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Multi-direction gradient iterative algorithm: a
unified framework for gradient iterative and least

squares algorithms
Jing Chen, Junxia Ma*, Min Gan, Quanmin Zhu

Abstract—In this study, a multi-direction-based gradient it-
erative (GI) algorithm for Hammerstein systems with irregular
sampling data is proposed. The algorithm updates the parameter
estimates using several orthogonal directions at each iteration.
The convergence rate is significantly improved with an increasing
number of directions. The convergence property and two sim-
ulation examples are provided to demonstrate the effectiveness
of the proposed algorithm. In addition, the multi-direction-based
GI algorithm establishes a relationship between the traditional
GI and least squares (LS) algorithms. Thus, our algorithm that
combines the LS and GI algorithms constructs an identification
framework for a significantly wider class of systems.

Index Terms—Hammerstein system, multi-direction, GI algo-
rithm, irregular sampling, computational load, convergence rate

I. INTRODUCTION

The least squares (LS) and gradient iterative (GI) algorithms are
two classical types of parameter estimation methods, which are
widely applied in system identification [1], [2]. The basic idea of
the LS algorithm is to obtain an analytical solution of a derived
derivative function whose primitive function is typically defined as
the error between the true and predicted outputs [3]. The LS algorithm
can obtain the solution in only one iteration via the current input-
output data. However, a matrix inversion is involved in the LS
algorithm, which leads to heavy computational loads, particularly for
large-scale [4] or hidden-variable systems [5]. Moreover, a derivative
function can sometimes be unsolvable when the considered models
have complex structures [6], such as the exponential autoregressive
model [7] and rational model [8].

To avoid performing a matrix inversion and to reduce the com-
putational power required by the LS algorithm, the GI algorithm is
considered as a good alternative. The direction and step-size are two
decisive factors in the GI algorithm setup [9], [10]. The direction,
typically known as negative gradient, can cause the estimates to
move toward the true values, while the step-size can determine the
convergence rate. Note that the GI algorithm does not require the
derivative function calculation, thus it can be extended to complex
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nonlinear model identification. However, the zigzagging nature of
the GI algorithm leads to slow convergence rates. In addition, the
eigenvalue calculation makes the GI algorithm inefficient for large-
scale system identification [11]. Therefore, the design of modified
GI algorithms that have faster convergence rates and no eigenvalue
calculation remains an open and challenging research question [12].

There are two ways to improve the estimation efficiency of GI
algorithms. The first is to determine an optimal direction rather
than the negative gradient direction, which can be achieved by
adopting the conjugate gradient iterative (CGI) [13], [14] and the
multi-innovation-based GI (MI-GI) algorithms [15]. The other is to
obtain a suitable step-size at each iteration, which can be achieved
by adopting the forgetting factor GI [16] and multi-step-size GI
algorithms [17]. The CGI algorithm assigns a linear combination of
two orthogonal neighboring directions in a new direction. However,
when the considered systems have high-order or hidden variables,
the CGI algorithm can be inefficient. Unlike the CGI algorithm, the
MI-GI algorithm performs several innovations (directions) at each
iteration to increase the convergence rate, but these innovations are
not orthogonal, leading to the lack of confidence in the number of
innovations. Therefore, the convergence rates of the MI-GI algorithm
may not be improved with an increasing number of innovations.
Motivated by the CGI and MI-GI algorithms, this study focuses
on direction devising. The multi-direction-based GI (MUL-D-GI)
algorithm designed here is expected to provide a concise analytical
solution for future studies.

Nonlinear systems widely exist in process control industries.
Different types of nonlinear models are used to describe the dynamics
of complex systems, such as the Hammerstein model, [18], the
rational model [19], and the output nonlinear model [20], [21]. This
paper develops an MUL-D-GI algorithm for Hammerstein models.
Several orthogonal directions are involved at each iteration, which
can improve the convergence rate of the GI algorithm. Furthermore,
the optimal number of directions for each iteration and relationships
among the GI, MUL-D-GI, and LS algorithms are determined. In
summary, the contributions of this paper are as follows.

(1) The MUL-D-GI algorithm has a faster convergence rate than
that of the GI algorithm, and can thus be extended to large-scale
systems.

(2) The MUL-D-GI algorithm has a lower computational load than
that of the LS algorithm, and can thus be applied to nonlinear models
with complex structures.

(3) The MUL-D-GI algorithm establishes a link between the GI
and LS algorithms, thus constructing an identification framework for
a considerable wider class of systems.

(4) The properties of the MUL-D-GI algorithm are presented,
serving as a guide for researchers to select the optimal number of
directions on a case-by-case basis.

The remainder of this paper is organized as follows: Section II in-
troduces the Hammerstein models and traditional identification algo-
rithms; Section III investigates the two-direction-based GI algorithm;
Section IV derives the multi-direction-based GI algorithm and states
its properties; Section V provides two simulation examples; Finally,
Section VI summarizes the study and discusses future directions.
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II. HAMMERSTEIN MODELS AND TRADITIONAL
IDENTIFICATION ALGORITHMS

Consider the following Hammerstein model

α(z)y(t) = β(z)g(u(t)) + v(t), (1)

where y(t) is the output, u(t) is the input with bounded values
that is persistently excited, and v(t) is a Gaussian white noise
satisfying v(t) ∼ N(0, σ2). α(z) and β(z) are polynomials, which
are expressed as

α(z) = 1 + α1z
−1 + · · ·+ αqz

−q,

β(z) = β0 + β1z
−1 + · · ·+ βmz−m,

where z−iu(t) = u(t− i) and z−iy(t) = y(t− i), respectively. The
structure of the nonlinear function g(u(t)) is known a priori and can
be expressed as follows

g(u(t)) = r1g1(u(t)) + · · ·+ rhgh(u(t)).

