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Abstract—This paper presents a novel method for 3D surface reconstruction that uses polarization and shading information from two

views. The method relies on the polarization data acquired using a standard digital camera and a linear polarizer. Fresnel theory is used to

process the raw images and to obtain initial estimates of surface normals, assuming that the reflection type is diffuse. Based on this idea,

the paper presents two novel contributions to the problem of surface reconstruction. The first is a technique to enhance the surface normal

estimates by incorporating shading information into the method. This is done using robust statistics to estimate how the measured pixel

brightnesses depend on the surface orientation. This gives an estimate of the object material reflectance function, which is used to refine

the estimates of the surface normals. The second contribution is to use the refined estimates to establish correspondence between two

views of an object. To do this, surface patches are extracted from each view, which are then aligned by minimising an energy functional

based on the surface normal estimates and local topographic properties. The optimum alignment parameters for different patch pairs are

then used to establish stereo correspondence. This process results in an unambiguous field of surface normals, which can be integrated to

recover the surface depth. Our technique is most suited to smooth nonmetallic surfaces. It complements existing stereo algorithms since it

does not require salient surface features to obtain correspondences. An extensive set of experiments, yielding reconstructed objects and

reflectance functions, are presented and compared to ground truth.

Index Terms—Polarization imaging, surface shape recovery, stereo, reflectance function estimation, patch alignment.
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1 INTRODUCTION

THE problem of recovering the 3D shape of an object from

one or more views is a central topic in computer vision

and is given the generic term shape-from-X. Perhaps the best-

known single view technique is shape-from-shading (SFS),

where variations in image brightness are used to estimate

the field of surface normal directions and, ultimately, the

3D surface geometry. A multi-image extension of SFS is
photometric stereo, where several images are used with a

fixed camera position but varying light source directions.

In this paper, we present a novel two-view technique for

surface reconstruction based on polarization analysis. The

technique uses Fresnel theory to recover the surface normals

under conditions of diffuse reflection and establishes the

necessary two-view correspondence using surface topogra-

phy information. We use polarization measurements ob-

tained from a standard digital camera and a linear

polarizing filter to accomplish three tasks. First, we estimate

the reflectance properties of the material by statistically

determining the relationship between the surface orienta-

tion (as estimated using polarization) and the pixel bright-

ness. Second, we establish correspondence between the data

from the two views using a novel surface-matching

algorithm. Finally, the estimated surface normals are used

for shape reconstruction.

1.1 Related Work

1.1.1 Shape-from-Shading and Stereo

One of the most extensively studied surface recovery
methods is SFS [1]. The foundation of the technique is the
relationship between the image pixel brightness and the
local surface orientation. SFS aims to estimate the surface
normal for each pixel using a single gray-scale image,
subject to boundary and smoothness constraints. The height
of the surface can then be determined from the resulting
field of surface normals (the needle map) using surface
integration methods [2], [3].

Despite many attempts to apply it to real-world problems,
SFS has found only few successful applications. One reason
for this is that, with unknown light sources, an inherent
ambiguity known as bas-relief [4] is present, which allows
differently shaped objects to produce the same intensity
image. Another reason for the lack of success is that the
relationship between the incident light source direction and
the distribution of reflected light is generally complicated
and unknown. This relationship, which is defined quantita-
tively later on in Section 3, is termed the reflectance function or
bidirectional reflectance distribution function (BRDF). The
traditional approach adopted in SFS is to assume that
Lambert’s law applies. This means that the observed image
brightness simply depends on the cosine of the angle between
the surface normal and the light source direction. It has long
been known, however, that Lambert’s law only works well
for matte surfaces and breaks down for rough or shiny
surfaces [5].

Treuille et al. [6] overcome the problem of unknown BRDF
by placing spherical reference objects in the scene. Surface
orientation is then estimated by applying the orientation-
consistency assumption. That is, the surface orientations at
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points on the unknown object are deduced from those points
on the reference object that have identical intensities. Robles-
Kelly and Hancock [7] estimate the BRDF from a single image
without reference objects by calculating a mapping from a
single image onto a Gauss sphere using the cumulative
distribution of intensity gradients. A similar orientation-
consistency assumption to that used by Treuille et al. is then
applied. Ragheb and Hancock [8] use theoretical reflectance
models [5] to “correct” the images, so that they appear to be
Lambertian. Conventional SFS algorithms are then applied to
determine the 3D geometry.

In order to overcome the underconstrained nature of a
single-view vision, many researchers have turned to multi-
ple-view techniques [9], [10]. If a point in an image from one
view is known to correspond to a point in an image from a
second view, then triangulation can be used to determine the
distance to the camera. The correspondence problem, how-
ever, is difficult and is a major hurdle in stereo vision. Jin et al.
[11] use shading information from multiple views to for-
mulate stereo vision in terms of region correspondence. Many
other techniques rely on matching salient image features [12].

In Photometric stereo [13], a fixed camera is used with
varying but known light source directions. In certain
situations, photometric stereo is possible using three
images. The case where the surface is known to be
Lambertian is an example of this. However, at least four
images are necessary if more complicated reflectance
functions are present. Also, more than three images are
generally needed to deal with shadows and interreflections
and to estimate the albedo. Zickler et al. [14] have used a
technique called Helmholtz stereopsis, where the light source
and camera are interchanged. This has the advantage that
only two images are needed but requires more precisely
controlled experimental conditions.

1.1.2 Polarization Methods

An alternative method for shape analysis relies on the
principle that light is partially polarized as a result of surface
reflection [15, Section 8.6]. The angle of polarization provides
an ambiguous estimate of the surface normal azimuth angle
(the angle of the projection of the surface normal onto the
image plane), whereas the degree of the polarization
constrains the zenith angle (the angle between the surface
normal and the viewing direction) [16]. The polarization
process is a result of interactions between the incident
electromagnetic waves and the directional electron charge
density in the medium. An important advantage of polariza-
tionvisionover SFSis that theazimuthangle iseasilyrecovered
up to an ambiguity of 180 degrees. One must know, however,
whether the reflection is a direct mirror-like reflection
(specular reflection) or a result of subsurface interactions
(diffuse reflection). If the reflection type is not known, then
there are four possible angles separated by 90 degrees.

