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Greedy search method for separable nonlinear
models using stage Aitken gradient descent and

least squares algorithms
Jing Chen, Yawen Mao*, Min Gan, Dongqing Wang, Quanmin Zhu

Abstract—Aitken gradient descent (AGD) algorithm takes
some advantages over the standard gradient descent (SGD) and
Newton methods: (1) can achieve at least quadratic convergence
in general; (2) does not require the Hessian matrix inversion; (3)
has less computational efforts. When using the AGD method for
a considered model, the iterative function should be unchanging
during all the iterations. This paper proposes a hierarchical AGD
algorithm for separable nonlinear models based on stage greedy
method. The linear parameters are estimated using the least
squares algorithm, and the nonlinear parameters are updated
based on the AGD algorithm. Since the iterative function is
changing at each iteration, a stage AGD algorithm is introduced.
The convergence properties and simulation examples show effec-
tiveness of the proposed algorithm.

Index Terms—Parameter estimation, hierarchical identification
algorithm, Aitken acceleration technique, convergence rate, sep-
arable nonlinear model

I. INTRODUCTION

Consider a separable nonlinear model [1]–[3]

y(t) = f(θN , Y (t− 1), U(t− 1))θL + v(t), (1)

where y(t) is the output, v(t) is a stochastic white noise with zero
mean and variance σ2, Y (t−1) and U(t−1) are the output and input
data sets before the sampling instant t, respectively, f(·) is a nonlinear
function with known structure, and θN ∈ Rn and θL ∈ Rm are
nonlinear and linear parameter vectors, respectively. Assume that we
have collected S input and output data {u(1), y(1), · · · , u(S), y(S)}
(S > m+ n). Define

Y (S) = [y(S), y(S − 1), · · · , y(1)]T,
F (θN , S) = [f(θN , Y (S − 1), U(S − 1)), f(θN , Y (S − 2),

U(S − 2)), · · · , f(θN , Y (0), U(0))]T,

V (S) = [v(S), v(S − 1), · · · , v(1)]T.

Then, it gives rise to

Y (S) = F (θN , S)θL + V (S).

The focus of this paper is to use the generated input and output
data {u(1), y(1), · · · , u(S), y(S)} to estimate the parameters θ =
{θN ,θL}.
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If a derivative equation of a cost function has analytical solutions,
the least squares (LS) algorithm can obtain the optimal estimates
in only one iteration [4]–[6]. However, the majority of nonlinear
equations are not solvable analytically. Using the LS algorithm for
such models can be problematic [7]. Fortunately, the gradient descent
(GD) algorithm is a great choice which does not require solving
a derivative equation, thus it can be applied to nonlinear models
with complex structures [8]–[10]. Designing a suitable step-size plays
an important role when running a GD algorithm: a small step-size
usually leads to slow convergence rates, while a larger one may cause
divergence. In [11], an optimal step-size is given which involves
the eigenvalue calculation. However, calculating the eigenvalues is
challenging for high-order information matrices.

In the separable nonlinear model, the nonlinear parameters are
embedded in the structures [12]–[14]. Therefore, the LS algorithm
cannot simultaneously estimate the nonlinear and linear parameters.
The GD algorithm can be efficient but with quite slow convergence
rates. To increase the convergence rates, the Newton, quasi-Newton
and Gauss-Newton (GN) methods are applied to these nonlinear
models, these methods have faster convergence rates with the cost of
heavier computational costs [15]–[17]. Recently, researchers usually
use the hierarchical technique to decompose the separable nonlinear
model into two submodels: one is a linear model, and the other is a
nonlinear model, and then separately identify these two submodels
[18], [19]. For example, in [20], the linear parameters are estimated
using the LS algorithm, and the nonlinear parameters are estimated
based on the GD algorithm. Different from the work in [20], Gan
proposed a variable projection GN (VP-GN) algorithm for a separable
nonlinear model, and by which the parameter estimates can quickly
converge to the true values [12]. Since the VP method may lead
to complex nonlinear cost function and the GN method involves
the matrix inversion, the VP-GN method can be inefficient for
systems who have high-order nonlinear parameter vectors or complex
nonlinear structures [3].

The Aitken method is an efficient technique which can increase
the convergence rates from linear convergence to at least quadratic
convergence [21], [22]. Its basic idea is to increase the convergence
rates using dual-drive technology: one is the original iterative function
generated by a linear convergent algorithm, e.g., the GD method [23],
the power method [24]; and the other is a transformed function which
is constructed by the original iterative function. Compared with the
Newton method, the Aitken based method avoids the matrix inverse
calculation, thus can be extended to nonlinear systems with high-
order. However, it has an assumption that the original function should
be unchanged during the iterations [25]. Once the systems have
hidden variables, the Aitken accelerating method would be inefficient.
For example, in the hierarchical identification algorithms, the linear
parameter estimates are changing at each iteration, using the Aitken
method to increase the convergence rate is unavailable [26], [27].