In system identification, α(z) is assumed to be stable, which implies
that the bounded input {u(t)} can generate a bounded output {y(t)}.
The Hammerstein model is simplified as

y(t) = ϕT(t)ϑ+ v(t),

ϕ(t) = [−y(t− 1), · · · ,−y(t− q), g1(u(t)), · · · , gh(u(t)),
g1(u(t− 1)), · · · , gh(u(t− 1)), · · · , g1(u(t−m)), · · · ,
gh(u(t−m))]T ∈ Rn, n = q + (m+ 1)h,

ϑ= [α1, · · · , αq, β0r1, · · · , β0rh, β1r1, · · · ,
β1rh, · · · , βmr1, · · · , βmrh]

T ∈ Rn.

Product terms exist in the parameter vector. Thus, to obtain a unique
estimate for each parameter, either β0 or r1 should be fixed. Here,
we assume that β0 = 1. Then, the parameter vector is

ϑ= [α1, · · · , αq, r1, · · · , rh, β1r1, · · · ,
β1rh, · · · , βmr1, · · · , βmrh]

T.

Once the parameter vector estimate is obtained, we can get all the un-
known parameter estimates by using the over-parametrization method
[22], [23]. However, the product terms in the parameter vector may
lead to multiple unknown parameters, which makes the traditional
methods inefficient, especially for large-scale Hammerstein models.

Systems with irregular sampling data are common in modern
engineering because of the absence of online measurements for
certain quality variables [24]–[26]. In this paper, we assume that the
input data u(t), t = 1, 2, · · · , L are sampled at a fixed interval ∆t,
while the output data y(Ti), i = 1, 2, · · · , N are irregularly sampled
at time instant t = Ti∆t, Ti is an integer, and L > n (that means
the length of the sampled data must be larger than the number of
unknown parameters) [3], [27].

Define

Y (L) = [y(L), y(L− 1), · · · , y(1)]T ∈ RL,

Φ(L) = [ϕ(L),ϕ(L− 1). · · · ,ϕ(1)]T ∈ Rn×L,

V (L) = [v(L), v(L− 1), · · · , v(1)]T ∈ RL.

The Hammerstein model is transformed into

Y (L) =ΦT(L)ϑ+ V (L). (2)

Since the output vector Y (L) and the information matrix Φ(L)
contain unknown inner variables y(Ti + j) (i = 1, · · · , N − 1, j =
1, 2, · · · , Ti+1 − Ti − 1), the traditional GI algorithm is inefficient
for the Hammerstein model. To overcome this difficulty, at iteration
k−1, the output estimates ŷk−1(Ti+ j) estimated via the parameter
estimates ϑk−1 are typically employed to replace the true outputs
y(Ti + j) [28], [29].

The GI algorithm for Hammerstein models with random sampled
data is given as follows

ϑk = ϑk−1 + Φ̂k−1(L)[Ŷk−1(L)− Φ̂
T

k−1(L)ϑk−1]γk−1,

ŷk−1(Ti + j) = ϕ̂
T

k−1(Ti + j)ϑk−1, i = 1, · · · , N − 1,

j = 1, · · · , Ti+1 − Ti − 1,

Ŷk−1(L) = [y(L), · · · , ŷk−1(Ti + j), · · · , y(1)]T,
Φ̂k−1(L) = [ϕ̂k−1(L), · · · , ϕ̂k−1(Ti + j), · · · , ϕ̂k−1(1)]

T,

ϕ̂k−1(t) = [−y(t− 1), · · · ,−ŷk−1(Ti + j), · · · ,−y(t− n),

g1(u(t)), · · · , gh(u(t)), g1(u(t− 1)), · · · ,
gh(u(t− 1)), · · · , g1(u(t−m)), · · · , gh(u(t−m))]T.

γk−1 is the step-size at iteration k − 1, and satisfies

0 < γk−1 <
2

λmax[Φ̂k−1(L)Φ̂
T

k−1(L)]
,

where λmax[A] is the maximum eigenvalue of the matrix A [30].
Remark 1: Although the GI algorithm can estimate the parameters

and the missing outputs, it has two disadvantages: (1) the convergence
rate of the GI algorithm is slow because of its zigzagging nature; (2)
the calculation of the maximum eigenvalue of a high-order matrix is
challenging.

On the other hand, the LS algorithm for this Hammerstein model
is summarized as

ϑk = [Φ̂k−1(L)Φ̂
T

k−1(L)]
−1Φ̂k−1(L)Ŷk−1(L).

Remark 2: The LS algorithm can obtain the parameter estimates
with faster convergence rates when compared with the GI algorithm,
but it involves two challenges: (1) the matrix inverse calculation, es-
pecially for large-scale systems; (2) the assumption that the derivative
function must have an analytical solution.

