap” subproblems, a search of the Hamming
neighbourhood of a solution will always lead towards the sub-
optimal solution when the unitation is 0,1 or 2, regardlesss of
pivot rule. Additionally, the greedy search of the neighbour-
hood will lead towards the deceptive optimum 75% of the time
when the unitation is 3. This explains the poor results of the
SMA, and 1-COMA algorithms.

The behaviour of the A-COMA algorithm was examined by
plotting the population mean against time of the rule length,
the specificity of the condition (the proportion of values set to
#), and the unitation of the action.

For the 4Trap function, the system rapidly evolved medium
length (3−4), general (specificity< 50%) rules whose action
was to set all the bits to 1 (mean unitation 100%). Closer
inspection of the evolving rule-base confirmed that the optimal
subproblem string was being learnt and applied.

For the Shifted-Trap function, where the optimal sub-blocks
are all different, the rule length decreased more slowly from its
initial mean value of 8. The specificity also remained higher,
and the mean unitation remained at 50%, indicating that
different rules were being maintained. This was borne out by
closer examination of the evolved rule sets.

The behaviour on Dist-Trap was similar to that on 4Trap,
albeit over a longer time-scale. The algorithm could not
possibly be learning specific rules about sub-problems, since
no rule was able to affect more than one locus of any
subproblem. Rather, the system learnt the general rule of
setting all bits to1. The rules were generally shorter than for
4Trap, which means that the number of potential neighbours
was higher for any given rule. The high incidence of #s meant
that the rule length defined a maximum radius in Hamming
space for the neighbourhood, rather than a fixed distance from
the original solution. These two observations, together with
the longer times to solution, suggest that when the system
was unable to find a single rule that matched the problems’
structure, a more diverse search took place using a more
complex neighbourhood which slowly adapted itself to the
state of the current population of solutions. Full details of
these experiments and analysis may be found in [4].

F. Benchmark Test: Protein Structure Prediction

Although these results were promising in themselves, the
test problems used deliberately leant heavily towards the
“building block hypothesis” school of thought in their design.
Accordingly in [5] and [6] the A-COMA algorithm was
benchmarked against the standard GA and SMA on a well
known combinatorial optimisation problem. The Protein Struc-
ture Prediction (PSP) problem concerns the prediction of the
“native” three-dimensional form of a protein from knowledge
of the sequence of its constituent amino-acid residues. Dill’s
HP model [46] provides an estimate of the free energy of a
fold of a given instance, based on the summation of pair-
wise interactions between the amino acid residues. It is a
“virtual residue” model, that is to say that each amino acid
residue is modelled by a single atom, whose properties are
reduced to a quality of being hydrophobic (H) or hydrophilic
(P). Thus a sequence ofl amino acid residues is represented by
s ∈ {H,P}l, and the space of valid conformations is restricted
to self-avoiding paths on a selected lattice, with each amino
acid located on a vertex. Hydrophobic units that are adjacent
in the lattice but non-adjacent in the sequence add a constant
negative factor to the energy level. All other interactions are
ignored, and a fixed penalty is added to infeasible folds.
Despite its apparent simplicity, finding the global minimum
of the HP model for a given sequence has been shown to
be NP–complete on various lattices [47], and EAs have been
widely applied since [48].

Twenty instances and parameter settings were taken from
[10], which use a two-dimensional triangular lattice. For each
combination of algorithm and instance, 25 runs were made,
each continued until the global optimum was reached, subject
to a maximum of 1 million evaluations. Following [49],
the representation used a arelative encoding where alleles
come from the set{leftback, leftforward, front, rightforward,
rightback} and represent the direction of the next move on the
lattice from the point of view of the head of the growing chain.
The generational genetic algorithm used (500+500) selection.
One Point Crossover was applied with probability 0.8 and a
Double Mutation (which has the effect of causing the mutation
point to act as a pivot) was made with probability 0.3. All other
settings for mutation probabilities etc. were as above.

In addition to the GA, and the simple Memetic Algorithm
(SMA), we tested versions of COMA using a randomly created
rules (i.e. with the learning disabled) and steepest (SRand) or
greedy (GRand) pivot rules, and fully linked adaptive versions
of COMA with the two pivot rules (CLS, CLG). These results
are analysed according to effectiveness (SR) and efficiency
(AES) as before, plus the mean best value found (MBF).

