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A B S T R A C T   

Field boundaries are important habitat for bats in agricultural landscapes, serving as commuting and foraging 
areas for many species. The goal of our study was to better understand the drivers of bat activity in agricultural 
landscapes to inform conservation policy and make specific recommendations for habitat management. We 
placed sixty-four full spectrum bat detectors at random recording locations, weekly, along field boundaries in 
North Somerset between July and October 2020. We used an automated classifier to analyse recordings and 
performed error rate modelling to account for and remove the majority of error in automated classifications. We 
used generalised additive models to explore bat response to recording location metrics, controlling for spatial- 
autocorrelation and temporal differences in sampling. We validated our models with k-fold cross-validation 
and explored the utility of our models for predicting bat activity at new sites. We found that field boundary 
characteristics better describe bat activity than adjacent field characteristics or measures of local landscape for 
the majority of species studied. Bat activity was higher along tall, wide, vegetated field boundaries containing 
trees; there was lower activity at arable recording locations. Still, bat activity was highly variable and predictive 
error was high. We found a large spatial effect driving activity patterns, meaning models are not able to predict 
activity beyond the extent of the study area. We recommend management strategies that give incentives to 
farmers for replacing fences with hedgerows, planting hedgerow trees, and maintaining tall and outgrown field 
boundaries.   

1. Introduction 

Modern intensive agriculture is a major driver of the current biodi
versity crisis (e.g. Sánchez-Bayo and Wyckhuys, 2019). Low levels of 
habitat diversity associated with intensive farming are a primary cause 
of species declines (Benton et al., 2003; Robinson and Sutherland, 
2002). As half of all habitable land globally has been converted to 
agriculture (UN Food and Agricultural Organization, 2021) there is a 
need to make agriculture compatible with biodiversity (in Western 
Europe the proportion of land converted to agriculture is much higher: 
for example, in England 75% of land is used for agriculture; Rae, 2017). 

Increasing landscape heterogeneity has been proposed as a method 
to make agricultural landscapes functional for both wildlife and hu
manity, increasing the area of vegetated field boundaries is a key 
approach for achieving this (Benton et al., 2003; Kremen and Meren
lender, 2018; Tscharntke et al., 2021). Hedgerows and woody field 
boundaries provide food, shelter and facilitate landscape connectivity 
for wildlife (Barr et al., 1999; Montgomery et al., 2020), while services 
provided by functional ecosystems, such as flood management, 

pollination, nutrient cycling, soil retention, windbreaks and pest con
trol, can improve agricultural outputs (Bommarco et al., 2018; Fischer 
et al., 2008; Pereira et al., 2018). 

Bats are valuable pest control agents (Kunz et al., 2011; Wil
liams-Guillén and Perfecto, 2011) which benefit from vegetated field 
boundaries (Graham et al., 2018; Walsh and Harris, 1996). Vegetated 
field boundaries support a diverse array of invertebrate prey items for 
bats (Froidevaux et al., 2019; Graham et al., 2018; Merckx et al., 2009), 
and vegetation offers shelter from wind and predators (Jones et al., 
1995; Verboom and Spoelstra, 1999). Vegetated field boundaries could 
also act as navigational aids for species with quiet or high frequency 
echolocation calls that attenuate quickly in air (Altringham, 2011), for 
example Rhinolophus spp. Vegetated field boundaries are known to be of 
particular importance for Rhinolophus ferrumequinum, (Dietz et al., 2013; 
Ransome, 1996), as demonstrated by a study in southern England that 
found 71% of R. ferrumequinum activity to be in close proximity to field 
boundaries, compared to centres of fields (Finch et al., 2020). 

Although the importance of field boundaries is well known, the 
mechanisms by which field boundaries benefit bats are still being 
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explored. Specific aspects of field boundary structure are important for 
different bat species, likely a function of how different species utilise 
field boundaries (Lacoeuilhe et al., 2018), based on their echolocation 
and morphological adaptations (Jacobs and Bastian, 2016). Species 
adapted to forage in cluttered environments (e.g. Myotis bechsteinii) will 
prefer large, overgrown field boundaries (Toffoli, 2016). Species that 
forage along edge habitats (e.g. Pipistrellus species) have not previously 
been found to respond to specific aspects of hedgerow structure, 
although P. pygmaeus may prefer boundaries with a greater number of 
trees (Boughey et al., 2011). In general, high numbers of trees in field 
boundaries has been found to promote activity of many species 
(Boughey et al., 2011; Finch et al., 2020; Heim et al., 2015; Lacoeuilhe 
et al., 2018). Free-flying aerial hawkers such as Nyctalus spp. and Epte
sicus spp. have not previously been found to associate with field 
boundary structure (Boughey et al., 2011; Finch et al., 2020; Kelm et al., 
2014; Toffoli, 2016; Verboom and Huitema, 1997) and instead are likely 
responding to characteristics of adjacent fields, or local landscape 
characteristics. 