Remark 3: Since the information matrix Φ̂k−1(L) varies with the
output estimates, the step-size γk−1 (GI) or the matrix inversion (LS)
must be calculated at each iteration to maintain convergence of the
algorithms, leading to heavy computational loads.

III. TWO-DIRECTION-BASED GI ALGORITHM

Inspired by the CGI algorithm, a novel GI algorithm that uses two
directions at each iteration is developed in this section. This algorith-
m, named the two-direction-based GI (TD-GI) algorithm, avoids the
maximum eigenvalue calculation and has a faster convergence rate.

A. One-direction-based GI algorithm
Define the cost function at iteration k as

J(ϑod
k ) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑ
od
k ∥2, (3)

where the index od means one− direction. Next, we will compute
ϑod

k based on the parameter vector estimate ϑod
k−1.

The gradient descent direction is given as

dk−1 = Φ̂k−1(L)[Ŷk−1(L)− Φ̂
T

k−1(L)ϑ
od
k−1]. (4)

Then, the parameter estimates at iteration k can be computed by

ϑod
k = ϑod

k−1 + dk−1γk−1.

Substituting the above equation into Equation (3) yields

J(γk−1)

=
1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑ
od
k−1 − Φ̂

T

k−1(L)dk−1γk−1∥2. (5)

Taking the derivative of J(γk−1) with respect to γk−1 and then
equating it to zero yields

γk−1 =
dT
k−1dk−1

dT
k−1Φ̂k−1(L)Φ̂

T

k−1(L)dk−1

. (6)

Remark 4: Although the one-direction-based GI (OD-GI) algorithm
has the same structure as the GI algorithm, their step-size calculation
procedures are different. The OD-GI algorithm does not require the
calculation of the maximum eigenvalue, and can thus be extended to
large-scale systems.
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B. Two-direction-based GI algorithm
In the TD-GI algorithm, the optimal direction is a linear combi-

nation of the two neighboring negative gradient directions.
The two neighboring negative gradient directions are orthogonal;

thus, the two directions at iteration k − 1 are computed as follows

d1k−1 = dk−1,

d2k−1 =Qd1k−1 − (Qd1k−1, d
1
k−1)

d1k−1

∥d1k−1∥2
,

in which Q ̸= E and Q ∈ Rn×n is a nonsingular matrix, E is
an identity matrix, and (Qd1k−1, d

1
k−1) = [d1k−1]

TQd1k−1. Clearly,
[d1k−1]

Td2k−1 = 0. The parameter estimates at iteration k using the
TD-GI algorithm are computed as

ϑtd
k = ϑtd

k−1 + [d1k−1, d
2
k−1]γk−1, (7)

where the index td means two− direction, and

γk−1 =

[
r1k−1

r2k−1

]
.

Substituting Equation (7) into Equation (3), and taking the derivative
of J(γk−1) with respect to γk−1 and then equating it to zero yields

γk−1 =

[
r1k−1

r2k−1

]
=

[
a b
b c

]−1
[

[d1k−1]
Td1k−1
0

]
= c[d1k−1]

Td1k−1

ac−b2

−b[d1k−1]
Td1k−1

ac−b2

, (8)

where

a= [d1k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
1
k−1,

b= [d1k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
2
k−1,

c= [d2k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
2
k−1.

Therefore, the TD-GI algorithm is summarized as follows

ϑtd
k = ϑtd

k−1 + [d1k−1, d
2
k−1]γk−1,

d1k−1 = Φ̂k−1(L)[Ŷk−1(L)− Φ̂
T

k−1(L)ϑ
td
k−1],

d2k−1 =Qd1k−1 − (Qd1k−1, d
1
k−1)

d1k−1

∥d1k−1∥2
,

γk−1 =

 c[d1k−1]
Td1k−1

ac−b2

−b[d1k−1]
Td1k−1

ac−b2

.
Remark 5: In the TD-GI algorithm, the direction is a linear com-

bination of the two orthogonal directions. Therefore, the convergence
rate is faster than that of the OD-GI algorithm. The proof is presented
in the following subsection.

C. Relationship between OD-GI and TD-GI algorithms
Assume that the parameter vector estimate at iteration k − 1

satisfies ϑod
k−1 = ϑtd

k−1 = ϑk−1.
Case 1: The cost function of the OD-GI algorithm : J(ϑod

k )
The cost function of the OD-GI algorithm at iteration k is

J(ϑod
k ) = J(ϑk−1)−

[Ŷk−1(L)− Φ̂
T

k−1(L)ϑk−1]
TΦ̂

T

k−1(L)dk−1γk−1

+
1

2
dT
k−1Φ̂k−1Φ̂

T

k−1(L)dk−1γ
2
k−1.

Since [Ŷk−1(L) − Φ̂
T

k−1(L)ϑk−1]
TΦ̂

T

k−1(L) = dT
k−1, the above

equation can be simplified as

J(ϑod
k ) = J(ϑk−1)− dT

k−1dk−1γk−1

+
1

2
dT
k−1Φ̂k−1Φ̂

T

k−1(L)dk−1γ
2
k−1. (9)

Substituting Equation (6) into Equation (9) yields

J(ϑod
k ) = J(ϑk−1)−

1

2
dT
k−1dk−1γk−1, (10)

which implies that
J(ϑod

k ) 6 J(ϑk−1).