G. Results on PSP

From a total of 500 runs, the Success Rates in descending
order were CLS (337), SMA (202), CLG (127), GRand (120),
GA (83) and SRand (44). Using a non-parametric Friedman’s
test for k-related variables shows that the differences in success
rate between algorithms was significant. A series of paired t-
tests confirmed that the results for the CLS algorithm were
significantly better than any of the others with over 95%
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confidence. This difference was particularly noticeable on
the longer instances. Of the other results, the simple MA
(SMA) performed well on the shorter instances, and the
CLG and GRand results were surprisingly similar, possibly
because the noise inherent in the greedy ascent mechanism
created problems for CLG’s credit assignment mechanism.
Significantly, whatever the form of the local search, all but
one of the Memetic Algorithms perform much better than the
simple GA.

The least successful algorithm was SRand, and even when
it was successful, it took far longer than all of the other
algorithms. Like GRand, it used randomly created rules to
define the neighbourhood for each solution in each generation.
However, unlike the GRand it searched the whole of each
neighbourhood. Since many of the random rules would be
short or have quite low specificity, this causes large neigh-
bourhoods and a consequent increase in the AES values for
the same number of evolved candidate solutions considered.
It is possible that left to run for longer, the Success Rate of
the SRand would have been improved.

Of the others, the GA was always fastest, followed by the
SMA. The greedy COMA algorithms were faster than their
steepest ascent counterparts. A two way Analysis of Variance
showed that both instance and algorithm were significant
factors. Post-hoc analysis using Tamhane’s T2 test confirmed
the ordering GA< {SMA,CLG} ≤ {GRand,CLS} < SRand,
with 95% confidence where< is used and 90% confidence
where≤ is used between groups. Ordering within groups is
by changing values but these were not significant at these
confidence levels.

Most algorithms found the global optimum for the shorter
instances. Therefore when comparing performance on the
basis of the quality of the best solutions found, i.e., mean
best fitness (MBF), only results for the longer and harder
instances were considered. It was observed that CLS reached
consistently higher values and with a smaller variance in
performance than the others, and that the SRand algorithm was
correspondingly worse. A two-way ANOVA test on the values
for the best solution found in each run, with instance number
and algorithm as the factors confirmed the significance of the
algorithm in determining the performance. Post-hoc testing
using Tamhane’s T2 test at the 95% confidence level gave
the groupings CLS> {CLG,SMA,GRand} > GA > SRand.

H. Analysis of Meme Evolution on PSP

A number of test runs of CLS were made in which the
evolving memes were saved at regular intervals. These showed
a strong tendency towards short rules of the form{## →
leftback rightback} or {## → leftback leftforward}. On a
two-dimensional triangular lattice both of these rules act to
bring residuesi and i + 2 into contact, and these patterns
could be thought of as the two-dimensional equivalent of rep-
resenting a single turn of an alpha helix. Experimentation on
a square two-dimensional lattice showed a tendency towards
rules of the form{### → lll} or {### → rrr}, also the
shortest path that brings two residues into contact.

The use of the word “tendency” should be noted here: in
most cases the rule-set continued to contain a number of

different rules of varying lengths. It has been argued above
that in addition to the extra scalability attained by identifying
and re-applying regular structural motifs, the presence of
a diverse, evolving rule-set means that the neighbourhood
structure defining which points around the current population
are examined, is continuously changing. Thus, even if the pop-
ulation is converged to a single point, which is locally optimal
according to most neighbourhood structures, eventually a rule
may evolve for which the neighbourhood of that point contains
a fitter solution. This can be thought of as continually testing
new search landscapes to look for “escape routes” from local
optima.

Looking back to the results for the GRand algorithm, in
which the rules defining neighbourhoods were created at
random, this “changing landscape” effect was noticeable in
the superior success rates to the SMA. The fact that the CLS
algorithm was the best performer according to both Success
Rate and MBF metrics points to both modes of operation
having a positive effect.