In this paper, a greedy search method using stage AGD and LS
algorithms is proposed for separable nonlinear models. An LS algo-
rithm and a stage AGD algorithm are interactively used to estimate
the linear and nonlinear parameters. At each iteration, we aim to
obtain the optimal estimates under current data. For instance, the LS
algorithm can obtain the optimal linear parameter estimates when the
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nonlinear parameters are fixed, and the stage AGD algorithm can get
the better nonlinear parameter estimates when compared with the GD
algorithm. For this reason, this algorithm is termed as greedy search
method, and it sets the following aims (1) has fast convergence rates
but with less computational efforts; (2) does not require the matrix
inverse calculation; (3) avoids calculating the eigenvalues.

Briefly, this paper is organized as follows. Section II reviews
the traditional algorithms. Section III develops the hierarchical stage
AGD (H-AGD) algorithm. The properties of the H-AGD algorithm
are given in Section IV. Section V provides the simulation examples.
Finally, Section VI sums up the paper and gives future directions.

II. REVIEW–TRADITIONAL ALGORITHMS

Let us introduce some notations first. The norm of a matrix
X is defined as ∥X∥ =

√
λmax[XXT]; λmax[XXT] means the

maximum eigenvalue of matrix XXT; the norm of a vector z =

[z1, z2, · · · , zn]T ∈ Rn is defined as ∥z∥ = (
n∑

i=1

zi
2)

1
2 ; the super-

script T denotes the matrix transpose.
Rewrite the separable nonlinear model as

Y (S) = F (θN , S)θL + V (S). (2)

Then, several traditional identification algorithms which can estimate
the parameters θN and θL are introduced.

A. Joint algorithm
Assume that the parameters at iteration k−1 are θk−1

N and θk−1
L ,

next, we want to get the estimates at iteration k.
In the joint algorithm, the linear and nonlinear parameters are

simultaneously estimated. Define the cost function

J(θL,θN ) =
1

2
∥Y (S)− F (θN , S)θL∥2.

Since the nonlinear parameters are embedded in the nonlinear func-
tion, the derivative equation of the above cost function does not
have analytical solutions. The joint-LS algorithm is difficult for this
separable nonlinear model. The widely used methods are the joint-
GD and joint-GN methods [28]–[30].

1. Joint-GD algorithm
To update the parameters at iteration k, the negative gradient

direction is computed as

dk = −
[

J ′(θk−1
L )

J ′(θk−1
N )

]
∈ Rm+n.

Then, the parameter estimates can be updated by[
θk
L

θk
N

]
=

[
θk−1
L

θk−1
N

]
+ γkdk,

where γk is the step-size.
Remark 1: Actually, to find a suitable step-size is challenging, e-

specially for the system with high-order/complex nonlinear structure.
For example, if Y (S) = F (S)θ,θ ∈ Rm+n, one should compute the
eigenvalues of a (m+ n)-order matrix; while in [28], for a complex
nonlinear model, the authors use a small step-size to avoid calculating
the eigenvalues for finding a suitable step-size.

2. Joint-GN algorithm
The GD algorithm has slow convergence rates for its zigzagging

nature. To increase the convergence rates, the GN algorithm is a good
choice.

Using the GN algorithm for the nonlinear model yields[
θk
L

θk
N

]
=

[
θk−1
L

θk−1
N

]
+H−1

k dk, (3)

where the Hessian matrix is

Hk =

[
J′′(θk−1

L ) {J′(θk−1
L )}TJ ′(θk−1

N )

{J′(θk−1
L )}TJ ′(θk−1

N ) J′′(θk−1
N )

]
∈ R(m+n)×(m+n)

.

Remark 2: In the joint-GN algorithm, one should perform a matrix
inverse calculation at each iteration. If the matrix has a high-order,
to compute its inverse is difficult [3].

B. Hierarchical identification algorithm
The key of the hierarchical identification algorithm is first to

separate the complex nonlinear model into two sub-models: one is a
linear-parameter-model and the other is a nonlinear-parameter-model,
and then to update the linear and nonlinear parameters interactively
[31], [32].

Assume that the nonlinear parameter estimates at iteration k − 1
are θk−1

N . Define the cost function

JL(θL) =
1

2
∥Y (S)− F (θk−1

N , S)θL∥2.

Using the LS algorithm to get the linear parameter estimates yields

θk
L = [F T(θk−1

N , S)F (θk−1
N , S)]−1F T(θk−1

N , S)Y (S).

Then, the nonlinear parameters θk
N will be estimated based on θk

L.
1. Hierarchical-GD (H-GD) algorithm for estimating θk

N

Define the cost function

JN (θN ) =
1

2
∥Y (S)− F (θN , S)θk

L∥2.

The negative gradient direction is

dk = [F (θk−1
N , S)θk

L]
′[Y (S)− F (θk−1

N , S)θk
L].

It follows that
θk
N = θk−1

N + γkdk,

where γk is the step-size which can be determined based on an n-
order matrix.