Case 2: The cost function of the TD-GI algorithm: J(ϑtd
k )

The cost function of the TD-GI algorithm at iteration k is

J(ϑtd
k ) = J(ϑk−1)−

[Ŷk−1(L)− Φ̂
T

k−1(L)ϑk−1]
TΦ̂

T

k−1(L)[d
1
k−1, d

2
k−1]γk−1

+
1

2
γT
k−1[d

1
k−1, d

2
k−1]

TΦ̂k−1Φ̂
T

k−1(L)[d
1
k−1, d

2
k−1]γk−1.

Since d1k−1 is orthogonal to d2k−1, the above equation can be
simplified as

J(ϑtd
k ) = J(ϑk−1)−

[[d1k−1]
Td1k−1, 0]γk−1 +

1

2
γT
k−1

[
[d1k−1]

Td1k−1
0

]
. (11)

Substituting Equation (8) into Equation (11) yields

J(ϑtd
k ) = J(ϑk−1)−

1

2
[d1k−1]

Td1k−1

c[d1k−1]
Td1k−1

ac− b2
. (12)

This demonstrates that

J(ϑtd
k ) 6 J(ϑk−1).

Remark 6: Let ϑk = ϑod
k or ϑtd

k ; then, the cost function satisfies
J(ϑk) 6 J(ϑk−1), which implies that both the OD-GI and TD-GI
algorithms converge.

According to Equations (6) and (8), we have

1

2
dT
k−1dk−1rk−1 =

1

2
dT
k−1dk−1

dT
k−1dk−1

a

6 1

2
[d1k−1]

Td1k−1

c[d1k−1]
Td1k−1

ac− b2
.

It gives rise to

J(ϑtd
k ) 6 J(ϑod

k ). (13)

Remark 7: Inequality (13) indicates that the TD-GI algorithm has
a faster convergence rate than that of the OD-GI algorithm.

IV. MULTI-DIRECTION-BASED GI ALGORITHM

Remark 7 shows that the TD-GI algorithm has a faster convergence
rate than that of the OD-GI algorithm. Section IV focuses on whether
the convergence rate can be improved by increasing the number of
directions.

A. Three-direction-based GI algorithm
Let the direction be [d1k−1, d

2
k−1, d

3
k−1], [d

i
k−1]

Tdjk−1 = 0, i ̸= j.
The parameter estimates ϑthd

k are updated by

ϑthd
k = ϑthd

k−1 + [d1k−1, d
2
k−1, d

3
k−1]γk−1,

where the index thd means three− direction. The associated step-
size is computed by

γk−1 =

[
a b d
b c f
d f e

]−1[
[d1k−1]

Td1k−1
0
0

]
, (14)

where

a= [d1k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
1
k−1,

b= [d1k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
2
k−1,

c= [d2k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
2
k−1,
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d= [d1k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
3
k−1,

e= [d3k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
3
k−1,

f = [d2k−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
3
k−1.

Let ϑtd
k−1 = ϑthd

k−1 = ϑk−1, the following theorem can be
obtained.

Theorem 1: Assume that the cost function at iteration k of the
three-direction-based GI (ThD-GI) algorithm is

J(ϑthd
k ) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑ
thd
k ∥2,

and the cost function at iteration k of the TD-GI algorithm is

J(ϑtd
k ) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑ
td
k ∥2.

Then, the following inequality holds

J(ϑthd
k ) 6 J(ϑtd

k ).

Proof: The cost function J(ϑthd
k ) is computed by

J(ϑthd
k ) = J(ϑk−1)−

1

2
[d1k−1]

Td1k−1

[ce− f2][d1k−1]
Td1k−1

ace+ 2bfd− d2c− b2e− f2a
.

Note that

ce− f2

ace+ 2bfd− d2c− b2e− f2a
> c

ac− b2
.

This demonstrates that

J(ϑthd
k ) 6 J(ϑtd

k ),

which implies that the GI algorithm with three directions has a faster
convergence rate than that of the GI algorithm with two directions.

Two questions naturally arise: whether the number of directions
have an upper bound; whether the convergence rates are improved
with an increasing number of directions. The following two subsec-
tions focus on these aspects.

B. Multi-direction-based GI algorithm
Assume that the direction at iteration k − 1 is dk−1 =

[d1k−1, d
2
k−1, · · · , dlk−1], [dik−1]

Tdjk−1 = 0, i ̸= j. The parameter
estimates at iteration k are computed by

ϑl
k = ϑl

k−1 + [d1k−1, d
2
k−1, · · · , dlk−1]γk−1, (15)

where

γk−1 =


a1,1 a1,2 · · · a1,l
a1,2 a2,2 · · · a2,l

...
...

. . .
...

a1,l a2,l . . . al,l


−1


[d1k−1]

Td1k−1
0
...
0

, (16)

ai,j = [dik−1]
TΦ̂k−1(L)Φ̂

T

k−1(L)d
j
k−1. (17)

To prove that J(ϑl
k) 6 J(ϑl−1

k ), the following lemmas are given.
For simplicity, let the matrix A ∈ Rn×n be expressed by

[ai,j ]1:n,1:n, and ai,j be the element in the ith row and jth column.
{1 : n, 1 : n} indicates that the first and last elements are a1,1 and
an,n, respectively.