V. EXTENSION TO TRUE CO-EVOLUTION

Having established the basic principle of evolving memes
which coded for LS rules as a means of enhancing optimisation
performance in MAs, the next series of experiments used
a full co-evolutionary model. The aims were to explore the
effects of different pivot rules and linkage strategies, and to test
the hypothesis of the different modes of operation suggested
above. Again the benchmarks for comparison used a GA,
and a Simple Memetic Algorithm (SMA) employing a bit-
flipping greedy hill-climber. COMA with adaptive rule lengths
was used with all possible combinations of greedy or steepest
ascent with linked, random or fitness-based pairing strategies.
In the latter case memes were selected to be used via binary
tournaments. The fitness of each meme taken to be∆fitness,
i.e., the fitness improvement caused when it was last applied to
a candidate solution. The implications of this credit assignment
strategy will be discussed later. These algorithms are referred
to as CXY where X comes from the set{L(inked), R(andom),
T(ournament)} and Y is one of G (Greedy) or S (Steepest).
In order to tease out statistical significance on the harder
functions used here, 50 runs were made of each algorithm
on each problem instance, with a population size of 500. All
other experimental settings were the same.

A. Exploiting search space regularities gives scalability

The results summarised above suggested that COMA was
able identify and utilise regularities in the problem space. This
was investigated further using multiple length variants of two
well understood test functions. The first of these comprised
multiple concatenated copies of (1) with lengths in the range
{40, 60, 80,..., 200}.

As expected from above, the results for SMA were ex-
tremely poor. The next worse algorithm was CRS. Out fo the
50 runs for each size, the SR steadily decreased 50 at length 40
to 5 at length 100 and zero above that. All the other algorithms
showed SR of 49 or 50 up to length 160, but only the CLS
(39) CLG (50) and CTG (50) solved the 200-bit problem.
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The AES results were revealing. The GA was faster than
Grand and SRand, but the increase in AES with length was
worse than linear. The AES results of the successful COMA
variants, and analysis of the evolving rule bases, supported the
hypothesis of discovering and exploiting regularities. In this
case it meant identifying a rule giving the optimal solution to
the sub-problems, and then applying it to each sub-problem
in the string in successive generations. CLG was the fastest
algorithm, followed by CTS and CLS, and all three were near-
linear. For example, a linear regression of AES to length for
CLG fitted the data with a correlation co-efficient of 0.97.

The second test function was Watson’s H-IFF function,
a highly epistatic problem designed to examine the virtues
of recombination. At the bottom level, fitness is awarded to
matching pairs of adjacent bits in a solutions, i.e.

f1s =
l/2−1∑
i=0

1−XOR(s2i, s2i+1) (2)

and this process is applied recursively, so that a problem of
sizel = 2k hask levels. In each ascending level the number of
blocks is reduced by a factor of two, and the fitness awarded
for each matching pair is increased by a constant factor, in our
case 2. This problem has a number of Hamming sub-optima,
and two global optima corresponding to theu(i) ∈ {0, 1}.
Problem sizesl ∈ {8, 16, . . . , 512} were used, corresponding
to 3 to 9 levels. Note that forl >16 the length of the blocks
to be identified and matched at the highest levels far exceeded
the maximum rule length.

All of the MAs had higher Succes Rates than the GA, and
again the same three variants of COMA exhibited the best
performance. For example, out of 50 runs withl = 128 the SR
values were 0 (GA, CRG, CRS), 2 (CTG), 4 (MA), 38 (CLG),
43 (CLS) 49 (CTS). Only the CLG (10) and CTS (11) variants
solved the 256 bit problem. Considering different pivot rules,
the same pattern was observed as on other problems: the
greedy ascent versions found the optimum faster (lower AES)
than the equivalent steepest ascent versions but not as reliably
(lower SR). ANOVA on the MBF results confirmed that the
performance was statistically significantly different with 95%
confidence. Post-hoc analysis showed that the CLG, CLS and
CTS variants had a higher mean best fitness than all other
algorithms but did not significantly differ.

Analysis of the evolving rule base suggested that for the H-
IFF problem the improved scalability arose from the system to
making a decision between the “ones” and “zeroes” blocks and
then applying this throughout the string. The choice between
1s and 0s appeared to occur with equal probability.