A technique that has become a standard in polarization
vision is to take digital images of an object using a digital
camera mounted with a linear polarizer rotated to different
orientations. This was used, for example, by Miyazaki et al.
[17] to recover the 3D geometry of transparent objects using
specular reflection—a class of material that makes SFS
impossible. In an earlier paper [18], the emission of an
infrared light was also used. Wolff [19] made the first
attempt to combine the polarization data from more than
one view, with the aim to estimate the orientation of a

plane. On the other hand, Miyazaki et al. [20] and Drbohlav
and �Sára [21] apply the theory of polarization to recover
shape using diffuse reflection. Rahmann and Canterakis [22],
[23] attempt to account for both reflection types.

In addition to shape reconstruction, polarization has
found applications in several other areas of computer vision
too. Wolff and Boult [16], Nayar et al. [24], and Umeyama [25]
have devised ways to separate diffuse from specular
reflection. Wolff and Boult [16] experimented with segment-
ing images according to dielectric/metallic reflectance prop-
erties. Drbohlav and �Sára [26] have enhanced photometric
stereo by the addition of constraints from polarization. Clark
et al. [27] demonstrate the usefulness of polarization in
triangulation-based range scanning, where it is used to
distinguish true laser stripes from interreflections. Schechner
et al. have demonstrated how polarization can enhance
images taken in poor viewing conditions such as haze [28] or
underwater [29]. Finally, Shibata et al. [30] use polarization
and a range scanner to recover reflectance functions.

The main disadvantage of polarization vision is the
experimental difficulty in acquiring the required data. The
standard method, mentioned above, requires a minimum of
three images from each view, each with a different polarizer
angle. This is a time-consuming process and limits the
possible applications. It is, however, generally less of a
practical hindrance than the steps needed to acquire the
images used in a photometric stereo and Helmholtz stereop-
sis, since fewer illumination conditions or views are normally
required for polarization methods. Wolff [31] and others have
improved matters a little by developing polarization cameras.
These devices use liquid crystals to rapidly switch the axis of
the polarizing filter. The disadvantage here is that the data has
a greater susceptibility to noise. Miyazaki et al. [32] improved
the polarization camera by using PLZT (from lead (Pb)
lanthanum (La) zirconium (Zr) titanium (Ti)) to switch the
polarization state of reflected light.

1.2 Contribution

The main aim of this paper is to develop a new method for
stereo shape recovery for featureless surfaces. Examples of
such surfaces include shiny porcelain, plastics, and painted
surfaces. Our motivation is that we cannot rely on traditional
stereo techniques that depend on salient surface features for
correspondence. We therefore propose a novel method for
establishing correspondence that does not rely on feature
matching. To accomplish this task, we use polarization to
analyze the topographical surface structure and use this
information to perform patch matching in order to establish
correspondence. To ensure that the results are accurate, we
incorporate shading information into the algorithm by means
of an estimated reflectance function. This is used to improve
the accuracy of the surface normal estimates. Fig. 1 shows an
overview of the method diagrammatically and should be
referred to throughout the paper.

The proposed method first makes ambiguous estimates of
the surface normals independently from each of the two
views assuming that light is diffusely reflected by the object.
This is done by taking images of the object with a linear
polarizer mounted on the camera lens and rotated to three
different orientations. The normal estimates are then en-
hanced by incorporating shading information. We do this by
robustly estimating the relationship between the surface
zenith angles and the pixel brightnesses using global
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statistics. This is done because the initial estimates of the
surface normals are heavily contaminated by noise and
interreflections. For this paper, we concentrate on the case
where the light source and the camera directions are identical
so that the brightness is independent of the azimuth angle. We
also assume that the reflectance is isotropic.

The enhanced, but still ambiguous, surface normals are
then fully constrained by establishing correspondence
between the two views using patch matching to optimize a
cost function. The cost function for this matching process is
based on both the normal directions and the local surface
topography. The latter property is characterized by the view
invariant quantity referred to as the shape index [33]. Surface
normals are then integrated to obtain depth using the
Frankot-Chellappa method [2]. In principle, triangulation is
more accurate, but integration is less sensitive to errors, and
our contribution is primarily about surface normal estimation.

Our method differs from previous shape recovery techni-
ques in the following respects: Most importantly, our method
is the first polarization-based technique to apply a global
reflectance function estimation algorithm to incorporate
shading information into the recovery process. Miyazaki et
al. [17] use two views and estimate surface orientation from
specular reflections. This means that the object had to be
placed inside a “cocoon” with several external light sources
so that specular reflections occur over the entire object. We
also aim to recover denser correspondence here. In [20],
Miyazaki et al. are able to use only a single view and therefore
have the advantage over our method that less specific
measurement conditions are needed. However, they only
partially solve the azimuth angle ambiguity, making restric-
tive assumptions about the object’s shape histogram. The
methods devised by Rahmann and Canterakis [22], [23] use
only the azimuth angles to establish correspondence and
allow for both specular and diffuse reflection. This potentially
results in less noisy reconstructions but at the cost of
discarding large amounts of information.

The main weakness of our contribution is that we currently
require a somewhat restrictive arrangement of the equip-
ment. Most notably, we require that the object is rotated. In

future work, we aim to reduce this restriction by moving the

camera (or using two cameras simultaneously) but keeping

the light source and object fixed. This would be more difficult

since the reflectance function would be a function of both

azimuth and zenith angles for at least one of the views.
By contrast to photometric stereo, our method has the

following advantages: First, photometric stereo requires

three or more images with different light source directions

and constant camera positions, whereas our method needs

only two views with the light source and camera in the

same direction. Second, we do not rely on an assumed

reflectance function but, instead, estimate it using global

image statistics. Finally, because photometric stereo uses a

fixed camera position, there is no obvious way to perform

360 degrees object reconstruction. Our method by contrast,

involves a patch-matching procedure, which can be used to

combine surfaces from any number of views.
The remainder of the paper is organized as follows:

Section 2 introduces the standard Fresnel reflectance theory

and explains how this leads to a means to constrain surface

normals. Section 3 describes the proposed reflectance

function estimation technique and presents results for

objects of different shapes and materials. Section 4 presents

the multiview polarization-based reconstruction method.