Lemma 1: Assume that A = [ai,j ]1:n,1:n, rank(A) = n, n > 2,
and B = A−1 is written as B = [bi,j ]1:n,1:n. Then, the first element
b1,1 in B is

b1,1 =
|C|
|A| ,

where C = [ai,j ]2:n,2:n ∈ R(n−1)×(n−1).

Proof: Based on the matrix theory, matrix B can be computed
as

B =
A∗

|A| ,

where A∗ is the adjoint matrix of A. Then, it follows that

b1,1 =
|C|
|A| .

Lemma 2: Assume that A ∈ Rn×n, n > 2 is a symmetric positive-
determined (SPD) matrix. There exists a nonsingular matrix P ∈
Rn×n, which maintains the following equality

P TAP = E,

where E ∈ Rn×n is an identity matrix.
(The derivation is straightforward and hence omitted.)

Lemma 3: Assume that x = [x1, x2, · · · , xl] ∈ Rn×l, rank(x) =
l, 2 6 l < n, and A ∈ Rn×n is an SPD matrix. Then,

C = xTAx

is also an SPD matrix.

(The proof of Lemma 3 is given in Appendix A.)

Lemma 4: Assume that all the matrices A ∈ Rn×n, B ∈
R(n−1)×(n−1), C ∈ R(n−1)×(n−1), and D ∈ R(n−2)×(n−2), n >
3 are symmetric and positive definite, and are written as A =
[ai,j ]1:n,1:n, B = [ai,j ]2:n,2:n, C = [ai,j ]1:n−1,1:n−1, and D =
[ai,j ]2:n−1,2:n−1. Then, the following inequality holds

|B|
|A| >

|D|
|C| .

(Refer to the detailed derivation in Appendix B.)

Let ϑl−1
k−1 = ϑl

k−1 = ϑk−1. Then, based on Lemmas 1-4, the
following theorem is obtained.

Theorem 2: For the Hammerstein model proposed in (2), the
parameter vector estimate ϑl

k based on direction dl
k−1 =

[d1k−1, d
2
k−1, · · · , dlk−1], l > 3 is updated by Equations (15)-(17),

while the parameter vector estimate based on direction dl−1
k−1 =

[d1k−1, d
2
k−1, · · · , dl−1

k−1] is ϑl−1
k . The cost functions using these two

estimates are J(ϑl
k) and J(ϑl−1

k ), respectively. Then, the following
inequality holds

J(ϑl
k) 6 J(ϑl−1

k ).

(The detailed derivation is presented in Appendix C.)

Remark 8: Theorem 2 shows that having more directions leads to
faster convergence rates, albeit at the cost of heavier computational
loads.

The missing outputs at iteration k − 1 are approximated by
ŷk−1(Ti + j) = ϕ̂

T

k−1(Ti + j)ϑk−1. Then, the steps of the MUL-
D-GI algorithm are listed as follows:

C. Relationship between the two neighboring directions in the
MUL-D-GI algorithm

Case 1: l = n
Let the direction be [d1k−1, · · · , dnk−1]. Then, the parameter esti-

mates are
ϑn

k = ϑn
k−1 + [d1k−1, · · · , dnk−1]γk−1.

The source direction at iteration k is

d1k = Φ̂k−1(L)[Ŷk−1(L)− Φ̂
T

k−1(L)ϑ
n
k ]

= d1k−1 − Φ̂k−1(L)Φ̂
T

k−1(L)[d
1
k−1, · · · , dnk−1]γk−1
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MUL-D-GI algorithm

Initialise ϑl
0 = 1/p0, Q ∈ Rn×n, Q ̸= E is a nonsingular

matrix, l is an integer
Collect measurable data u(1), · · · , u(L) and y(1), · · · , y(L)
repeat

for k = 1, 2, · · · , do
Compute ŷk−1(Ti + j), i = 1, · · · , N − 1,

j = 1, · · · , Ti+1 − Ti − 1
Form Ŷk−1(L)

Form ϕ̂k−1(t), t = 1, · · · , L, then form Φ̂k−1(L)

Compute dik−1, i = 1, · · · , l
Compute γk−1

Update ϑl
k

end
until convergence

= d1k−1 − {[d1k−1, · · · , dnk−1]
T}−1

 [d1k−1]
Td1k−1
0
· · ·
0

. (18)

Define
Dn = [d1k−1, · · · , dnk−1].

Then, we have
DT

nDn = diag[λ1, · · · , λn],

where λi = [dik−1]
Tdik−1. This gives rise to

[DT
n]

−1 = Dn {diag[λ1, · · · , λn]}−1 . (19)

Substituting Equation (19) into Equation (18) yields,

d1k = d1k−1 − d1k−1 = 0.

Remark 9: When the number of directions is equal to the number of
unknown parameters, the MUL-D-GI algorithm can yield the optimal
parameter estimates in one iteration via the current input-output data,
that is, the upper bound of the directions is l = n.

Case 2: l < n
Assume that all outputs are measurable, and l < n. The direction

at iteration k − 1 is

dk−1 = [d1k−1, d
2
k−1, · · · , dlk−1].

The source direction at iteration k is

d1k = Φ(L)[Y (L)−ΦT(L)ϑk] ̸= 0.