Although some studies have investigated the relationship between 
specific field boundary measurements and bat activity (e.g. Boughey 
et al., 2011; Lacoeuilhe et al., 2018; Toffoli, 2016), the relationship 
remains unclear for many species (e.g. Rhinolophus spp.). Understanding 
how boundary features are important for bats is essential to inform 
recommendations for effective field boundary and habitat management 
that enhances biodiversity. In the UK, for example, best practice 
guidelines lack detail on the specific relationships different bat species 
have with field boundaries (Hedgelink, 2022), and further research into 

the link with bats and hedgerows has been recommended (ADAS UK Ltd, 
2004). To our knowledge, no study has compared the relative impor
tance of field boundaries with other landscape characteristics in driving 
bat activity, despite the importance of this information for informing 
evidence-based conservation strategies. 

Here we investigate the relationship between field boundary struc
ture, surrounding habitat and bat activity, with the aim of making 
specific recommendations for field boundary management. We predict 
that there will be high bat activity at vegetated field boundaries, vege
tation biomass (as measured by height, width, tree content) will be 
positively associated with bat activity, and this association will be most 
pronounced in gleaning and edge-foraging species. We also explore the 
utility of our modelling approach for predictive modelling of bat activity 
across a wider landscape. 

2. Materials and methods 

2.1. Study site 

Fieldwork was conducted over 12 weeks in North Somerset, UK, 
between 9th July and October 1, 2020. The target species was 
R. ferrumequinum, however, as our recording equipment picked up all 
bat species present in the study area the decision was made to include 
more species in our analysis. Fieldwork was carried out within 4 km of 
two R. ferrumequinum maternity roosts: Brockley Hall Stables SSSI 
(ST470669) and Kings & Urchin Woods SSSI (ST452647). The study site 
was chosen to comprise the main foraging areas around the roosts (Jones 

Fig. 1. Map showing location of study site (main image) within North Somerset (inset, lower left, and North Somerset in the UK (inset, top left). Rhinolophus fer
rumequinum maternity roosts are located in the two SSSIs. The northernmost (inset, top right) is Brockley Hall SSSI, the southernmost is Kings and Urchin Woods SSSI. 
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et al. 1995; Billington, 2001; Burrows, 2018, Fig. 1). This set up gave us 
the additional opportunity to investigate how much the spatial compo
nent of bat activity depends upon knowledge of where the bats are 
roosting. 

At 51◦ latitude, the study area has a wet and mild marine climate 
(Köppen classification Cfb). The topography of the area is diverse, 
encompassing the coastal plains of the North Somerset levels and 
limestone hills of the Lulsgate Plateau. Land cover in the study area 
comprises 14.4% broadleaf woodland, 0.8% coniferous woodland, 8.1% 
arable farmland, 58.9% grassland and 17.7% built-up areas and gardens 
(Morton et al., 2021). Arable crops include wheat and maize, while 
grassland is mainly grazed by cattle. 

2.2. Recording equipment 

We monitored bat activity using passive ultrasound detectors (Song 
Meter Mini Bat, Wildlife Acoustics Ltd, Manyard USA) placed along field 
boundaries (hedgerows, lines of trees, fences and ditches) in the study 
area. All detectors were new from the manufacturer and microphones 
were manufacturer-calibrated. We attached detectors to fenceposts or 
branches 1–2 m above the ground using cable ties, facing the length of 
the field boundary. We set detectors to record bat activity from 15 min 
before sunset to 15 min after sunrise, using a 20 kHz minimum trigger 
threshold and a maximum recording length of 1 min. 

2.3. Sampling design 

A stratified random sampling approach was employed whereby 32 
recording locations were generated randomly along field boundaries 
each week, with 50% of locations within a 2 km buffer of the roosts and 
50% between 2 and 4 km. This sampled the area closer to the roost at 
higher density and allowed for spatial stratification of detectors avoid
ing spatial temporal bias in sampling with regard to distance from the 
roost. 

Detectors were moved to new recording locations every week after a 
minimum of six nights (Fig. 2), the minimum duration to ensure the 
detection of common species (Mathews et al., 2016). Different field 
boundary types (hedgerows, lines of trees, fences and ditches) were 
surveyed in proportion to their availability. We placed detectors in pairs 
where possible, one either side of each field boundary. An individual 
field boundary was defined as ending at the point of connection between 
two or more field boundaries, following DEFRA hedge survey guidelines 
(2007). Each recording location was surveyed only once. Spatial auto
correlation between recording locations was controlled for in the sta
tistical analysis (section 2.6 below). 

2.4. Recording location characteristics 

Field boundary characteristics and habitats of adjacent fields were 
recorded at each recording location (Table 1). A field was defined as 
adjacent if the detector was able to pick up bats in that field, e.g. a de
tector on a thickly vegetated field boundary would only pick up bats on 

Fig. 2. Map of study area and recording locations in North Somerset, UK.  
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the same side as the detector, whereas a detector placed on a bare fence 
would pick up bats in fields either side of the fence. Three adjacent field 
habitat types were surveyed: arable, improved grassland and road/ 
track. Images of example recording locations are presented in Fig. 3. 