Remark 3: Compared with the joint-GD algorithm, computing the
step-size of the H-GD algorithm is easier because the order of the
parameter vector is reduced from m+ n to n.

Remark 4: In this paper, we assume that the nonlinear cost
function JN (θN ) = 1

2
∥Y (S) − F (θN , S)θk

L∥2 is strictly convex
for a fixed θk

L, which means that the cost function has only one
stable point.

2. Hierarchical-GN (H-GN) algorithm for estimating θk
N

Let

J ′
N (θN ) =

∂JN (θN )

∂θN
, J ′′

N (θN ) =
∂2JN (θN )

∂θ2
N

.

The parameter estimates using the GN method can be written by

θk
N = θk−1

N − [J ′′
N (θk−1

N )]−1J ′
N (θk−1

N ),

where J ′′
N (θk−1

N ) ∈ Rn×n is a Hessian matrix.
Remark 5: In the H-GN method, the order of the Hessian matrix

is n which is smaller than m+n. Therefore, it is more efficient than
the joint-GN algorithm.

C. VP algorithm
The VP algorithm uses a function of θN to express the linear

parameters θL, and then substitutes the function into the original
system which only contains the nonlinear parameters [33], [34].

First, based on the LS algorithm, the linear parameters are ex-
pressed by

θL = [F T(θN , S)F (θN , S)]−1F T(θN , S)Y (S). (4)

Substituting the above equation into (2) yields

Y (S) = F (θN , S)[F T(θN , S)F (θN , S)]−1F T(θN , S)Y (S) +

V (S). (5)

Clearly, the above model only contains the nonlinear parameters θN .
Define the following cost function

J(θN ) =
1

2
∥Y (S)− F (θN , S)×

[F T(θN , S)F (θN , S)]−1F T(θN , S)Y (S)∥2. (6)
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Then, utilize the GD/GN algorithm to update the nonlinear param-
eters θN . Once, an optimal nonlinear parameter vector estimate is
obtained, the linear parameter vector can be yielded according to
Equation (4).

Remark 6: Unlike the hierarchical identification algorithm, the
VP algorithm first gets the nonlinear parameter estimates using an
iterative function, then obtains the linear parameter estimates based
on the nonlinear parameter estimates in only one iteration.

Remark 7: The VP algorithm can reduce the order of the model
from m + n to n. However, such a reduced order nonlinear model
has a more complex structure, that is, to compute the step-size or the
Hessian matrix inversion is more challenging when compared with
the hierarchical identification algorithm.

D. Summary
From the above subsections, the properties of these three kinds of

algorithms are listed as follows:
(1) Joint algorithm

Advantages: (1) can simultaneously estimate the linear and nonlinear
parameters; (2) has faster convergence rates than its corresponding
partners in the hierarchical identification algorithm;
Disadvantages: (1) has the heaviest computational efforts among
these three kinds of algorithms; (2) needs to compute the eigenvalues
or the inverse of a high-order matrix (m+ n).

(2) Hierarchical identification algorithm
Advantages: (1) has the simplest iterative function among these
three kinds of algorithms; (2) has less computational efforts than
its corresponding partners in the joint algorithm;
Disadvantages: (1) has the slowest convergence rates among these
three kinds of algorithms; (2) needs to compute the eigenvalues or
the inverse of a low-order matrix (n).

(3) VP algorithm
Advantages: (1) has faster convergence rates than its corresponding
partners in the hierarchical identification algorithm; (2) has less
computational efforts than its corresponding partners in the joint
algorithm;
Disadvantages: (1) has the most complex iterative functions among
these three kinds of algorithms; (2) needs to compute the eigenvalues
or the inverse of a low-order matrix (n).

III. GREEDY SEARCH METHOD

Since the hierarchical identification algorithm has the simplest
structure but the slowest convergence rates. In this section, we
propose a hierarchical AGD (H-AGD) algorithm, which is based on
greedy search method. This algorithm, combing the Aitken method,
can overcome the shortcomings of the H-GD and H-GN methods.

A. Aitken method
Define an iterative function as

xk = f(xk−1).

Assume that the sequence {xk} generated using the above iterative
function is linear convergent. The basic idea of the Aitken method is
to obtain a new sequence {x̄k} based on the original sequence {xk}.
Such a new sequence can be computed by

x̄k = xk − (xk+1 − xk)
2

xk+2 + xk − 2xk+1
.

The above equation is equivalent to

x̄k = xk − (f(xk)− xk)
2

f(f(xk)) + xk − 2f(xk)
.

Lemma 1: For a convergent sequence {xk} generated by an
iterative function f(x), if the first derivative of function f(x) satisfies

0 < |f ′(x)| < 1,

the sequence {xk} is linear convergent; and when |f ′(x)| = 0, the
sequence {xk} is at least quadratic convergent.

Proof: Assume that the true value is x∗, since the sequence {xk}
is convergent, we have

x∗ = f(x∗).