Multiplying the above equation on both sides with dT
k−1 yields

dT
k−1d

1
k = dT

k−1Φ(L)[Y (L)−ΦT(L)ϑk]

= dT
k−1Φ(L)[Y (L)−ΦT(L)ϑk−1 −ΦT(L)×

[d1k−1, d
2
k−1, · · · , dlk−1]γk−1]

= [[d1k−1]
Td1k−1, 0, · · · , 0]T − [[d1k−1]

Td1k−1, 0, · · · , 0]T ×
Φ(L)ΦT(L)[d1k−1, d

2
k−1, · · · , dlk−1]γk−1. (20)

According to Equations (16) and (17), the above equation can be
simplified as

dT
k−1d

1
k = [[d1k−1]

Td1k−1, 0, · · · , 0]T − [[d1k−1]
Td1k−1, 0, · · · , 0]T

= [0, 0, · · · , 0]T. (21)

Remark 10: When the system does not have hidden variables, the
source direction d1k at iteration k is orthogonal to the previous direc-
tion dk−1. This implies that the MUL-D-GI algorithm is convergent.

Remark 11: When l = 1, the MUL-D-GI algorithm is equivalent to
the GI algorithm. In contrast, when l = n, the MUL-D-GI algorithm
can be regarded as the LS algorithm. Therefore, the MUL-D-GI
algorithm establishes a bridge that links the GI and LS algorithms;
as depicted in Fig. 1.

GI MUL-D-GI, l < n LSppppppppppp p p p p GI≈ MUL-D-GI
l = 1

p p p p pppppppp
ppp
pppppppp
ppp
p p p p p MUL-D-GI≈LS

l = n
p p p p p pppppppp

ppp

Fig. 1. Relationship among these three algorithms

V. SIMULATION EXAMPLES

A. Example 1
Consider the Hammerstein model in [31],

α(z)y(t) = β(z)g(u(t)) + v(t), g(u(t)) = 0.9u(t) + 0.4u2(t),

α(z) = 1 + α1z
−1 = 1 + 0.8z−1, β(z) = 1 + β1z

−1 = 1 + 0.3z−1,

ϕ(t) = [−y(t− 1), u(t), u2(t), u(t− 1), u2(t− 1)]T,

ϑ = [α1, r1, r2, β1r1, β1r2]
T = [0.8, 0.9, 0.4, 0.27, 0.12]T.

The input {u(t)} satisfies N(0, 1), {v(t)} is a white noise satisfying
N(0, 0.12), and the number of the input-output data is L = 500.
The outputs at the sampling instants 1, 3, 5, · · · , 499 are measurable,
while the others are not.

Apply the traditional GI algorithm (γk−1 =
1

λmax[
ˆΦk−1(L)

ˆΦ
T
k−1(L)]

) and the MUL-D-GI algorithm (with

different directions: OD-GI, TD-GI, and ThD-GI) to the Hammerstein
model. The estimation errors δ = ∥ϑk−ϑ∥

∥ϑ∥
are depicted in Fig. 2.

The parameter estimates and their errors using the traditional GI and
OD-GI algorithms are presented in Table I. The output estimates
(t = 450− 500) using the traditional GI and OD-GI algorithms are
shown in Fig. 3.

Furthermore, the parameter estimation errors of the three algo-
rithms for a batch of dynamic data are depicted in Fig. 4. The
length of this batch of dynamic data is fixed, but the data window
moves forward dynamically. This implies that when new sampling
data are collected, the oldest data are removed. Therefore, the data
participating in the iterative algorithm are a batch of the latest data.

TABLE I
PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS

Algorithm k α1 r1 r2 β1r1 β2r2 δ (%)

50 0.7473 0.3525 0.5057 -0.0781 0.1529 50.6860
GI 200 0.7851 0.7436 0.4263 0.0100 0.1626 23.6356

400 0.7948 0.8749 0.4039 0.1850 0.1352 6.9213
500 0.7973 0.8926 0.4015 0.2268 0.1288 3.4384
50 0.7960 0.9003 0.3991 0.2393 0.1233 2.3896

OD-GI 200 0.7980 0.9045 0.3994 0.2719 0.1184 0.4239
400 0.7980 0.9045 0.3994 0.2719 0.1184 0.4239
500 0.7980 0.9045 0.3994 0.2719 0.1184 0.4239

True Values 0.8000 0.9000 0.4000 0.2700 0.1200

Then, the following findings are obtained:
(1) The parameter estimates asymptotically converge to their true

values using both the GI and OD-GI algorithms, as shown in Fig. 2
and Table I;

(2) The convergence rates are improved with an increasing number
of directions, as shown in Fig. 2;

(3) The output estimates based on the GI and OD-GI algorithms
can capture their true values, see Fig. 3;

(4) The ThD-GI algorithm has the minimum estimation error for
the same number of iterations, as depicted in Fig. 4.
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Fig. 2. Parameter estimation errors
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Fig. 4. Parameter estimation error for a batch of dynamic data

B. Example 2

Consider the following Hammerstein model with 17 unknown
parameters,

α(z)y(t) = β(z)g(u(t)) + v(t),

α(z) = 1− 0.2z−1,

β(z) = 0.4z−1 − 0.2z−2 + 0.6z−3 − 0.3z−4 + 0.3z−5 +

0.2z−6 + 0.2z−7 − 0.5z−8,

g(u(t)) = r1u(t) + r2u
2(t) = u(t) + 0.5u2(t),

ϕ(t) = [−y(t− 1), u(t− 1), u2(t− 1), · · · , u(t− 8), u2(t− 8)]T,

ϑ = [α1, β1r1, β1r2, · · · , β8r1, β8r2]
T,

u ∼ N(0, 1), v ∼ N(0, 0.12).