B. Escaping local optima by changing neighbourhoods

The performance improvements exhibited above clearly
arise from a situation in which the adjacent epistatic in-
teractions within the problem give rise to patterns in the
search space which can be exploited by COMA. The two
64 bit variants of the 4Trap function described above were
used to examine the behaviour when this is not the case. As
reported above, the SMA and GA completely failed to solve
the DistTrap functions, and this situation did not change by

allowing more runs. The only algorithms which ever located
the global optimum were the CLG, CLS and CTS, all three
of which always did so. The AES ranking was CLG< CTS
< CLS, these differences significant with 99.9% confidence.

On the Shifted-Trap function, the SMA found the optimum
45 times out of the 50 runs, and the random-pairing steepest
ascent version of COMA (CRS) 39 times. The GA and all
other variants of COMA always located the global optimum in
the time allowed. It might be expected that attempting to reuse
a pattern on different sub-problems would hinder the progress
of the COMA algorithms. However in fact the mean solution
time was not significantly different to that of the GA for all
but SMA and the CRS variant, and there was a noticeable
reduction in the variability of time to solution.

C. Choice of Pairing and Pivot Strategies in Coevolution

The results presented above showed that the choice of pivot
and pairing strategies is crucially important and intertwined.

Unsurprisingly, the greedy variants almost always used less
evaluations than the steepest ascent equivalents on successful
runs. One obvious explanation for this is that when a “good
rule” (e.g.#### → 1111 for 4Trap) is applied to a candi-
date solution, it will often match in a number of places, and
cause the same fitness improvement in several. Unlike memes
with a greedy pivot rule, which stop evaluating neighbours as
soon as the first improvement is found, those with a steepest
pivot rule will evaluate the whole neighbourhood. Thus the
number of evaluations used to achieve the same improvement,
and hence the AES, will be higher.

In the case of random pairing, there is no selective pressure
in the meme population, so the rule base will remain diverse
until genetic drift causes an eventual convergence. For the
Shifted-Trap function this was not a problem, since it is
desirable to maintain differentconditionparts of the rules for
different sub-problems, and CRG performed well. However
for CRS, and CRG on the other other problems it prevented
identification and use of appropriate rules, and a corresponding
decrease in performance was observed.

In the linked variants, the selective pressure towards the
evolution of good rules is created implicitly via a continued
association with fit solutions, and CLG outperformed CLS on
the binary problems (but not PSP).

By contrast, for some problems (but not all) the extra
noise introduced by using a greedy ascent was sufficient to
“fool” the simple credit assignment mechanism used in these
experiments. Thus a good rule will only get a low fitness if
the first match only leads to a small improvement, whereas
larger improvement (and hence fitness) might be seen if it was
applied elsewhere in the solution. Another source of noise is
the choice of partner. It is possible that a more sophisticated
method such as Paredis Life Time Fitness Evaluation (LTFE)
(in which a running average of the last twenty pairings is used),
or Parker and Blumenthal’s PAL with Sampling may well
provide a more stable and robust credit assignment mechanism
whilst retaining the speed-benefits of a greedy ascent pivot
rule. However these would not be simple to use in our situation
with memes evolving at the same rate as the solutions unless
the selection pressure were much greater.
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VI. EXTENDING ADAPTABILITY AND BENCHMARK

COMPARISON2: MAX -3SAT

A. Problem Description

The Max-SAT problem is a classical combinatorial optimi-
sation problem, consisting of a number of Boolean variables
and a set of clauses built from those variables. A full de-
scription and many examples can be found in [50]. For each
length {50,100,250} the first 25 were taken from the sets
of uniformly randomly created satisfiable instances around
the phase transition (in terms of hardness) where there are
approximately 4.3 clauses per variable. The same experimental
set up was used as for the previous experiments, with a
maximum of 500,000 evaluations per run. Each algorithm
was run ten times on each instance, giving 250 runs for each
combination of algorithm and length.

As well as the GA and simple MA with steepest (SMA-S)
and greedy (SMA-G) ascent, COMA variants with linked or
fitness-based pairing were used with fixed pivot strategies as
before, and also with the pivot condition in the rules randomly
initialised and subject to mutation at a rate 0.0625 (CLA/CTA).
In addition each algorithm was run with and without the ability
to use a # symbol in the action part of the rule, which was
taken to denote that the symbol in the solution should be
inverted. This is denoted as CXY-I and provides the ability
to create the rule# → # - equivalent to a simple MA.