Real-world examples of reconstructed shapes are provided

in Section 5. Section 6 concludes the paper.

2 FRESNEL THEORY AND POLARIZATION VISION

In this section, we present an overview of the standard

background theory necessary to understand our novel

method. The work is primarily based on the Fresnel theory,

which is used to describe how light is polarized when

transmitted or reflected from an interface between two

media with different refractive indices. We then show how

this has been used in computer vision and define some of

the quantities used in the remainder of the paper.
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Fig. 1. Flow diagram of the proposed shape recovery method. The stages of the algorithm in the large box are shown in more detail in Fig. 15.



2.1 Fresnel Coefficients

Consider the specular reflection of a ray of light from a
surface point, as shown in Fig. 2. Assume that the surface is
a smooth interface between a dielectric and air. The Fresnel
equations [15, Section 4.6] give the ratios of the reflected
wave amplitude to the incident wave amplitude. They can
be applied to incident light that is linearly polarized
perpendicular to or parallel to the plane of incidence (the
plane of the paper in Fig. 2). The ratios depend upon the
angle of incidence �i and the refractive index nt of the
reflecting medium. We assume that the object is placed in
air ðni ¼ 1Þ. Since the incident light can always be resolved
into two perpendicular components, the Fresnel equations
are applicable to all incident polarization states. For the
work reported here, we use unpolarized incident light.

For the geometry shown in Fig. 2, the Fresnel reflection
coefficients are

r?ðni; nt; �iÞ �
E0r?
E0i?

¼ ni cos �i � nt cos �t
ni cos �i þ nt cos �t

; ð1Þ

rkðni; nt; �iÞ �
E0rk
E0ik

¼ nt cos �i � ni cos �t
nt cos �i þ ni cos �t

: ð2Þ

Equation (1) gives the reflection ratio for light polarized

perpendicular to the plane of incidence, and (2) is for light

polarized parallel to the plane of incidence. The angle�t can be

obtained from the well-known Snell’s law:ni sin �i ¼ nt sin �t.

Cameras do not measure the amplitude of a wave but the

square of the amplitude or intensity. With this in mind, it can

be shown that the intensity coefficients, which relate the

reflected power to the incident power, areR? ¼ r2
? andRk ¼

r2
k [15, Section 4.6].

Fig. 3 shows the Fresnel intensity coefficients for a typical
dielectric as a function of the angle of the incident light.
Both reflection and transmission coefficients are shown,
where the latter refers to the ratio of transmitted to incident
power (the transmission coefficients are simply T? ¼
1�R? and Tk ¼ 1�Rk).

2.2 Polarization Analysis

The work reported here relies on taking a succession of
images of objects with a polarizer mounted on the camera
rotated to different angles. The measured pixel brightness at
a given point varies with polarizer angle �pol according to
the Transmitted Radiance Sinusoid (TRS)

Ið�polÞ ¼
Imax þ Imin

2
þ Imax � Imin

2
cosð2�pol � 2�Þ; ð3Þ

where Imax and Imin are the maximum and minimum
intensities in the sinusoid, respectively, and � is the angle of
polarization of the light or the phase angle.

The degree of polarization is defined to be

� ¼ Imax � Imin

Imax þ Imin
: ð4Þ

It is possible to combine (4) and the Fresnel theory to obtain
an expression for the degree of polarization in terms of the
refractive index and the zenith angle [16]. The expression,
however, is only applicable to specular reflection since the
process that causes polarization by diffuse reflection is
different, as explained below.

During diffuse reflection [16], a portion of the incident
light penetrates the surface and is scattered internally. Some
of the light is then refracted back into air and is partially
polarized in the process. Fig. 2 illustrates the stages of a
diffuse reflection schematically. Snell’s law and the Fresnel
transmission coefficients (shown in Fig. 3) can be combined to
derive the following equation for the degree of polarization:

�ðn; �Þ ¼ ðn� 1=nÞ2 sin2 �

2þ 2n2 � ðnþ 1=nÞ2 sin2 �þ 4 cos �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �
p :

ð5Þ

Here, and for the remainder of the paper, we call the
refractive index of the reflecting medium n and use the
typical value of n ¼ 1:4. The dependence of the degree of
polarization � on the zenith angle � is shown in Fig. 4.

2004 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007

Fig. 2. Reflection of a ray of light by a medium. Definitions of angles and

electric fields are shown.

Fig. 3. Reflection and transmission coefficients for a dielectric ðn ¼ 1:5Þ.

Fig. 4. Degree of polarization for diffuse reflection for two different

refractive indices.



The azimuth angle of the surface normal is also intimately

related to the Fresnel equations. As Fig. 3 shows, the

component of the internally scattered light polarized parallel

to the plane containing the surface normal and reflected ray is

transmitted back into the air most efficiently. The orientation

of this plane is therefore the phase angle and is equivalent to

the surface azimuth angle. However, since two polarization

angles separated by 180 degrees are equivalent, the azimuth

angle can only be determined up to an ambiguity. Fig. 5

defines the angles and directions used throughout this paper.

We denote the phase angle of the light as �, whereas the two

candidates for the surface azimuth angle � are �1 ¼ � and

�2 ¼ �þ 180 degrees. For a fully constrained surface normal,

the Cartesian components px, py, and pz are given by

px
py
pz

0
@

1
A ¼ cos� sin �

sin� sin �
cos �

0
@

1
A: ð6Þ

The experimental arrangement used for this work is shown

in Fig. 6. We concentrate on the case where �L � 0, that is,

retroreflection. Our experiments are performed in dark room

conditions with a single-point light source. For all the work

presented in this paper, gray-scale images of intensities I0, I45,

and I90 were acquired with the polarizer oriented at 0, 45, and

90 degrees, respectively, where 0 degrees corresponds to

vertical alignment. The following equations were then used to

calculate the intensity, phase, and degree of polarization,

which collectively form the polarization image [31]:

I ¼ I0 þ I90; ð7Þ

�¼

1
2 arctan I0þI90�2I45

I90�I0

� �
if I90 < I0 < I45

00 þ 180� if I90 < I0 and I45 < I0
00 þ 90� otherwise;

8>><
>>:

ð8Þ

� ¼ I90 � I0

ðI90 þ I0Þ cos 2�
: ð9Þ

An example of the three components of a polarization
image for a white porcelain object (a bear model) is shown
in Fig. 7.