We sample L = 100 data points for fast-rate inputs and sample four
outputs at every five fast-rate sampling intervals. Thus, the output
data y(5), y(10), y(15), · · · , y(95), y(100) are unmeasurable, while
the other input and output data are available.

Monte Carlo simulations (with 100 different noise seeds) were
performed based on the LS, GI, and MUL-D-GI (l =3) algorithms.
The parameter estimation errors are shown in Fig. 5. The elapsed
time of these three algorithms is displayed in Table II (by Intel(R)
Core(TM) i5-7220U: 2.50GHz, 2.71GHz; RAM: 8.0 GB; Windows
10). This example shows that all three algorithms are robust to noise,
and the MUL-D-GI algorithm has the shortest elapsed time.

The computational flops using (only the number of multiplications
and divisions) the LS, GI, and MUL-D-GI (l =2, 3 and 17) algorithms
are shown in Table III (with 30 iterations). Since we should compute
the maximum eigenvalue of the information matrix at each iteration,
it will lead to heavy computational efforts of the GI algorithm.
Table III demonstrates that the MUL-D-GI algorithm has the smallest
computational efforts when l < n, and the computational efforts of
the MUL-D-GI algorithm increase with an increasing number of l.
However, when l = n, the MUL-D-GI algorithm has much heavier
computational efforts than those of the LS algorithm because of the
direction calculation at each iteration.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

δ

 k

MUL−D−GI
LS
GI

Fig. 5. Parameter estimation errors δ versus k

TABLE II
ELAPSED TIMES

Algorithm LS GI MUL-D-GI (l = 3)
Time (second) 4.529 5.575 3.892

TABLE III
THE COMPUTATIONAL EFFORTS

Algorithm LS GI MUL-D-GI (l = 2) (l = 3) (l = 17)
Flop 1 074 060 1 166 040 982 050 994 890 1 420 350

VI. CONCLUSIONS

The MUL-D-GI algorithm proposed in this study benefits from
the advantages of both GI and LS methods. Therefore, not only can
it be applied to nonlinear systems with complicated structures but
it can also be extended to large-scale systems. The properties of the
MUL-D-GI algorithm are also stated, which can help researchers and
engineers select the optimal number of directions for their system
identification applications.

Our study shows that there exists a potential middle ground
between the LS and GI methods. Research the properties of this
common ground reflects a deep understanding and comprehension of
LS and GI algorithms. It is believed that this study is a good outline
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that provides easy and general solutions for parameter estimation in
different types of systems.
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Appendix A
Proof of Lemma 3. Let

B = [b1, b2, · · · , bl]T ∈ Rl,

and let there be at least one bi ̸= 0.
Because x1, x2, · · · , and xl are linearly independent, we have

xB = b1x1 + b2x2 + · · ·+ blxl ̸= 0,

where 0 = [0, 0, · · · , 0]T ∈ Rn. It follows that

BTxTAxB = [xB]TAxB.

Since A is an SPD matrix and xB ̸= 0,

[xB]TAxB > 0;

that is
BT[xTAx]B > 0,

which implies that xTAx is an SPD matrix.

Appendix B
Proof of Lemma 4. Since B is an SPD matrix, based on Lemma 2,
there exists a nonsingular matrix G1 ∈ R(n−1)×(n−1) which can
maintain GT

1BG1 = E ∈ R(n−1)×(n−1). The matrix A can be
rewritten as

A =
[
a1,1 ρT

1
ρ1 B

]
,

where ρ1 = [a1,2, a1,3, · · · , a1,n]
T. Introduce the matrix

F1 =
[
1 0T

0 G1

]
,

in which 0 = [0, · · · , 0]T ∈ Rn−1. This gives rise to

F T
1AF1 =

[
a1,1 ρT

1G1

GT
1ρ1 E

]
.

Assume that

H =

[
1 0T

−GT
1ρ1 E

]
,

then, it follows that

HTF T
1AF1H =

[
a1,1 − ρT

1G1G
T
1ρ1 0T

0 E

]
.

Because |H| = 1, we obtain

|B|
|A| =

|GT
1||B||G1|

|HT||F T
1 ||A||F1||H| =

|GT
1BG1|

|HTF T
1AF1H|

=
1

a1,1 − ρT
1G1GT

1ρ1
. (22)

In the same way, the determinant |D|
|C| is computed as

|D|
|C| =

1

a1,1 − ρT
2G2GT

2ρ2
,

where G2 ∈ R(n−2)×(n−2), GT
2DG2 = E ∈ R(n−2)×(n−2), and

ρ2 = [a1,2, a1,3, · · · , a1,n−1]
T.

In order to prove |B|
|A| >

|D|
|C| , we derive

1

a1,1 − ρT
1G1GT

1ρ1
> 1

a1,1 − ρT
2G2GT

2ρ2
, (23)

where a1,1 − ρT
1G1G

T
1ρ1 > 0, a1,1 − ρT

2G2G
T
2ρ2 > 0 and a1,1 > 0.

It shows that (23) is equivalent to

ρT
1G1G

T
1ρ1 > ρT

2G2G
T
2ρ2.