To assess the impact of local landscape features on bat activity we 
created a 250 m buffer around each recording location and quantified 
local landscape metrics in QGIS (QGIS.org, 2022; Table 1). A number of 
different sized buffers (up to 4 km) were considered, at 500 m and above 
variables started to become collinear due to close proximity of recording 
locations. A 250 m buffer was the largest scale that was feasible to model 
and represents the immediate surroundings that may influence activity 
at the recording location. 

2.5. Bat activity 

2.5.1. Acoustic analysis and error rate modelling 
Automated species identification was necessary as manual classifi

cation would have been prohibitively time consuming. We used Bat
Classify (Scott, 2012) to classify bat calls by species or species groups. 
Consistent with recommendations (López-Baucells et al., 2019; Russo 
and Voigt, 2016; Rydell et al., 2017) we manually verified the auto
mated analysis following Barré et al. (2019) to quantify classification 
error rates (see supplementary material for detail of error rate modelling 
approach). 

It was not possible to reliably differentiate Myotis spp. in the manual 
verification due to similarity in call structure between species in this 
genus, so these species were grouped. Nyctalus spp. and Eptesicus spp. are 
grouped by BatClassify. Pipistrellus nathusii is not classified by Bat
Classify so were grouped with P. pipistrellus. The decision was taken not 
to include Plecotus spp. in the statistical analyses on the basis that 
acoustic monitoring is not an effective survey method for these species, 
as their calls are often too quiet to be detected (Flaquer et al., 2007). 
Barbastella barbastellus was not included in statistical analyses due to low 
numbers of recordings. 

2.5.2. Acoustic activity index 
We quantified bat activity at recording locations according to Miller 

(2001). Every minute in which a bat species is present was counted as 
one occurrence, the total occurrences were then divided by the total 
time the detector was recording, creating an activity index (AI). The AI 
thus represents the rate of bat occurrences over the whole period the 
detector was recording (approximately one week, mean 6.8 nights). This 
allows us to account for variation in night length over the study period 
and to compare activity between recording locations with differing 
recording effort. 

Rather than providing positive and negative classifications for re
cordings, error rate modelling returns a probability of a correct classi
fication (by species). Following Barré et al. (2019) we excluded all 
classifications below a 50% probability. We then weighted classifica
tions by their probability, so a classification with a 90% probability 
would count as an activity index of 0.9. This meant classifications with a 
higher probability contributed more towards the final analysis. 

2.6. Statistical analysis 

We conducted statistical analyses in R (R Core Team, 2022). We 
fitted models for six different species/species groups using a generalised 
additive model (GAM) with a negative binomial error distribution in the 
mgcv package (Wood, 2011). 

For each species we first fitted a global model to explore the rela
tionship between predictors and bat activity (bat activity ~ predictors). 
We then assigned predictors from the global model to one of three 
‘scenario’ models, dependent upon their scale of action (Table 1). This 
allowed us to gauge the relative importance of different aspects of 
landscape structure (field boundaries, adjacent fields and local land
scape) in driving bat activity. The first model contained descriptors of 
field boundary structure (field boundary model), the second contained 
descriptors of the field adjacent to the detector (adjacent field model). 
The third model contained descriptors of local landscape measured in 
GIS (local landscape model). 

Fig. 3. Photos of example recording locations.  
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Continuous data were scaled and centred. Smooth terms were 
included for geographic coordinates (Duchon spline; bs = “ds”, k = 250) 
and week of study (thin plate regression spline; bs = "tp”, k = 12) to 
account for spatial autocorrelation and temporal differences in sam
pling, respectively. All other variables were included as linear predictors 
(Table 1). Model fit was assessed by visual inspection of residuals and 
diagnostic plots. We tested all models for multicollinearity and con
curvity (the equivalent of multicollinearity for GAMs) and we removed 
recording locations with less than four nights data. 

We optimised global and scenario models by searching all possible 
combinations of variables using the dredge function from the MuMIn 
package (Bartoń, 2020), with the control variables fixed. AICc of the best 
model identified by dredge was used to compare competing scenario 

models. We performed model averaging on the global model, using all 
models <2 ΔAICc of the best model (Burnham and Anderson, 2002), 
calculating the model averaged coefficients and z-values in the MuMIn 
package. Effect size was assessed by calculating the percentage change 
in variables. The modelling procedure is summarised in Fig. 4. 

2.7. Model validation and predictive power 

We tested the ability of models to predict bat activity at new sites. We 
performed 10-fold cross validation and fitted a GLM with predicted vs 
actual values, calculating McFadden’s pseudo-R2 to assess how well 
predictions match the actual data. 

To assess the relative magnitude of the effect of predictor variables 
compared with the spatial component of the model, we also fitted 
models with 1) only control variables; 2) only control variables and no 
spatial smooth; 3) control variables, no spatial smooth, only one pre
dictor variable, ‘distance to R. ferrumequinum roosts at the centre of the 
study site’. 