For all of the results in this paper, we used a Nikon D70
digital single-lens reflex (SLR) camera, with an exposure of
1/30 second and an aperture of f5:6. Raw images were stored
in gray scale using 256 levels. When the reflectance function
estimation technique described below is used, we found that
the contribution to the error of the final zenith angle estimate
due to camera noise is small compared to the overall
uncertainty. (An inexact refractive index estimate and other
factors make a greater contribution). This is not always true
for the azimuth angle estimates, so we use the average of four
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Fig. 5. Definition of angles and the two possible surface normals. � is

used in Section 4. px1 and py1 can be calculated using (6) with � ¼ �1.

For px2 and py2, � ¼ �2 is used.

Fig. 6. Schematic of a polarization image acquisition system. If diffuse reflection is being studied, then the best results are obtained when the lamp is

collimated as this reduces reflections from the environment. These effects are minimal when our reflectance function is used.

Fig. 7. Polarization image of a porcelain bear model. (a) Intensity.

(b) Phase. (c) Degree of polarization (darker areas have higher values

for (c)).



frames before any processing is conducted. We assume that
the reflected radiance is proportional to the measured pixel
brightness. In fact, experiments show that this is not quite true
and there is potential for improving the algorithm by taking
the camera response function into consideration.

2.3 Discussion

One advantage of exploiting diffuse reflection compared to
specular reflection is that the relationship between the degree
of polarization and the zenith angle is one to one for the
former reflection type but one to two for the latter [16].
Another advantage is that, assuming the light becomes
completely depolarized after surface penetration, then the
polarization state of the incident light can be arbitrary for
diffuse reflection.

The main difficulties with using diffuse reflection are as
follows: First, the data is generally much noisier for diffuse
reflection due to the weaker polarizing effects. Second,
although the dependence upon the refractive index is not
strong for either reflection type, it is weaker for specular
reflection. Finally, interreflections between points are
mainly specular and cause erroneous orientation estimates
if the theory for diffuse reflection is applied.

Both diffuse and specular reflections are affected by
roughness. At the microscopic scale, a rough surface can be
regarded as a set of facets with Gaussian random orienta-
tion. Due to external scattering between these facets and
after subsurface scattering followed by re-emission, light
impinging on a single element of the camera charge-
coupled device (CCD) chip has a distribution of polariza-
tion angles. The degree of polarization is therefore observed
to be reduced, resulting in an underestimate of the zenith
angle. The azimuth angle estimate remains accurate
provided that the mean facet orientation matches the local
mean surface orientation.

3 REFLECTANCE FUNCTION ESTIMATION

In this section, we present our method for calculating the
reflectance function using the zenith angles estimated from
the polarization data (5) and the intensity images. The aim
is to improve the accuracy of the zenith angle estimates and
to reduce the effects of noise, interreflections, and surface
roughness. Specifically, we show how the intensity depends
on the zenith angle for the case where the camera and light
source lie in the same direction. This allows the zenith
angles to be estimated from the measured intensities via a
lookup table. The method discussed in this section
corresponds to the upper part of Fig. 1.

3.1 Preliminaries

The BRDF fð�i; �i; �r; �rÞ of a particular material is the ratio
of the reflected radiance Lrð�r; �rÞ to the incident irradiance
Lið�i; �iÞ for the given illumination and viewing directions.
It is measured per unit solid angle per unit foreshortened
area and is given by

fð�i; �i; �r; �rÞ ¼
Lrð�r; �rÞ

Lið�i; �iÞ cos �i d!
; ð10Þ

where � and �, respectively, denote the zenith and azimuth
angles, and the subscripts i and r, respectively, denote the
directions of light incidence and reflectance [34, Section 4.2].

For this paper, we work under retroreflection conditions.
This means that the light source and camera directions are
identical at any given visible point on the surface. In
addition, if we assume that the BRDF is isotropic, then the
reflected radiance is independent of the azimuth angle �.
Furthermore, the zenith angles in (10) are equal ð�i ¼ �rÞ.
Therefore, the BRDF depends only on � and can be reduced
to fð�Þ. As a result, the reflected radiance is

Lrð�Þ ¼ fð�ÞLið�Þ cos � d!: ð11Þ

If we assume that the target object subtends a small angle
with respect to the optical axis of the camera, then the
irradiance on the sensing element in the camera (CCD chip) is

LCCD ¼
�

4

AL

A�

� �2

Lr / Lr; ð12Þ

whereAL is the lens diameter, andA� is the distance between
the lens and the image plane [34, Section 4.2]. As mentioned
earlier, we also assume that the camera response function is
linear, that is, pixel gray-scale values I / Lr (or LCCD).

In effect, we are estimating a unidimensional reflectance
distribution function. Since the measured pixel intensity is
independent of the azimuth angle under retroreflection
conditions, the azimuth angle ambiguity does not compli-
cate the reflectance function estimation process. The
incident radiance Lið�Þ is not generally known since we
work with an uncalibrated light source. We are therefore
estimating the reflected radiance up to an unknown
constant. However, this constant is unimportant for shape
recovery, since we only require the relationship between the
surface normal and the measured pixel brightness.

For our shape recovery algorithm presented in Section 4,
we do not use the reflectance function fð�Þ directly, but the
radiance functionLrð�Þ, which incorporates the cos � term (11).
That is, Lrð�Þ / fð�Þ cos �. For the rest of this section, we
therefore concentrate on the estimation of the radiance
function. It is clearly trivial to calculate the reflectance
function up to an unknown constant with the radiance
function to hand.