Since GT
1BG1 = E, it follows that G1G

T
1 = B−1. Let

B =
[
D r
rT an,n

]
,

where
r = [a2,n, a3,n, · · · , an−1,n]

T.

Define

P1 =
[
G2 0T

0 1

]
.

Transform the matrix B into

P T
1BP1 =

[
E GT

2r
rTG2 an,n

]
.

Define

P2 =
[
E −GT

2r
0 1

]
.

Then, we obtain

P T
2P

T
1BP1P2 =

[
E 0
0 an,n − rTG2G

T
2r

]
= Λ. (24)

Based on the above equation, it gives

B−1 = P1P2Λ
−1P T

2P
T
1 ,

which means that

ρT
1G1G

T
1ρ1 = ρT

1B
−1ρ1 = ρT

1P1P2Λ
−1P T

2P
T
1ρ1 = xTΛ−1x, (25)

where

x= P T
2P

T
1ρ1 =

[
E 0

−rTG2 1

][
GT

2 0
0T 1

][
ρ2
a1,n

]
=

[
GT

2ρ2
a1,n − rTG2G

T
2ρ2

]
. (26)

According to Equation (24), the following equality holds

|P2|2|P1|2|B| = an,n − rTG2G
T
2r > 0,

and Equation (25) can be transformed into

ρT
1G1G

T
1ρ1 = xTΛ−1x = [ρT

2G2, a1,n − rTG2G
T
2ρ2]×[

E 0
0 1

an,n−rTG2G
T
2r

][
GT

2ρ2
a1,n − rTG2G

T
2ρ2

]
= ρT

2G2G
T
2ρ2 +

(a1,n − rTG2G
T
2ρ2)

2

an,n − rTG2GT
2r

,

which implies that

ρT
1G1G

T
1ρ1 > ρT

2G2G
T
2ρ2.

Therefore, we have
|B|
|A| >

|D|
|C| .

Appendix C
Proof of Theorem 2. The cost function of the parameter estimates
ϑ̂

l

k is

J(ϑl
k) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑ
l
k∥2.

Substituting Equation (15) into the above equation yields

J(ϑl
k) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑk−1∥2 −

[Ŷk−1(L)− Φ̂
T

k−1(L)ϑk−1]
T ×

Φ̂k−1(L)[d
1
k−1, d

2
k−1, · · · , dlk−1]γ

l
k−1 +
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1

2
[γl

k−1]
T[d1k−1, d

2
k−1, · · · , dlk−1]

T ×

Φ̂
T

k−1(L)Φ̂k−1(L)[d
1
k−1, d

2
k−1, · · · , dlk−1]γ

l
k−1.

According to Equations (15)-(17), it gives rise to

J(ϑl
k) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑk−1∥2 −

[[d1k−1]
Td1k−1, 0, · · · , 0]γl

k−1 +
1

2
[γl

k−1]
T[d1k−1, d

2
k−1, · · · , dlk−1]

T ×

Φ̂
T

k−1(L)Φ̂k−1(L)[d
1
k−1, d

2
k−1, · · · , dlk−1]γ

l
k−1. (27)

Based on Lemma 3, we observe that the matrix

[d1k−1, d
2
k−1, · · · , dlk−1]

TΦ̂
T

k−1(L)Φ̂k−1(L)[d
1
k−1, d

2
k−1, · · · , dlk−1]

is an SPD matrix, which implies that its inversion matrix is also an
SPD matrix.

It follows that Equation (27) can be simplified as

J(ϑl
k) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑk−1∥2 −
ρl1,1
2

{[d1k−1]
Td1k−1}2,

(28)

where ρl1,1 is the first element of the following matrix

A−1 =


a1,1 a1,2 · · · a1,l
a1,2 a2,2 · · · a2,l

...
...

. . .
...

a1,l a2,l . . . al,l


−1

∈ Rl×l. (29)

According to Lemma 1, ρl1,1 is computed as

ρl1,1 =
|B|
|A| ,

where B = [ai,j ]2:l,2:l ∈ R(l−1)×(l−1) and ai,j = aj,i. Similarly,
the cost function of the parameter estimates ϑ̂

l−1

k is

J(ϑl−1
k ) =

1

2
∥Ŷk−1(L)− Φ̂

T

k−1(L)ϑk−1∥2 −
ρl−1
1,1

2
{[d1k−1]

Td1k−1}2,

where

ρl−1
1,1 =

|D|
|C| ,

D = [ai,j ]2:l−1,2:l−1 ∈ R(l−2)×(l−2), ai,j = aj,i,

C = [ai,j ]1:l−1,1:l−1 ∈ R(l−1)×(l−1), ai,j = aj,i.

Therefore, based on Lemma 4, we have

ρl1,1 > ρl−1
1,1 .

It follows that
J(ϑl

k) 6 J(ϑl−1
k ).
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[1] P. Stoica and T. Söderström, “Bias correction in least-squares identifi-
cation,” Int. J. Control, vol. 35, no. 3, pp. 49-457, 1982.

[2] C.P. Yu, L. Ljung, A. Wills, and M. Verhaegen, “Constrained subspace
method for the identification of structured state-space models,” IEEE
Trans. Autom. Control, vol. 65, no. 10, pp. 4201-4214, 2020.
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