Predicted activity maps were made for three species at a 10 m res
olution using three predictor variables: vegetated boundaries, habitat 
type (improved grassland or arable). Within the study site most field 
boundaries represent the edge of a land parcel and can therefore be 
mapped with reasonable accuracy using OS Master Map land parcel 
boundaries. We used LIDAR data from the National LIDAR Programme 
(Environment Agency, 2022), masked with OS MasterMap boundaries, 
to map vegetated field boundaries. Arable sites were mapped from sites 
identified during the survey period. 

3. Results 

Detectors were deployed at 380 locations, which equated to 26,557 
recording hours, or 2656 10-h nights (mean night length = 9.82 h). In 
total over 1.6 million files were recorded, yielding 484,795 bat classi
fications. A total of eight species/species groups were identified (mean 
= 6.8 per site). Bats were detected on average just over 11 min (±8.2 s. 
d.) in every hour (Table 2, Fig. 5). 

3.1. Scenario model comparison 

The field boundary model was best supported for P. pipistrellus, 
P. pygmaeus, R. ferrumequinum and R. hipposideros (Table 3). The local 
landscape model was best supported for N. noctula/N. leisleri/E. serotinus 
while the adjacent field model received some support for this species 
group. All three models were highly supported for Myotis spp. 

3.2. Global model 

A total of 4095 models were examined by dredge for each species. 
The number of models ranked in the top model set (<2 ΔAICc) for each 
species were as follows: Myotis spp. n = 15, N. spp./E. serotinus n = 2, 
P. pipistrellus n = 2, P. pygmaeus n = 5, R. ferrumequinum n = 5, 
R. hipposideros n = 13. Model selection tables detailing all models used in 
model averaging for each species are included in the supplementary 
material. 

3.2.1. Field boundary characteristics 
Activity of R. ferrumequinum, R. hipposideros, P. pipistrellus and N. 

spp./E. serotinus was higher along vegetated field boundaries, compared 
to non-vegetated field boundaries (145%, 307%, 123% and 33% higher, 
respectively; p < 0.001, p < 0.001, p < 0.001, p = 0.01; Table 6–7, 
Fig. 6). R. ferrumequinum and P. pygmaeus activity was higher at 
boundaries with trees (2% and 3% increase in activity per tree per 100 
m; p < 0.001 and p = 0.01, respectively). P. pipistrellus and P. pygmaeus 
activity was higher at field boundaries with tall vegetation (a 9% and 
15% increase in activity for every extra metre of height, respectively; 
both p < 0.001, Fig. 7). Myotis spp. activity was higher at wide 

Table 1 
All variables included in analysis (global model). ‘Scenario model’ column 
shows which scenario model each variable was assigned to.  

Variable Detail Scenario model 

Vegetated field 
boundary 

Hedge, lines of trees etc. = yes; fence, 
ditch etc. = no 

Field boundary 

Number of trees per 
100 m 

Only included trees above 15 cm 
diameter at breast height 

Field boundary 

Field boundary height Mean calculated from three 
representative points measured using 
either a tape measure or geometry 
(following West, 2009), depending on 
height. 

Field boundary 

Field boundary width Width was defined as the widest point 
of the boundary cross-section. 
Measured at three representative 
points along the field boundary with a 
tape measure and calculated the 
mean. 

Field boundary 

Improved grassland Yes/no Adjacent field 
Arable Yes/no Adjacent field 
Livestock (cows, sheep, 

horses) 
Livestock present or evidence of 
recent livestock presence (fresh 
faeces)? Yes/no 

Adjacent field 

Environmental 
stewardship scheme 

Yes/no – is the land managed under an 
environmental stewardship scheme? 

Adjacent field 

Artificial light at night 
(ALAN) 

Measured in 250 m buffer from 
satellite imagery (Earth Observation 
Group, NOAA/NCEI) 

Local 
landscape 

Normalised difference 
vegetation index 
(NDVI) 

Measured in a 250 m buffer from 
satellite imagery (LandSat 8) using 
imagery acquired during the study 
period (September 20, 2020) 

Local 
landscape 

Percentage woodland 
cover 

Percentage woodland cover calculated 
in a 250 m buffer from Ordnance 
Survey data (OS Open Map Local). 
Includes both coniferous and 
broadleaf (study area is 92% 
broadleaf) and any patch size 

Local 
landscape 

Percentage urban/ 
suburban cover 

Percentage of land classified as urban/ 
suburban in CEH Land Cover Map 
2015 (Rowland et al., 2017) 
calculated in a 250 m buffer 

Local 
landscape 

Easting and northing British National Grid format Control 
variable (all 
scenarios) 

Week of study 1–12 Control 
variable (all 
scenarios) 

Average nightly 
minimum 
temperature 

Mean nightly minimum temperature 
for all nights the detector was 
recording (taken from detector 
internal thermometer or average of all 
other detectors out at the same time if 
not available) 

Control 
variable (all 
scenarios) 

Average nightly rainfall Mean nightly rainfall (mm), obtained 
from the Environment Agency station 
no. 417635 (Barrow Gurney, grid 
ref. ST5377167950, 7.75 km NEE 
from centre of study site) 

Control 
variable (all 
scenarios)  
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Fig. 4. Graphical representation of the modelling procedure.  