Our technique makes use of the 2D histogram of zenith
angles and intensities (that is, the observed distribution of the
gray-scale values with the zenith angles). The histogram is
defined formally as follows: From the polarization data, we
haveasetofCartesianpairs (zenithanglesandmeasuredpixel
brightness), D ¼ fð�d; IdÞ; d ¼ 1; 2 . . . jDjg, where �d is the
zenith angle estimated from (5), and Id is the measured pixel
gray-scale value at the pixel indexed d. We wish to approx-
imate the radiance functionLrð�Þ in terms of a set of discretely
sampled Cartesian pairs, L̂r ¼ fð�k; IkÞ; k ¼ 1; 2 . . . kmaxg,
where Lrð�kÞ ¼ Ik, and we choose kmax ¼ 100.

The histogram contents for bin ði; jÞ are given by
HCi;j ¼ jBCi;jj, where BCi;j is the subset of D that contains
the Cartesian pairs falling into the relevant bin. This subset is
given by

BCi;j ¼ �d; Idð Þ;
�d 2 �

ðbinÞ
i � w�=2; �

ðbinÞ
i þ w�=2

h �
;

Id 2 I
ðbinÞ
j � wI=2; IðbinÞ

j þ wI=2
h �

8><
>:

9>=
>;;
ð13Þ

where w is the bin size that is arbitrarily chosen to be w� ¼
90�=kmax and wI ¼ 255=kmax. �

ðbinÞ
i and I

ðbinÞ
i are equally
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spaced between 0 and 90 degrees and between 0 and 255,

respectively. Fig. 8 shows a histogram of the intensities and

the zenith angles for the porcelain bear model (for this

figure only, unequal bin sizes are used to aid visualization).

3.2 Histogram Interpretation

Before introducing our reflectance function estimation
method, we describe a simple experiment that illustrates
the structure of the histogram defined above for a real-
world example. We also show how the histogram can be
interpreted using physical considerations. The footprint of
the histogram from Fig. 8 is shown in Fig. 9. Note that there
are a small but significant number of pixels that do not fall
on or even near the peak frequency curve and that the curve
itself is broader than one might initially expect.

Figs. 9b, 9c, and 9d show gray-scale images of the bear
model. Pixels falling into the boxes marked in Fig. 9a are
highlighted. The first box includes pixels falling onto the
peak frequency curve of the histogram. Pixels that fall into
boxes 2 and 3 clearly do not follow the general trend and
make the task of shape recovery and reflectance function
estimation more difficult.

The peak frequency curves found in the histograms are

broadened due to roughness, interreflections, and noise. As

explained in Section 2.3, roughness tends to depolarize light,

reducing the estimate of the zenith angle. The bear model

used in Fig. 9a is relatively smooth, but later, we show

examples of rougher surfaces, where the curve is broadened

further. The more distant outliers in the histograms are

caused by interreflections. These occur where light from a

source is specularly reflected between two points on the

surface and then toward the camera. This interreflection

process obeys the theory for specular reflection, although a

small diffuse component will generally be present also.
The exact effect of an interreflection depends upon its

strength. If it is weak, then the diffuse component still

dominates. The degree of polarization and, hence, the zenith

angle estimate will be reduced since the phase angle of

specularly reflected light is perpendicular to that of diffuse

reflections. This process can be seen in box 2 of Fig. 9. Here, a

small specular component is present due to reflections from

the table on which the object rests. For strong interreflections,

the specular component dominates. Since the polarizing

properties of specular reflection are greater than that for

diffuse reflection, we have a situation where the degree of

polarization exceeds that which would be expected for any

purely diffuse reflection (box 3). Careful examination of the

ears of the bear model in Fig. 9c shows a region surrounding an

interreflection where the specular component is weaker.
Notice that, apart from the few cases where the strong

interreflection limit is met (as in box 3), the degree of
polarization is always equal to or less than the value expected
for a given zenith angle. This is substantiated by the fact that
the exact curve (measured using an object of the same
material but known to have cylindrical shape) approximately
follows the outer envelope of the histogram. This was verified
with other objects.

3.3 The Proposed Method

Based on the premise above, the radiance function is
estimated by fitting a curve to the outer envelope of the
intensity-zenith angle histogram. The proposed method
allows for some strong (box 3 type in Fig. 9) specular
interreflections, but we do assume that these do not cover a
large fraction of the surface. Only one view is strictly
necessary for this section, although the method described in
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Fig. 8. Histogram showing the frequency of occurrence of intensity-

zenith angle pairs for the polarization image of the bear model in Fig. 7.

Fig. 9. (a) Footprint of the histogram in Fig. 8 where higher frequencies are shown darker (logarithmic scale). The Lambertian relationship and the

exact reflectance curve are also shown. (b), (c), and (d) Gray-scale images where highlighted pixels fall into (b) box 1, (c) box 2, and (d) box 3.



Section 4 requires two views (with identical lighting). For

this reason, we include pixels from both views in the set D.
Experiments to estimate the radiance function from a single

view were found to give similar results.
An initial estimate of the radiance function L̂r¼fð�ð1Þk ; I

ð1Þ
k Þg

can be obtained using the mean intensity for regularly spaced
zenith angle columns of the histogram, that is

�
ð1Þ
k ¼ �

ðbinÞ
k ; I

ð1Þ
k ¼

Pkmax

j¼1 HCk;jI
ðbinÞ
jPkmax

j¼1 HCk;j
: ð14Þ

The same number of bins ðkmaxÞ are used for sampling
zenith angles and intensities. It turns out that our algorithm

is not critically dependent on this initial estimate and, so,

we aim for maximum computational efficiency at this point.
Next, we need the outer envelope of the histogram. The

algorithm obtains this by extracting a one-dimensional (1D)

histogram slice from HCi;j along the straight line that is

perpendicular to the initial estimate at each point k.
Histogram values along this line are taken from a linear

interpolation of HCi;j. Fig. 10a shows such a histogram for

the straight line shown in Fig. 11a. This histogram data is
then fitted to a Weibull probability density function [35,

Chapter 1], which is given by

gðq j �; 	; 
Þ ¼
	
�

q�

�

� �	�1
exp � q�


�

� �	� �
q � 


0 q < 
;

(
ð15Þ

where � is a scale parameter, 	 is a shape parameter, and 

is a location parameter (not the mean). The corresponding
cumulative distribution function is

Gðq j �; 	; 
Þ ¼ 1� exp � q�

�

� �	� �
q � 


0 q < 
:

(
ð16Þ

The Weibull distribution is primarily used in lifetime and
failure analysis. It is used here since we expect most pixels to
fall near the main curve in the 2D intensity-zenith angle
histogram. However, due to roughness and interreflections,
we also expect more pixels to be located on the left-hand side
of the crest (in Fig. 8) than the right-hand side. The
1D histogram slice shown in Fig. 10 justifies this since there
is a sharper cutoff on the right-hand side of the histogram.