It should be noted at the outset that the random way
in which these instances are created does not provide any
structural regularities for the COMA algorithms to exploit, so
the second “changing neighbourhood” modus operandi might
be expected.

B. Success Rate

Table I shows the number of success from 250 runs. No
algorithm found a solution for the problems with 250 variables,
so it is perhaps worth re-iterating that no time was spent tuning
the underlying GA.

As can be seen, for the 50 variable instances the simple
MAs have the highest success rates, followed by the variants
of COMA with linked rule pairing. For the longer instances
all methods are much less successful, and many instances are
not solved by any algorithms. SMA-G and CLG-I show the
same performance

For the shorter instances the steepest ascent strategy is
better, but for the longer instances the cost of searching the
entire neighbourhood every iteration becomes prohibitive, so
that SMA-S and CLS solve no instances. It is immediately
apparent that the adaptive variants CLA and CTA appear to
perform on a par with whichever of the S or G variants is
better for each length, suggesting successful adaptation.

The effect of the ability to use inversion is less clear cut,
but it yields a slight improvement on the longer instances.

C. Efficiency

Figure 2 shows the mean time to solution analysed by
algorithm and problem size. ANOVA on just the COMA
results showed that the ability to use inversion was not a

Algorithm Length 50 Length 100
GA 125 21

SMA-S 154 0
SMA-G 153 25

CLS 141 0
CLS-I 141 3
CLG 135 21

CLG-I 136 25
CLA 144 8

CLA-I 142 8
CTS 112 10

CTS-I 131 12
CTG 117 19

CTG-I 118 20
CTA 119 14

CTA-I 126 19

TABLE I

NUMBER OF RUNS(OUT OF 250) IN WHICH A SOLUTION WAS IDENTIFIED

FOR DIFFERENT LENGTHMAX-3SAT PROBLEMS.
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Fig. 2. Box plots of Average Evaluations to Success for 10 runs on each of
25 MAX-3SAT instances with 100 (top) and 50 (bottom) variables.

significant factor on the AES, so these results are omitted
from the figure for clarity. As can be seen the GA is the fastest
algorithm followed by a close grouping of SMA-G, CLG and
CTG, with the CLS and CTS variants taking more time and
having a higher variance. The adaptive pivot variants both
fall between their respective greedy and steepest counterparts,
both in terms of mean and variance. The fitness based pairing
is faster than the linked counterpart in every case. A two-
way ANOVA with problem size and algorithm as fixed factors
showed that the algorithm was a determining factor in AES.
Post-hoc testing using Tamhane’s test at the 95% confidence
level showed that the GA was significantly faster, and the
SMA-S significantly slower than the other algorithms, but
otherwise the grouping was not well defined, most algorithms
being not significantly different to three or more others.
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D. Mean Best Fitness

Figure 3 shows the mean best fitness analysed by algorithm
for the longer instances. As noted above, the performance of
the steepest ascent versions of any of the algorithms was worse
than the greedy or adaptive versions, and so these are omitted
for clarity. Analysis show no significant difference between the
means for linked and fitness based pairings (CTG–CLG, CTA–
CLA etc.) for this performance indicator, although the fitness-
based pairing algorithms tend to have higher variance than
their linked pairing counterparts. Again the use of inversion
was not a significant factor for these results.

Overall, adding the possible of an “invert” symbol (#) to
the action has clearly improved the success rate, and not been
detrimental to the other measures. The variants with adaptive
pivot rules are outperformed by the better of steepest or greedy
ascent, but this is often marginal. In particular, if the most
important criteria to the algorithm designer is reliability (high
SR), then letting the pivot rules evolve is clearly preferable
to making a fixed choice. On some problems steepest was
better, on others greedy, and on the MAX-3SAT problems the
choice is size-dependant. In contrast to this, if the desired
properties are speed (low AES) and consistently good results
(high MBF), then the fixed greedy strategy is preferable on
the MAX-3SAT, although again this does not always hold for
other problems.

CTA-ICLA-ICTG-ICLG-ICTACLACTGCLGSMAGA

algorithm
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Fig. 3. Box plots of best values found 10 runs on each of 25 MAX-3SAT
instances with 250 variables.