Table 2 
Mean activity index (AI) across recording locations. AI was calculated as the 
number of minutes in which a bat was recorded per hour of survey. Note that this 
is weighted by the confidence in the species classification, as described in section 
2.5.2. Species not included in the statistical analysis are denoted with *.  

Species Mean Activity 
Index 

Standard 
Deviation 

Barbastella barbastellus* 0.01 0.02 
Nyctalus noctula/N. leisleri/Eptesicus 

serotinus 
3 2.95 

Plecotus spp* 0.1 0.13 
Pipistrellus pipistrellus 4.76 4.8 
Pipistrellus pygmaeus 0.69 1.25 
Rhinolophus ferrumequinum 0.65 1.04 
Rhinolophus hipposideros 0.13 0.3 
Myotis spp. 2.05 2.62 

All species 11.39 8.19  

Fig. 5. Mean activity index (AI) across recording locations in North Somerset, UK, showing standard deviation. AI was calculated as the number of minutes in which 
a bat was recorded per hour of survey. Note that this is weighted by the confidence in the species classification, as described in section 2.5.2. Species not included in 
the statistical analysis are denoted with *. 

Table 3 
Model ranking of competing scenario models. Units are ΔAICc between models, 
meaning the best performing scenario model has the lowest ΔAICc. Models with 
ΔAICc <10 (i.e. all models with some level of empirical support; Burnham and 
Anderson, 2002, pg. 70) are highlighted in bold.  

Species/species group field. 
boundary 

adjacent. 
field 

local. 
landscape 

Rhinolophus ferrumequinum 0.00 15.83 24.40 
Rhinolophus hipposideros 0.00 12.21 20.87 
Pipistrellus pipistrellus 0.00 18.62 41.32 
Pipistrellus pygmaeus 0.00 67.02 69.93 
Myotis spp. 0.74 0.09 0.00 
Nyctalus spp./Eptesicus 

serotinus 
17.47 5.54 0.00  
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boundaries (4% increase in activity for every extra metre of width; p <
0.001). 

3.2.2. Adjacent field characteristics 
R. hipposideros activity was 149% higher at field boundaries bounded 

by improved grassland (p < 0.001, Tables 6–7), whereas P. pipistrellus 
activity was lower (42%; p < 0.001). R. ferrumequinum and P. pipistrellus 
activity was lower at field boundaries bounded by arable land (46% and 

48%; both p < 0.001, Fig. 9). Myotis spp. activity was lower at recording 
locations managed under an environmental stewardship scheme (39%; 
p = 0.01). P. pipistrellus, P. pygmaeus and N. noctula/N. leisleri/E. serotinus 
activity was higher at recording locations with livestock, compared to 
recording locations without (26%, 34% and 26% respectively; p = 0.02, 
p = 0.03 and p < 0.001; Tables 6–7, Fig. 8). 

3.2.3. Local landscape characteristics 
R. hipposideros and N. spp./E. serotinus activity increased with 

woodland cover in a 250 m buffer (both 2% increase in activity for every 
1% increase in woodland cover; p = 0.004 and p < 0.001 respectively; 
Tables 6–7). N. spp./E. serotinus activity increased with urban/suburban 
cover in a 250 m buffer (1.4% increase in activity for every 1% increase 
in urban/suburban cover; p < 0.001). P. pygmaeus and Myotis spp. ac
tivity decreased with higher levels of ALAN in a 250 m buffer of the 
recording site (8% and 5% decrease in activity for every 1 increase in 
radiance; p = 0.01, p = 0.03, respectively). 

3.3. Model validation and predictive power 

We found a large spatial component explaining activity patterns – 
removing predictor variables did relatively little to reduce the deviance 
explained (Table 4) or the predictive power of the models (Table 5) 
when compared with the effect of removing the spatial smooth. For 
R. ferrumequinum, part of this was explained by proximity to the roost 
(Tables 4 and 5). Predicted activity maps for Nyctalus spp./E. serotinus, P. 
pipistrellus and R. ferrumequinum (Fig. 10) show spatial activity patterns 
recorded in the study period. There is a clear concentration of 
R. ferrumequinum activity around the roost at Brockley hall, while Nyc
talus spp./E. serotinus and P. pipistrellus activity hotspots are more 
dispersed (although locations of roosts of these species is unknown).. 

4. Discussion 

For many animal species, field boundaries represent important 
slivers of habitat in an otherwise inhospitable agricultural landscape. 
Here, we demonstrate the value of field boundaries for bats and identify 

Fig. 6. Boxplot showing Rhinolophus hipposideros activity at vegetated/non- 
vegetated field boundaries in North Somerset, UK. Activity is the summed 
number of minutes in which bats were recorded. 