The fitting process yields parameters �
ð1Þ
opt, 	

ð1Þ
opt, and 


ð1Þ
opt.

One option to obtain the Cartesian points in our radiance

function L̂r ¼ fð�ðfinÞk ; I
ðfinÞ
k Þg is to use

�
ðfinÞ
k ¼ argmax

�
g � j �ð1Þopt; 	

ð1Þ
opt; 


ð1Þ
opt

� �
; ð17Þ

I
ðfinÞ
k ¼ Ik �

�kþ1 � �k�1

Ikþ1 � Ik�1
�
ðfinÞ
k � �k

� �
; ð18Þ

where (18) is on the straight line perpendicular to the initial

radiance function estimate. However, as Fig. 10a shows, the

data is not always unimodal and contains outliers,

especially in the presence of interreflections. We therefore

add the following robust fitting step. If � is the lower limit

of a bin on the 1D histogram and w is the bin size, then the

data is discarded for bins that satisfyZ �þw

�

g � j �ð1Þopt; 	
ð1Þ
opt; 


ð1Þ
opt

� �
d� < 0:1; ð19Þ

where w is chosen such that the number of bins is fixed
at kmax.

The probability density function parameters are then re-

estimated iteratively until convergence to give �
ðitÞ
opt, 	

ðitÞ
opt , and



ðitÞ
opt. Condition (19) is applied after each iteration. We found,
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Fig. 10. Histogram of data along the fitting direction shown in Fig. 11a.

(a) Initially, the fit is poor. (b) When the low-probability data is discarded

using (19), the remaining data closely follows a Weibull distribution.

Fig. 11. (a) Estimation of the radiance function. The upper circle on the fitting curve is an estimate of the function before the robust data reduction

step is performed (see (19) and Fig. 10). The lower circle indicates the final estimate. (b) Effect of different refractive indices on the smoothed

reflectance function estimate.



empirically, that the parameters converge after only few (� 4)

iterations.
The outer envelope can then be taken as

�
ðfinÞ
k ¼ � : G � j �ðitÞopt; 	

ðitÞ
opt ; 


ðitÞ
opt

� �
¼ 0:99; ð20Þ

where (18) is used to obtain the associated I
ðfinÞ
k . In other

words, the point where the cumulative probability density
function reaches 99 percent is regarded as the outer envelope.

The choice of 99 percent is somewhat arbitrary, and it is
possible that the algorithm would give better results if the
value was fine tuned depending on the material (for example,
if the material is known, then an experiment with a sphere or
cylinder may help to obtain an optimum value). This is
particularly true for rougher surfaces. In the case of smooth
surfaces with no noise, the fitted PDF is very narrow so the
exact choice of threshold has little impact on results.

Finally, the discretely sampled radiance function L̂r is
smoothed using moving averages. Since the relationships
between the intensity and zenith angles are usually simple for
retroreflection (monotonic, continuous function, continuous
derivative, and so forth), we can apply the smoothing at a
moderately intense level. Fig. 11b shows the result of the
smoothing process. The figure also shows the effect of
different refractive indices on the estimated reflectance
function between two extreme values. Note that the curves
are similar for high refractive indices but deviate further
for lower values. Finally, we apply the constraint that
lim�! 90� Lrð�Þ ¼ 0 to estimate the reflectance function at very
large zenith angles [5].

3.4 Measured Reflectance Functions

A set of porcelain objects, together with estimates of their
radiance functions, are shown in Fig. 12. The objects are
made from similar types of porcelain and all have smooth
surfaces. The cat model is also partially painted and is used
to investigate how areas of different albedo affect algorithm
performance. The first point to note is that all the objects
gave similar radiance functions, which closely matched the
exact curve.

Fig. 13 shows that pixels of the painted areas of the
porcelain cat model fall well within the envelope of the
histogram. This meant that the algorithm recovered the
radiance function of the porcelain, whereas the smaller
painted areas were disregarded by the robust fitting method.

Note, however, that the algorithm does not always recover
the radiance function of the most prevalent color/material.
For example, suppose that most of the cat model was red but
that some areas were white. The results would then be
strongly affected by both red and white areas. Further
investigation of textured objects is out of the scope of this
paper. In future work, we hope to segment images according
to spectral composition, allowing several reflectance func-
tions to be estimated.

Fig. 12 also compares the results obtained to the physics-
based model developed by Wolff [36], which accounts for
multiple subsurface scattering using a Fresnel attenuation
factor(basedonthesametheoryasthatpresentedinSection2).
This model uses a scattering theory originally derived for
radiative transfer to model the distribution of scattered light
within a medium. According to Wolff, the BRDF is

fð�i; �r; nÞ ¼ % ð1� F ð�i; nÞÞ 1� F arcsin
sin �r
n

� �
;
1

n

� �� �
;

ð21Þ

where % is called the total diffuse albedo, and F is the
Fresnel function given by

F ð�i; nÞ ¼
1

2

sin2ð�i � �tÞ
sin2ð�i þ �tÞ

1þ cos2ð�i þ �tÞ
cos2ð�i � �tÞ

� �
; ð22Þ

where n ¼ ðsin �iÞ=ðsin �tÞ (Snell’s law).
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Fig. 12. Estimates of the radiance function of the selection of porcelain objects shown to the right (and the bear model from Fig. 9) compared to the

exact curve (thick line) and the Wolff model (broken line). The recovered curves were linearly extrapolated to � ¼ 0.

Fig. 13. Histogram for the partially painted porcelain cat. The areas

falling into the box are shown in black with the rest of the image

brightened for clarity (see Fig. 12 for the original image). The estimated

radiance function is also shown.