Subtracting x∗ on both sides of xk = f(xk−1) yields

ek = f ′(ϵ)ek−1, ek = xk − x∗,

where ϵ lays between xk−1 and x∗. It follows that

0 <
|ek|

|ek−1|
= |f ′(ϵ)| < 1,

which means that the sequence is linear convergent. In addition,

ek = f(xk−1)− f(x∗) = f ′(x∗)(xk−1 − x∗) +
f ′′(ϵ)

2
(xk−1 − x∗)

2,

when |f ′(x)| = 0, it gives rise to

|ek|
|e2(k − 1)| =

1

2
|f ′′(ϵ)|.

f ′′(ϵ) ̸= 0, the sequence is quadratic convergent. That is, the
sequence {xk} is at least quadratic convergent when |f ′(x)| = 0.
�

Based on Lemma 1, we can get the following theorem.
Theorem 1: For an iterative function defined as

g(x) = x− (f(x)− x)2

f(f(x)) + x− 2f(x)
,

if its first derivative exists, and limx→x∗ f
′(x) ̸= 1. Then, the

sequence {xk} generated by the iterative function xk = g(xk−1)
is at least quadratic convergent.

Proof: When x → x∗, we have

f(x∗) = x∗, f(f(x∗)) = 2f(x∗)− x∗.

The first derivative of function g(x) is

lim
x→x∗

g′(x) = 1− lim
x→x∗

α(x)

β(x)
, (7)

where α(x) and β(x) are written by

α(x) = 2(f(x)− x)(f ′(x)− 1)(f(f(x)) + x− 2f(x))−
(f(x)− x)2(f ′(f(x))f ′(x) + 1− 2f ′(x)),

β(x) = (f(f(x)) + x− 2f(x))2.

Equation (7) is simplified as

lim
x→x∗

g′(x) = 1− lim
x→x∗

0

0
. (8)

Using L’hospital’s rule for the second part of the right side of
Equation (8) yields

lim
x→x∗

α(x)

β(x)
= lim

x→x∗

(f ′(x)− 1)2

(f ′(x)− 1)2
.

Since limx→x∗ f
′(x) ̸= 1, it follows that

lim
x→x∗

g′(x) = 0.

This shows that the sequence {xk} is at least quadratic convergent.
�

Remark 8: When using the Aitken method to increase the
convergence rates, the original iterative function f(x) should be
unchanging during all the iterations; otherwise, the Aitken method
will be inefficient.
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B. Aitken GD algorithm
For a fixed linear parameter vector θL, the nonlinear parameters

updated using the GD algorithm can be written as

θk
N = θk−1

N + γk[F (θk−1
N , S)θL]

′[Y (S)− F (θk−1
N , S)θL]. (9)

Rewrite the parameter estimates as

θk
N = [θkN (1), θkN (2), · · · , θkN (n)]T,

while the estimates using the Aitken method are written by

θ̄
k
N = [θ̄kN (1), θ̄kN (2), · · · , θ̄kN (n)]T.

Each element in θ̄
k
N is computed as

θ̄kN (i) = θkN (i)− (θk+1
N (i)− θkN (i))2

θk+2
N (i) + θkN (i)− 2θk+1

N (i)
,

i = 1, 2, · · · , n. (10)

Lemma 2: For a fixed linear parameter vector θL, the parameter
estimates θk

N using the traditional GD algorithm are computed by
(9), while the parameter estimates θ̄

k
N using the Aitken method

are written by (10). Then, the sequence θ̄
k
N is at least quadratic

convergent.

(The proof of Lemma 2 is straightforward and hence omitted.)

Lemma 2 shows that the sequence {θ̄k
N} is at least quadratic

convergent if the linear parameter vector θL keeps unchanging.
However, in the separable nonlinear model identification, the linear
parameter vector θL is updated using the LS algorithm at each
iteration. Thus, using the Aitken method to increase the convergence
rates is invalid.

C. Aitken method using stage greedy search technique
The Aitken method can (1) increase the convergence rates from

linear convergence to at least quadratic convergence; (2) be robust
to the step-size, that is, whatever the step-size is, the algorithm is
always convergent [25]. In order to take full advantage of the Aitken
method, we introduce a stage greedy search technique for the Aitken
method.

Assume that the parameter estimates at iteration k−1 are θk−1
L and

θk−1
N . The linear and nonlinear parameter vectors are then updated

as follows:

(1) L-step

Using the LS algorithm to update the linear parameter vector yields

θk
L = [F T(θk−1

N , S)F (θk−1
N , S)]−1F T(θk−1

N , S)Y (S).

(2) N-step

Let
θk,0
N = θk−1

N ,

where the index 0 means the initial parameter estimates at stage k.
Apply the GD algorithm to estimate the nonlinear parameter vector

θk,l
N = θk,l−1

N + γk[F (θk,l−1
N , S)θk

L]
′[Y (S)− F (θk,l−1

N , S)θk
L],

l = 1, 2, · · · ,M, (11)
θk,l
N = [θk,lN (1), θk,lN (2), · · · , θk,lN (n)]T.