Fig. 7. Partial effects plot showing the effect of field boundary height on 
Pipistrellus pygmaeus activity (red line, 95% c. i. shaded) in North Somerset, UK. 
Activity is the summed number of minutes in which bats were recorded. 

Fig. 8. Boxplot showing Nyctalus spp./Eptesicus serotinus activity at recording 
locations with/without livestock in North Somerset, UK. Activity is the summed 
number of minutes in which bats were recorded. 
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specific characteristics of agricultural landscapes that are associated 
with bat activity in six species/species groups. Our results have direct 
application in landscape management and for the specification of 
environmental stewardship schemes. 

We show that field boundary characteristics are better than local 
landscape or adjacent field characteristics at describing activity patterns 
in four of the six species studied (P. pipistrellus, P. pygmaeus, 
R. hipposideros and R. ferrumequinum) and that vegetated field bound
aries are associated with significantly higher activity than non-vegetated 
boundaries (P. pipistrellus, N. spp./E. serotinus, R. hipposideros and 
R. ferrumequinum). Our results reiterate the importance of vegetated 
field boundaries for bats in agricultural landscapes – increasing activity 
by over 300% for R. hipposideros – and demonstrate that increasing the 
area of vegetated field boundaries can enhance the biodiversity value of 
farmland. 

The importance of tall, overgrown hedgerows for R. ferrumequinum 
was previously known (Ransome, 1996), however, here we provide new 
evidence that the number of field boundary trees is the most important 
aspect of field boundary structure for this species. This builds on pre
vious research that found high R. ferrumequinum activity along tree lines 
(Finch et al., 2020) and affords an easily-implemented approach to 
improving habitat quality for R. ferrumequinum. We also found trees to 
be important for P. pygmaeus, a finding reported previously (Boughey 
et al., 2011). Coupled with the finding that Myotis spp. activity was 
higher at wide field boundaries and P. pipistrellus and P. pygmaeus ac
tivity was higher at tall field boundaries, our results add to the body of 
evidence that planting field boundary trees and allowing existing 
hedgerows to outgrow will benefit a number of bat species (Boughey 
et al., 2011; Heim et al., 2015; Lacoeuilhe et al., 2018; Toffoli, 2016; 
Wickramasinghe et al., 2003). 

Nyctalus spp./E. serotinus activity was better explained by local 
landscape characteristics than field boundary or adjacent field charac
teristics. These species forage above the height of vegetated field 
boundaries or at pace over open areas, targeting large free-flying prey 
items using loud, low-frequency echolocation (Jones, 1995; Waters 
et al., 1999). Nyctalus spp./E. serotinus would not therefore be expected 
to interact with field boundaries the same way as gleaning bats, or 
species with low-intensity or high-frequency echolocation calls that 
attenuate quickly in air. In this respect, our findings support previous 
studies (Boughey et al., 2011; Finch et al., 2020; Kelm et al., 2014; 
Toffoli, 2016; Verboom and Huitema, 1997). In contrast, we found 
higher Nyctalus spp./E. serotinus activity along vegetated field bound
aries than non-vegetated boundaries, although the effect size is small 
compared to that of other species (Table 7). Our interpretation of this is 
that while Nyctalus spp./E. serotinus are not selecting for field boundary 
characteristics directly, they may still benefit from the increased land
scape heterogeneity provided by vegetated field boundaries. This view is 
supported as both increased woodland and urban/suburban cover had a 
positive impact on activity for this species group. 

Activity of Nyctalus spp./E. serotinus was higher in fields with live
stock. Dung beetles (Geotrupidae, Scarabaeidae) comprise a significant 
portion of the diet of this group, which likely explains this finding 
(Jones, 1995; Shiel et al., 1998; Waters et al., 1999; Whitaker and 
Karataş, 2009). Activity of both Pipistrellus species was also higher in 
fields with livestock, likely because livestock attract prey items such as 
midges and mosquitoes that are important for Pipistrellus species 
(Ancillotto et al., 2017, 2021). 

Activity of R. ferrumequinum and P. pipistrellus activity was negatively 
associated with arable fields (either in current crop production or 
fallow), a finding reported in previous studies (Dietz et al., 2013; Flan
ders and Jones, 2009; Walsh and Harris, 1996; Wickramasinghe et al., 
2003). Additionally, R. hipposideros activity was higher in improved 
grassland. Arable farming requires greater amounts of agrochemicals 
than pasture, which have been shown to negatively impact bat activity 
(Kahnonitch et al., 2018; Wickramasinghe et al., 2003), while tradi
tionally managed semi-natural grassland can support relatively high 

Fig. 9. Boxplot showing Rhinolophus ferrumequinum activity at arable/non- 
arable recording locations in North Somerset, UK. Activity is the summed 
number of minutes in which bats were recorded. 