Since we are studying the case where �i ¼ �r, the two
Fresnel terms in (21) are equal. Allowing for the foreshorten-
ing effects of orthographic imaging, (21) then simplifies to

I ¼ � cos �ð1� F ð�; nÞÞ2; ð23Þ

where � is a normalizing constant. We use this equation in
Fig. 12, where � is selected to give the best agreement with
the exact curve, which is also shown in the figure. Note that
the use of reflectance models requires estimates of various
surface or material parameters, whereas our method needs
only an approximate value of the refractive index.

We have also applied our method to various slightly
rough surfaces. Examples of which are shown in Fig. 14.
Results are generally reasonable, although the estimated
radiance curves tend to be least reliable for small zenith
angles, where the radiance function is often overestimated.

4 RECONSTRUCTION FROM TWO VIEWS

In this section, we describe our method for shape estimation
from two views. The goal is to establish and use dense stereo
correspondence to resolve azimuth angle ambiguities pre-
sent in the surface normal estimates from a single view. The
first step is to extract surface patches from the polarization
images. These patches are then aligned using an optimization
scheme to obtain correspondence indicators. The error
criterion is similar to those developed by Cross and Hancock
[37] using the EM algorithm and Chui and Rangarajan [38]
using softassign.

The input to this stage of the algorithm is the set of
ambiguous surface normal azimuth angles from the phase
images together with their zenith angles from the estimated
radiance function and the raw intensity images. We use the
setup shown in Fig. 6 with polarization images taken from
two views. For the second view, the turntable is rotated by �rot

about thex-axis (see Fig. 6 for the coordinate axis convention).
In this paper, we use a known value of �rot ¼ 20�.

The set of surface patches are obtained by segmenting
the two polarization images into regions1 according to the
estimated surface normals. The segmentation is performed

using a bithreshold technique, where normals falling into
an angular interval are selected from each image. The
angular interval is shifted by �rot between images to account
for the object rotation. Details of this procedure can be
found in Section 4.1.

The correspondence problem is then reduced to matching
patches from the two views. The solution is to align patch
pairs for which a potential correspondence exists. We adopt a
dual-step matching procedure in which both correspondence
indicators and alignment parameters are sought. The cost
function uses the correspondence indicators to gate contribu-
tions to a sum-of-squares alignment error for corresponding
points. The alignment error measures the difference in the
surface normal components and a scale invariant measure of
surface topography (the shape index). The matching cost is
calculated for all potentially corresponding patch pairs, and
the combination that gives the lowest total cost is taken as the
set of patch correspondences. The derivation of the cost
function that we adopt is given in Section 4.2. The matching
algorithm itself and how it leads to unambiguous azimuth
angles is described in detail in Section 4.3.

After this process, some areas of the images remain
without detected correspondence. Monotonic interpolation
is then used to estimate correspondences for such areas.
This stage of the method is detailed in Section 4.4. Finally,
the Frankot-Chellappa surface integration method is ap-
plied to recover a depth map from the field of unambiguous
surface normals. In the remainder of this section, we furnish
details of the steps described above. Refer back to Fig. 1 for
a schematic of the overall algorithm structure.

4.1 Segmentation

The purpose of this stage of the algorithm is to segment the
two images into regions that are suitable for establishing
correspondence. The segmentation is performed according
to the angle defined by

� ¼ arctanðsin� tan �Þ: ð24Þ

This is the angle between the viewing direction and the
projection of the surface normal onto the horizontal plane
(the y-z plane in Fig. 5). If the correct azimuth angle is
greater than 180 degrees, then � is negative, that is, the
surface normal vector points to the left from the viewer’s
perspective. However, we do not know the sign of � at this
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Fig. 14. Histograms and radiance functions for a slightly rough plastic duck, a plaster owl, an apple, and an orange.

1. We refer to each unconnected 2D image segment as a “region” and use
the term “patch” to refer to the 3D data (that is, the surface normals that can
be used to estimate surface geometry) for each of these segments.



point so we can only calculate the modulus of the angle
from the estimated phase, that is, j�j ¼ arctanðsin� tan �Þ.

The zenith angle � is determined by the radiance function
(11), estimated using the technique from Section 3.3. Let the
minimum angle for reliable j�j estimates be �lim. Empirically,
we found that �lim was approximately 20 degrees for perfectly
smooth objects. For rougher surfaces, a reasonable recon-
struction was possible using this value, but results were better
when �lim ¼ 30� was used. We know that for the regions
where � < 0 for both images, then, where the pixels in the
right-hand image (view 2 in Fig. 6) satisfy the condition

�lim þ �rot < j�j � 90�; ð25Þ

the corresponding pixels in the left-hand image (view 1)
must satisfy the condition

�lim < j�j � 90� � �rot: ð26Þ

Conversely, where � > 0, then for the regions of the right-
hand image that satisfy the condition in (26), the pixels in
the corresponding left-hand image regions must satisfy the
condition in (25).

Our region segmentation algorithm makes two image
passes for each view. On the first pass, the right-hand image is

thresholded using the angle condition in (25), whereas the
left-hand image is thresholded using the condition in (26). On
the second pass, the angle conditions are interchanged
between the left and right-hand views. This two-pass thresh-
olding gives two sets of regions per view. Fig. 15 illustrates the
possible correspondence combinations between region sets.
In this way, we impose angle interval constraints on the
allowable region correspondences. Fig. 16 shows a real-world
example of the result of the segmentation process.

4.2 Cost Functions

As already mentioned, the algorithm seeks patch corre-
spondences so as to minimize a cost (or energy) function. In
this section, we first describe a rudimentary cost function
based purely on local patch reconstructions. We then
introduce a more complex cost function based directly on
the estimated surface normals and the scale invariant
topographic quantity known as the shape index.

4.2.1 A Rudimentary Cost Function

This cost function is based on the similarity between local
patch reconstructions obtained by applying the Frankot-
Chellappa method to recover surface depth h from needle
maps [2]. Fig. 17 shows patch reconstructions from two of
the larger regions from Figs. 16a and 16b, using � < 0.