Equation (11) shows that the nonlinear parameter estimates are
updated M iterations at stage k, and during the stage k, the iterative
function keeps unchanging. Then, the Aitken method is introduced
to obtain the better estimates, that is

θ̄k,lN (i) = θk,lN (i)− (θk,l+1
N (i)− θk,lN (i))2

θk,l+2
N (i) + θk,lN (i)− 2θk,l+1

N (i)
,

l = 0, 1, · · · ,M − 2, i = 1, 2, · · · , n,

θ̄
k,l
N = [θ̄k,lN (1), θ̄k,lN (2), · · · , θ̄k,lN (n)]T.

Remark 9: Based on the Aitken method, the parameter vector
estimate θ̄

k,M−2
N is more accurate than the estimate θk,1

N using the
GD algorithm. In addition, it does not require performing matrix
inversion, thus, it has less computational efforts when compared to
the GN method.

Remark 10: In the L-step, we update the linear parameter esti-
mates θk

L using the LS algorithm, which are the optimal estimates
under current input-output data and the fixed nonlinear estimates
θk−1
N ; and in the N-step, we first use the GD algorithm to obtain

several estimates of θN at this stage, and then try to utilize the
Aitken method to find the optimal nonlinear parameter estimates
θ̄
k,M−2
N under current input-output data and the estimated linear

parameters θk
L. Both the linear and nonlinear estimates are the

optimal estimates under current data, this means ’greedy search’.
Therefore, the proposed H-AGD algorithm is based on stage greedy
search method.

The H-AGD algorithm consists of the following iterations:
1) Let u(t) = 0, y(t) = 0, v(t) = 0, t 6 0, and give a small

positive number ε.
2) Let r0 = 1, k = 1, θ0

N = 1/p0 with 1 being a column vector
whose entries are all unity and p0 = 106.

3) Collect S input and output data
u(1), u(2), · · · , u(S), y(1), y(2), · · · , y(S).

Greedy search method using LS and AGD algorithms

4) Update the linear parameter estimates θk
L using LS algorithm.

5) Let θk,0
N = θk−1

N .
6) Estimate the nonlinear parameter estimates θk,l

N l =
1, 2, · · · ,M based on GD algorithm.

7) Use the Aitken method to obtain θ̄
k,l
N , l = 0, 1, · · · ,M − 2.

8) Let θk
N = θ̄

k,M−2
N .

9) Let θk = [θk
L;θ

k
N ].

10) Compare θk with θk−1, if ∥θk − θk−1∥/∥θk∥ 6 ε, then
terminate the procedure and obtain θk; otherwise, increase k
by 1 and go to step 4).

Remark 11: For simplicity, we do not need to compute θ̄
k,l
N , l =

0, 1, · · · ,M − 3 because the estimates using the Aitken method are
independent on each other. That is, we can only calculate θ̄

k,M−2
N at

stage k.
Remark 12: The H-AGD algorithm tries to obtain the optimal

linear and nonlinear parameter estimates at each iteration, thus it
has faster convergence rates than the H-GD algorithm. However, to
choose an optimal M in the N-step is a challenging problem: a small
M may lead to slow convergence rates, while a large one can lead
to heavy computational efforts.

IV. PROPERTIES OF THE H-AGD ALGORITHM

In this section, some properties of the H-AGD algorithm are
provided to help readers for their ad hoc research and applications.

A. Convergence analysis
Define the cost function as

J(θL,θN ) =
1

2
∥Y (S)− F (θN , S)θL∥2.

Then, we can get the following theorem.

Theorem 2: Assume that the parameter estimates at iteration k−1
are θk−1

L and θk−1
N , and the linear parameter estimates θk

L at iteration
k are updated using the LS algorithm, the nonlinear parameter
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estimates θk
N are estimated based on the stage AGD algorithm. Then,

the following inequality holds

J(θk
L,θ

k
N ) 6 J(θk−1

L ,θk−1
N ).

Proof: The cost function at iteration k − 1 is

J(θk−1
L ,θk−1

N ) =
1

2
∥Y (S)− F (θk−1

N , S)θk−1
L ∥2.

Fixing the nonlinear estimate θk−1
N obtains the following cost func-

tion
J(θL,θ

k−1
N ) =

1

2
∥Y (S)− F (θk−1

N , S)θL∥2.

The LS algorithm can ensure

θk
L = argminθL

{
1

2
∥Y (S)− F (θk−1

N , S)θL∥2
}
,

which means that

J(θk
L,θ

k−1
N ) 6 J(θk−1

L ,θk−1
N ).

Once θk
L is obtained, the AGD algorithm can guarantee that

J(θk
L,θ

k
N ) 6 J(θk

L,θ
k−1
N ).

Therefore, we have

J(θk
L,θ

k
N ) 6 J(θk−1

L ,θk−1
N ).

�
Remark 13: Since the cost function J(θk

L,θ
k
N ) is monotonically

decreasing, if it has only one stable point, Theorem 2 can ensure
the parameter estimate sequence {θk

L,θ
k
N} to converge to the true

values.