Table 4 
Percentage deviance explained by models. Comparison between the global 
model with all predictor variables (global), a model with only control variables 
(control.only), a model with only control variables but lacking the spatial con
trol (control.non.spatial), and a model with only control variables, no spatial 
control but with the variable ‘distance to R. ferrumequinum roosts at centre of 
study site’ added (control.non.spatial.with.roost).   

global control. 
only 

control.non. 
spatial 

control.non. 
spatial.with.roost 

Rhinolophus 
ferrumequinum 

85.07 79.50 18.19 35.51 

Rhinolophus 
hipposideros 

39.79 34.95 8.98 9.06 

Pipistrellus pipistrellus 77.06 63.11 14.09 14.84 
Pipistrellus pygmaeus 67.09 62.64 4.19 4.60 
Myotis spp. 55.47 48.69 7.09 8.00 
Nyctalus spp./ 

Eptesicus serotinus 
81.36 83.00 23.77 23.84  

Table 5 
McFadden’s pseudo-R2 of predicted vs actual values from cross validation, 
measuring how well model predictions match the actual data. Comparison be
tween the global model with all predictor variables (global), a model with only 
control variables (control.only), a model with only control variables but lacking 
the spatial control (control.non.spatial), and a model with only control vari
ables, no spatial control but with the variable ‘distance to R. ferrumequinum 
roosts at centre of study site’ added (control.non.spatial.with.roost).   

global control. 
only 

control.non. 
spatial 

control.non. 
spatial.with.roost 

Rhinolophus 
ferrumequinum 

0.42 0.39 0.07 0.26 

Rhinolophus 
hipposideros 

0.15 0.13 0.05 0.05 

Pipistrellus pipistrellus 0.31 0.25 0.09 0.10 
Pipistrellus pygmaeus 0.25 0.23 0.02 0.02 
Myotis spp. 0.13 0.09 0.01 0.02 
Nyctalus spp./ 

Eptesicus serotinus 
0.46 0.42 0.17 0.17  
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Fig. 10. Predicted activity outside woodland and urban areas in North Somerset, UK for A) Nyctalus spp./Eptesicus serotinus, B) Pipistrellus pipistrellus, C) Rhinolophus 
ferrumequinum. 
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insect diversity (Green, 1990). Encouraging the establishment of species 
rich, permanent pasture with low-intensity management would be 
beneficial for these species. 

P. pipistrellus activity was negatively associated with improved 
grassland, in comparison to the reference group, roads. While roads have 
been shown to have a negative effect on bat activity, in our study area 
roads comprise small country lanes or farm tracks, rather than major 
roads that have been the focus of previous studies (motorways, Berthi
nussen and Altringham, 2012; dual carriageways, Claireau et al., 2019). 
The benefit of roads for bats our study was likely that there was almost 
always a hedgerow and/or tree line either side of the road. Hedgerows 
and tree lines are important for edge-foraging Pipistrellus species, as they 
provide shelter from wind and predators, high surface area of vegetation 
and high densities of insects (Froidevaux et al., 2019; Oakeley and 
Jones, 1998; Verboom and Huitema, 1997). Our findings corroborate 
this as the field boundary model best explained activity in both Pipis
trellus species, and vegetated boundaries had significantly higher 
P. pipistrellus activity. Our results further highlight the value of vegetated 
field boundaries for Pipistrellus species. 

Environmental stewardship schemes (ESS) award a subsidy to 
landowners for managing their land for the benefit of wildlife and the 
environment. ESS were not positively associated with bat activity in our 

study. Instead we found reduced Myotis activity at recording locations 
managed under ESS. It may be that survey locations under ESS are un
suitable for Myotis spp. for unmeasured reasons, however this requires 
further investigation. 

Assessing the frequency of feeding buzzes (increased repetition rate 
of echolocation calls associated with the bat honing in on a prey item) 
was beyond the scope of this study, however future work would benefit 
from the extra insight this would provide into how bats are using field 
boundaries. 

4.1. Using models for prediction 

We found a large spatial effect driving activity patterns, which would 
make models unsuitable for predicting outside the study area where the 
spatial component is unknown. We found that part of the spatial effect 
for R. ferrumequinum was explained by proximity to known roosts, 
demonstrating that the location of species-centric landmarks plays a 
large part in dictating spatial activity patterns. 

Bat activity is known to be highly variable and difficult to predict 
(Langton et al., 2010; Richardson et al., 2019; Silva et al., 2017). High 
variation in activity levels meant that predictions at best had an R2 value 
of 0.45 when regressed with the actual values (for Nyctalus 

Table 6 
Estimates, (adjusted) standard errors and p-values for all variables in global model. Variables not included in the final optimised models are denoted with -.   