VII. C ONCLUSIONS

The premise that evolutionary optimisation algorithms can
be improved by incorporating an appropriate local search

mechanism is now widely accepted, but it is increasingly
recognised that the choice of move operator, and hence
neighbourhood function, used in the local search is crucial
to delivering success.

This paper reviewed a framework which offers the promise
for creating robust scalable optimisation techniques, based
on the concept of co-evolving memes encoding definitions
of Local Search operators. Results were reviewed showing
the development of algorithms fitting into this framework
with progressively more co-evolutionary natures and more
degrees of freedom available to the evolution of memes.
These results are highly competitive on a variety of different
classes of problem. These experiments have used a number of
different performance metrics to compare between algorithms,
as different intended uses of EAs have different goals. In some
repeated tasks, reliably fast and reasonably accurate behaviour
(i.e. low AES and high MBF) may be more important than
finding the true global optimum at whatever cost (e.g. high SR
and AES), but the reverse may be true in e.g. design situations.

The results obtained illustrate that performance improve-
ment can arise from different mechanisms. If the representa-
tion of the rules is able to capture regular repeated features
within the problem space, then highly scalable behaviour is
exhibited - for example the linear speed-up on the 4trap
function. This arises from the rapid evolution of the system
to a rule-set which captures and represents knowledge about
how to solve the problem. It was noted that in order for this to
occur it is necessary to maintain sufficient accurate selection
pressure within the population of Local Searchers.

In contrast to this, when there is not sufficient selective
pressure for evolution a “fall-back” position is observed. This
might occur for example when a “good” pattern only applies
to one position in the solution, or when the rule representation
cannot possibly capture the regularities present in the space, In
these cases improved reliability is observed, but at the expense
of speed of solution. Essentially what happens is that even
if the solution population converges to a local optimum for
its crossover and mutation operators, the continued evolution
of memes means that eventually a Local Search landscape is
discovered in which the solutions are not locally optimal and
improvements can occur. This is akin to Variable Neighbour-
hood Search or other Adaptive Memetic Algorithms, but with
the advantage that it is not necessary to specify, or be bound
by, a fixed set of neighbourhood functions.

These results from a series of benchmark tests highlight
this problem of choosing the appropriate local search operator
which provided the original rationale for the development of
COMA. For example, although the Memetic Algorithm with
a simple bit-flipping hill climber had the highest Success
Rates and Mean Best Fitness on the Max-3SAT problems,
it’s performance on the other problems was derisory, and
frequently worse than the simple GA.

The COMA variants using “linked” pairing, which effec-
tively self-adapt the memes, exhibited better performance than
the GA or SMA over a wide range of problems, according to
different metrics. The results on MAX-3SAT were comparable
with SMA, but this problem is perhaps unusual in having
no structure to be exploited. Other authors have suggested
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methods for re-ordering MAX-SAT representations so as to
maximise local gene interactions, which would clearly aid
the rule-based COMA algorithms, as probably would allowing
more evaluations to try different neighbourhoods.

When the behaviour of the truly co-evolutionary models
with fitness-based selection of memes (CTS and CTG) is
considered, the picture is less clear. On the H-IFF and multiple
4Trap problems the method works well, particularly when used
with the steepest ascent pivot rule. However on the MAX-
3SAT problem the situation is reversed, and the greedy ascent
rule appears to work better. As suggested, this may be because
the neighbourhoods are so large, or because the fitness measure
used for memes, was too simple. The use of adaptive pivot
rules goes a long way towards resolving the issue of choosing
a pivot rule, but there is clearly scope for future work here,
and it is worth considering a change from what Ong et. al.
would term local to global fitness measures, such as running
averages etc.

Clearly there remains much work to be done analysing the
possibilities of this framework. It would be fatuous to claim
that COMA represents some fabulous all-purpose problem
solver, however promising these results. Immediate priorities
are the investigation of alternative methods for credit assign-
ment within the meme population, and the extension to more
generic representations of conditions and actions. However the
two modes of operation noted above, coupled with the ability
of the algorithm to explicitly represent the information that it
has learnt and is using to solve the problem at hand, would
seem to offer much potential.
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