B. Step-size choosing method
In the H-GD method, one should carefully choose a suitable step-

size γk to keep the algorithm converging.
Rewrite the H-GD algorithm as follows,

θk,l
N = θk,l−1

N + γk[F (θk,l−1
N , S)θk

L]
′[Y (S)− F (θk,l−1

N , S)θk
L].

(12)

Subtracting the true value θN on both sides of the above equation
yields

ek,l
N = ek,l−1

N + γk[F (θk,l−1
N , S)θk

L]
′ ×

[F (θN , S)θk
L − F (θk,l−1

N , S)θk
L + V (S)].

Since V (S) is a Gaussian white noise, for a large S, it gives rise to

ek,l
N = ek,l−1

N + γk[F (θk,l−1
N , S)θk

L]
′ ×

[F (θN , S)θk
L − F (θk,l−1

N , S)θk
L].

Using the Taylor series to simplify the above equation yields

ek,l
N ≈ ek,l−1

N − γk[F (θk,l−1
N , S)θk

L]
′{[F (θk,l−1

N , S)θk
L]

′}Tek,l−1
N .

(13)

Lemma 3: For a linear parameter vector θk
L, the parameter esti-

mates θk,l
N using the H-GD algorithm are computed by (12). When

the step-size γk satisfies

0 < γk <
2

λmax[[F (θk,l−1
N , S)θk

L]′{[F (θk,l−1
N , S)θk

L]′}T]
,

the H-GD algorithm is linear convergent.
Proof: According to Equation (13), the estimation errors can be

written by

ek,l
N = [I− γk[F (θk,l−1

N , S)θk
L]

′{[F (θk,l−1
N , S)θk

L]
′}T]ek,l−1

N .

When

0 < γk <
2

λmax[[F (θk,l−1
N , S)θk

L]′{[F (θk,l−1
N , S)θk

L]′}T]
.

The estimation errors are simplified as

∥ek,l
N ∥= ρ∥ek,l−1

N ∥,

where 0 < ρ < 1. It shows that the H-GD algorithm is linear
convergent. �

Remark 14: When using the H-GD algorithm, the step-size should
be calculated at each iteration to keep the algorithm convergent. This
will lead to heavy computational efforts. However, according to the
work in [25], the H-AGD method has no limitation on the step-size.

Remark 15: At each stage k, one can use the Aitken method
to obtain the best estimates θ̄

k,M−2
N under current linear parameter

estimates θk
L if M is large enough. That is why the method is termed

as greedy search method. However, the ’best’ estimates generally
cannot lead to better linear parameter estimates. For example, in the
steepest GD algorithm, the best step-size is computed for a negative
gradient direction, but the convergence rates are quite slow because of
the ’greedy’ property. Therefore, we usually assign a suitable number
for M .

The procedure of the H-AGD algorithm is shown in Fig. 1.p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pppppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p
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The k-th iteration

Update θk
L

- Update θk,0
N

?
Update θk,1

N

?
Update θk,2

Nppppp?
Update θk,M

N

- Update θ̄
k,0
N

-

ppppp?
Update θ̄

k,M−2
N

6

Update θk+1
L

p p p p-

Fig. 1. The procedure of the H-AGD algorithm

C. Ill-conditioned parameter estimates in Aitken method
In the stage AGD procedure, the better parameter estimates are

written by

θ̄k,lN (i) = θk,lN (i)− (θk,l+1
N (i)− θk,lN (i))2

θk,l+2
N (i) + θk,lN (i)− 2θk,l+1

N (i)
,

l = 0, 1, · · · ,M − 2, i = 1, 2, · · · , n. (14)

Owing to the truncation error of the computer or some special cases
in the identification procedure, the term in the denominator of the
above equation sometimes is so close to zero, but the term in the
numerator is not. For example, the true value θN (i) = 0.8, using the
GD algorithm yields θk,l+2

N (i) = 0.6, θk,l+1
N (i) = 0.5, and θk,lN (i) =

0.4. In this case, the sequence {θk,lN (i), l = 1, 2, · · · } generated by
the GD algorithm is convergent, but the term in the denominator of
(14) equals to zero, while the term in the numerator equals to 0.01.
According to Equation (14), the ’better’ estimate is ill-conditioned,
see Figs. 3 and 8 in [25].

Since the better estimates θ̄k,lN (i), l = 0, 1, · · · are independent
on each other. If θ̄k,l1N (i) is ill-conditioned, its neighboring estimate
θ̄k,l1+1
N (i) is usually well-conditioned. For example, in Fig. 3 of [25],

the ’better’ estimates at iterations 26 and 53 are ill-conditioned, but
their neighboring estimates at iterations 27 and 54 quickly become
well-conditioned. In general, if the iteration M is large enough, the
few ill-conditioned points can be neglected. However, in this paper,
M is given in prior, and the AGD algorithm is used to update the
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nonlinear parameters at each stage k. The ill-conditioned estimates
easily exist. If θ̄

k,M−2
N is ill-conditioned, the next linear parameter

estimates θ̄
k+1
L at stage k + 1 are correspondingly ill-conditioned,

which leads to divergence of the H-AGD algorithm; see Table III in
Section V. To deal with this problem, two ways are introduced:

(1) For a fixed iteration number M
Compare the last two neighboring cost functions J(θ̄

k,M−2
N ,θk

L)

and J(θ̄
k,M−3
N ,θk

L) at stage k, if

J(θ̄
k,M−2
N ,θk

L) > J(θ̄
k,M−3
N ,θk

L),

let
θ̄
k,M−2
N = θ̄

k,M−3
N .