Rhinolophus 
ferrumequinum 

Rhinolophus 
hipposideros 

Pipistrellus 
pipistrellus 

Pipistrellus 
pygmaeus 

Myotis spp. Nyctalus spp./Eptesicus 
serotinus 

Vegetated/non-veg. field 
boundary 

0.894 (±0.159), 
<0.001* 

1.402 (±0.337), 
<0.001* 

0.8 (±0.158), 
<0.001* 

0.109 (±0.241), 
0.65 

– 0.285 (±0.109), 0.01* 

Trees per 100 m 0.149 (±0.047), 
<0.001* 

0.149 (±0.14), 0.29 – 0.169 (±0.067), 
0.01* 

0.036 (±0.054), 
0.51 

– 

Height – − 0.112 (±0.167), 
0.5 

0.234 (±0.05), 
<0.001* 

0.374 (±0.081), 
<0.001* 

– – 

Width – 0.208 (±0.123), 0.09 – – 0.165 (±0.056), 
<0.001* 

– 

Improved grassland 0.079 (±0.158), 0.62 0.914 (±0.262), 
<0.001* 

¡0.542 (±0.152), 
<0.001* 

− 0.419 (±0.249), 
0.09 

− 0.022 (±0.085), 
0.79 

– 

Arable ¡0.624 (±0.202), 
<0.001* 

– ¡0.656 (±0.187), 
<0.001* 

− 0.479 (±0.298), 
0.11 

− 0.039 (±0.125), 
0.76 

– 

Livestock – − 0.381 (±0.222), 
0.09 

0.231 (±0.1), 0.02* 0.29 (±0.134), 
0.03* 

− 0.082 (±0.108), 
0.45 

0.232 (±0.068), 
<0.001* 

ESS – − 0.091 (±0.2), 0.65 – − 0.065 (±0.168), 
0.7 

¡0.499 (±0.178), 
0.01* 

– 

ALAN – − 0.023 (±0.07), 
0.74 

− 0.132 (±0.08), 0.1 ¡0.262 (±0.093), 
0.01* 

¡0.174 (±0.082), 
0.03* 

− 0.031 (±0.056), 0.59 

NDVI – 0.003 (±0.027), 0.91 0.083 (±0.084), 0.32 0.011 (±0.04), 0.79 0.02 (±0.052), 0.7 0.098 (±0.058), 0.09 
Woodland cover − 0.031 (±0.06), 0.6 0.199 (±0.097), 

0.04* 
− 0.023 (±0.049), 
0.64 

− 0.008 (±0.035), 
0.82 

– 0.156 (±0.053), 
<0.001* 

Urban/suburban cover − 0.081 (±0.07), 0.25 – 0.098 (±0.086), 0.25 – 0.075 (±0.078), 
0.34 

0.143 (±0.051), 
<0.001*  

Table 7 
Percentage change in activity for every one unit of predictor in global model. For binary variables this is the difference between true/false (e.g. arable/not arable). Note 
NDVI is very high because it is calculated on a scale of − 1 to 1, so an increase in one unit represents a large change, i.e. equivalent to the difference between bare rock 
and tropical rainforest.   

Rhinolophus 
ferrumequinum 

Rhinolophus 
hipposideros 

Pipistrellus 
pipistrellus 

Pipistrellus 
pygmaeus 

Myotis 
spp. 

Nyctalus spp./Eptesicus 
serotinus 

Vegetated/non-veg. field 
boundary 

144.58 306.52 122.57 11.52 – 32.94 

Trees per 100 m 2.45 2.45 – 2.79 0.58 – 
Height – − 4.22 9.43 15.45 – – 
Width – 5.23 – – 4.14 – 
Improved grassland 8.22 149.38 − 41.82 − 34.26 − 2.22 – 
Arable − 46.41 – − 48.09 − 38.05 − 3.79 – 
Livestock – − 31.70 26.01 33.65 − 7.86 26.17 
ESS – − 8.67 – − 6.27 − 39.29 – 
ALAN – − 0.73 − 4.07 − 7.92 − 5.33 − 0.96 
NDVI – 7.34 599.94 27.96 60.46 890.30 
Woodland cover − 0.33 2.16 − 0.24 − 0.09 – 1.69 
Urban/suburban cover − 0.78 – 0.95 – 0.73 1.40  
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spp./E. serotinus), but for most species this was considerably less 
(Table 5). 

The predicted activity maps generated in this study (Fig. 10) describe 
spatial activity patterns during our study period, albeit a smoothed-over 
version of true activity. It is unclear whether this would be representa
tive of activity at the same sites in subsequent years, although there is 
evidence to suggest that activity hotspots change over time (Medinas 
et al., 2021). Border et al. (2022) used a similar modelling and mapping 
approach to ours, but treated bat activity as a proxy of habitat suit
ability. While there almost certainly is a link between habitat suitability 
and bat activity levels, based on our findings we would not recommend 
using predictive modelling of bat activity as a substitute for habitat 
suitability until the relationship between the two has been better 
characterised. 

5. Conclusions 

Our results add to a growing understanding of the value of field 
boundaries for bats. We shed new light on the specific aspects of field 
boundary structure that benefit bats and identify a number of measures 
that could be used for habitat restoration and species conservation. We 
show that increasing the area of vegetated field boundaries, planting 
hedgerow trees and developing tall and outgrown hedgerows will 
enhance agricultural landscapes for many species. Our results show how 
field boundaries can be a valuable tool in developing biodiversity- 
friendly agricultural landscapes. 
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