(2) For a varying iteration number M
Compare the two neighboring cost functions, and if

J(θ̄
k,M−2
N ,θk

L) > J(θ̄
k,M−3
N ,θk

L).

Let M = M + 1, and compute the new θ̄
k,M−2
N .

Remark 16: Different from Remark 11, we should compute at
least two better estimates θ̄

k,M−2
N and θ̄

k,M−3
N at stage k to avoid

the ill-conditioned parameter estimates in Aitken method.

V. EXAMPLES

A. Example 1
Consider a complex exponential model [3],

y(t) = b1e
−a2u

2(t−1) cos(a3u(t− 1)) +

b2e
−a1u

2(t−1) cos(a2u(t− 2)) +

b3e
−a4u

2(t−1) sin(a1u(t− 3)) + v(t),

θL = [b1, b2, b3]
T = [2, 3, 2]T,

θN = [a1, a2, a3, a4]
T = [1, 1.5, 3, 0.8]T,

where {u(t)} is an input sequence with zero mean and unit variance,
{v(t)} is taken as a white noise sequence with zero mean and
variance σ2 = 0.102.

In simulation, 1000 sets data are collected. Apply the H-GD (γk =
1

λmax
), H-GN and H-AGD (γk = 0.001, M = 8) algorithms to the

proposed model. For fair comparison, the initial parameters θ0 =
1/106 keep unchanging for all the algorithms. The estimation errors
τ := ∥θk − θ∥/∥θ∥ versus k are shown in Fig. 2. The parameter
estimates and the estimation errors are shown in Table I. The boxplot
of parameter estimates of different iterations are shown in Fig. 3.
The elapsed times of these three algorithms are shown in Table II
(by Intel(R) Core(TM) i5-7220U: 2.50GHz, 2.71GHz; RAM: 8.0
GB; Windows 10).
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Fig. 2. The parameter estimation errors τ versus k

Furthermore, use the H-AGD (M = 6) algorithm for this model,
the H-AGD-1 algorithm does not compare the neighboring cost
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Fig. 3. The parameter estimates using different algorithms for 500 iterations

TABLE II
THE ELAPSED TIMES

Algorithm H-GD H-GN H-AGD
Time (second) 4.652 7.255 10.099

functions but the H-AGD-2 algorithm does. The parameter estimation
errors using these two algorithms are shown in Table III.

The following findings can be obtained based on this simulation
example:

1) The estimates using the three algorithms can asymptotically
converge to the true values with an increased number of
iteration k, and among them, the H-GN algorithm has the
fastest convergence rates, see Fig. 2 and Table I. However, the
H-GN algorithm involves the matrix inversion at each iteration.

2) When the iteration k > 250, the H-AGD and H-GN algorithms
have almost the same accurate parameter estimates, while
the H-GD algorithm has the poorest estimation accuracy, see
Table I and Fig. 3.

3) Although the H-AGD algorithm has the largest elapsed time in
this example, see Table II. However, as the order n increases,
it will have the smallest elapsed time for the reason that there
is no eigenvalue/matrix inverse calculation at each iteration.

4) The H-AGD algorithm usually has ill-conditioned nonlinear
estimates, which can cause divergence of the H-AGD algorith-
m. We can use the method in Section IV-C to deal with this
problem, see Table III.

B. Example 2: the Canadian lynx data
In this example, we consider the following separable nonlinear

model which is usually applied to describe the lynx population [35],

y(t) = b0 + b1y(t− 1) + b2y(t− 2) + b3e
a1(y(t−2)−3.6259)2 +

b4e
a1(y(t−2)−3.6259)2y(t− 1) +

b5e
a1(y(t−2)−3.6259)2y(t− 2) + v(t),

θ = [b0, b1, b2, b3, b4, b5, a1]
T

= [0.4584, 1.2433,−0.3491, 0.3059, 0.3693,−0.5790,−6.0978]T.

First, apply the H-GD, H-GN and H-AGD algorithms for the
lynx population model, the parameter estimation errors τ := ∥θk −
θ∥/∥θ∥ are shown in Fig. 4. The boxplot of parameter estimates of
different iterations are shown in Fig. 5.

Furthermore, use the joint-GD and joint-GN algorithms for the
model, the parameter estimation errors are shown in Fig. 6.

This example shows that the H-GN method has the fastest conver-
gence rates among the hierarchical identification algorithms (H-GD,
H-GN and H-AGD), see Figs. 4 and 5; However, the H-GN algorithm
should perform the matrix inverse calculation at each iteration. The
H-AGD algorithm has faster convergence rates, and it does not require
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TABLE I
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS

k b1 b2 b3 a1 a2 a3 a4 τ (%)

50 3.96530 -0.15811 13.75762 0.06805 0.98064 1.26840 0.23440 228.84515
100 3.59635 0.53366 10.62024 0.07753 1.14076 1.51385 0.26093 170.03619

H-GD 200 3.23980 1.82138 2.72847 0.61199 1.95058 2.15952 0.46155 39.36372
400 2.85576 2.17531 1.98131 0.95997 1.83479 2.26599 0.57653 26.60171
500 2.77310 2.25451 1.98018 0.96159 1.79246 2.32931 0.58081 24.11852
50 2.46021 2.52852 2.26534 0.84900 1.64171 2.62689 0.73574 15.20153

100 2.20554 2.79892 2.00419 0.97567 1.56299 2.80639 0.70606 6.68483
H-GN 200 2.03176 2.96510 1.97716 1.01128 1.51469 2.95546 0.77086 1.40778

400 2.00719 2.98828 1.97401 1.01675 1.50847 2.97713 0.78204 0.83073
500 2.00696 2.98850 1.97398 1.01680 1.50841 2.97733 0.78215 0.82686
50 3.03094 1.66953 3.60395 0.66384 2.12323 1.17009 4.03699 81.25330

100 2.66388 2.10423 3.17891 0.68164 1.81161 2.03509 1.97510 41.48197
H-AGD 200 2.09525 2.89017 2.05575 0.97084 1.53238 2.89893 0.80016 3.48761

400 2.00455 2.99072 1.97410 1.01714 1.50779 2.97964 0.78351 0.78001
500 2.00571 2.98965 1.97404 1.01697 1.50809 2.97853 0.78286 0.80190

True Values 2.00000 3.00000 2.00000 1.00000 1.50000 3.00000 0.80000

TABLE III
THE PARAMETER ESTIMATES AND THEIR ESTIMATION ERRORS

k b1 b2 b3 a1 a2 a3 a4 τ (%)

50 0.02154 4.14399 1.46719 2.05956 0.00003 -26.59226 25.33907 705.27034
100 0.06418 3.11210 2.36137 1.85976 -0.00007 -26.25757 4.25835 541.00687

H-AGD-1 200 NaN NaN NaN NaN NaN NaN NaN NaN
400 NaN NaN NaN NaN NaN NaN NaN NaN
500 NaN NaN NaN NaN NaN NaN NaN NaN
50 3.32143 1.69602 2.66486 0.88791 2.18190 0.61988 11.60533 205.95531

100 2.99424 1.96352 2.63880 0.92437 1.97001 1.03863 10.70629 187.14010
H-AGD-2 200 2.47533 2.36001 2.73525 0.93638 1.74312 1.43223 8.66423 148.08160

400 1.69772 3.01092 3.06165 0.78532 1.46971 2.65077 3.53416 54.45433
500 1.94192 3.05285 1.95053 1.03843 1.49236 3.03559 0.80014 1.95428

True Values 2.00000 3.00000 2.00000 1.00000 1.50000 3.00000 0.80000

the eigenvalue and matrix inverse calculations. Therefore, the H-AGD
algorithm is the most efficient algorithm among the three hierarchical
identification algorithms if n is large.

Fig. 6 shows that the joint-GN method can quickly obtain the
parameter estimates, but it should perform a 7-order matrix inversion
at each iteration, while in the H-GN method, we only calculate the
inverse of a 1-order matrix at each iteration.
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Fig. 4. The parameter estimation errors τ versus k

VI. CONCLUSIONS

In this paper, we propose a stage greedy search method for
separable nonlinear models, where the linear parameters are updated
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Fig. 5. The parameter estimates using different algorithms for 500 iterations

using the LS algorithm, and the nonlinear parameters are estimated
based on the AGD algorithm. Both these two kinds of algorithms
aim to obtain the optimal estimates under current data. Compared
with the traditional identification algorithms, this algorithm has the
following advantages:

1) It has faster convergence rates than the traditional hierarchical
identification algorithm, and has a simpler structure than the
VP algorithm.

2) It does not require the eigenvalue calculation, then can be
applied to systems with high-order.

3) It does not need to calculate the inverse of a Hessian matrix,
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Fig. 6. The parameter estimation errors τ versus k

thus has less computational efforts than the joint-GN and H-
GN algorithms.

Therefore, the proposed algorithm will have positive impact to control
theories and applications as well.

Although the proposed algorithm has several advantages over the
traditional algorithms, there are still some challenging and interesting
topics need to be further discussed. For example, how to choose the
optimal iteration number M in the AGD procedure? and can the
algorithm converge to the global optimal point when the linear and
nonlinear parameters are intensively coupled? These issues remain as
open problems.
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