Consider the alignment of two patches defined by sets of

points U ¼ fua; a ¼ 1; 2 . . . jUjg and V ¼ fvb; b ¼ 1; 2 . . . jVjg,
where ua ¼ ðxðuÞa ; yðuÞa ; zðuÞa Þ

T and vb ¼ ðxðvÞb ; y
ðvÞ
b ; z

ðvÞ
b Þ

T . The

alignment is performed by applying a transformation

function J to patch U to obtain the set of transformed

positions Û ¼ fûag, where ûa ¼ ðx̂ðuÞa ; ŷðuÞa ; ẑðuÞa Þ
T .

For our case, where the target object has undergone a

known rotation about the vertical axis (x-axis), the

transformation contains a y-translation of �y, a z-transla-

tion of �z, and a rotation about the x-axis of �rot. For our
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Fig. 15. Flow diagram of the segmentation and correspondence part of the algorithm, using a synthetic sphere as an example. This figure

corresponds to the large box in Fig. 1.

Fig. 16. Segmentation of a real-world image of a porcelain bear model.
In (a) and (d), the highlighted regions obey (25), whereas in (b) and (c),
they obey (26).



particular transformation, therefore, x̂ðuÞa ¼ xðuÞa 8a 2
f1; 2 . . . jUjg. We represent the transformation parameters

as � ¼ ð�y;�z; �rotÞT , where �rot is known. Our task then

becomes that of estimating the vector of parameter values �

for each potentially corresponding patch pair that mini-

mizes an energy functional.
The rudimentary energy functional for aligning patches

U and V is

"UV ð�Þ ¼
PjUj

a¼1

PjVj
b¼1 mabð�Þjvb � ûað�Þj2PjUj
a¼1

PjVj
b¼1 mabð�Þ

; ð27Þ

where mabð�Þ are the elements of the correspondence
indicator matrix Mð�Þ, defined below. This is a modified
version of the least squares alignment parameter estimation
problem. The correspondence indicators exclude the con-
tributions to squared alignment error from nonmatching
points. Similar cost functions are obtained by Cross and
Hancock [37] and Gold et al. [39]. In this paper, the elements of
the correspondence indicator matrix are assigned as follows:

mabð�Þ ¼ 1 if

a ¼ argmin
a02AðbÞ

ŷ
ðuÞ
a0 ð�Þ � y

ðvÞ
b

			 			 or

b ¼ argmin
b02BðaÞ

ŷðuÞa ð�Þ � y
ðvÞ
b0

			 			
8>><
>>:

0 otherwise;

8>>>><
>>>>:

ð28Þ

where AðbÞ ¼ fa 2 1; 2 . . . jUj j xðuÞa ¼ x
ðvÞ
b g is the set of labels

for points in U that lie in the same horizontal plane as point
vb. Similarly, BðaÞ ¼ fb 2 1; 2 . . . jVj j xðvÞb ¼ xðuÞa g are the
labels for points in V in the same plane as point ua. In
other words, mabð�Þ ¼ 1 if vb is the closest point in V to
ûað�Þ in the y-direction within the same horizontal cross-
section. Similarly, mabð�Þ ¼ 1 also if ûað�Þ is the closest
point in Ûð�Þ to vb. The construction of the matrix Mð�Þ is
illustrated in Fig. 18. Note that it does not include a term
with the difference in the z-position. This is because, in the
final algorithm, the energy functional is given in terms of
the surface normals, so the height reconstruction (difference
in z-position) is not needed to establish correspondence.

The matrix Mð�Þ is hence defined in a similar fashion to
the correspondence matrix used by Chui and Rangarajan [38].
Note that Chui and Rangarajan assume that the correspon-
dence is one to one, meaning that each row and each column
of the final correspondence matrix has exactly one element set
to unity. We do not enforce this constraint here.

Using the correspondence indicator matrix defined in (28)
means that any points in nonoverlapping areas of the patches
are inappropriately included in the energy calculation. We

therefore use a reduced correspondence matrix M 0ð�Þ with
elements m0ab, which is defined by

m0abð�Þ ¼

mabð�Þ if

min
a02AðbÞ

ŷ
ðuÞ
a0 ð�Þ

n o
< y

ðvÞ
b < max

a02AðbÞ
ŷ
ðuÞ
a0 ð�Þ

n o
and

min
b02BðaÞ

y
ðvÞ
b0

n o
< ŷðuÞa ð�Þ < max

b02BðaÞ
y
ðvÞ
b0

n o
8>>><
>>>:

0 otherwise:

8>>>>>><
>>>>>>:

ð29Þ

This reduced correspondence indicator matrix therefore
discards points in the patches where there is no overlap, as
shown in Fig. 18.

Note that this method is an alternative to the iterated
closest point (ICP) algorithm [40]. We do not use ICP
because that method would restrict our cost function to be
based on the location of points in 3D space. Although the
use of (27) specifically has no advantage over ICP in this
respect, we would ideally like to base our cost primarily on
the surface normals, rather than on patch reconstructions, to
avoid error propagation.

4.2.2 An Improved Cost Function

We aim here to refine the cost function to include surface
normal information. However, if only the surface normals
are used, then we encounter a problem: It is possible that
two surface points on different patches could have identical
surface normal directions but very different local shapes.
We therefore introduce the shape index into the energy
functional to account for local surface topography.

The shape index s is a view-invariant quantity that
describes the local topography of a surface and falls in the
interval ½�1;þ1	. Where s ¼ �1, the local surface shape is a
concave spherical cup, where s ¼ 0, a saddle point is found,
and where s ¼ þ1, the surface takes the form of a spherical
dome. Between these values, the surface takes intermediate
topographic forms. The shape index is undefined for planar
surfaces.

The starting point for the derivation of the shape index is
the Hessian matrix, defined by

H ¼ @2h=@x2 @2h=@x@y
@2h=@x@y @2h=@y2


 �
¼ @p0x=@x @p0x=@y

@p0y=@x @p0y=@y


 �
; ð30Þ
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Fig. 18. Illustration of how matrices Mð�Þ and M 0ð�Þ are constructed.
The points shown are from a horizontal cross-section of two patches. All
broken lines correspond to elements of Mð�Þ set to unity. For M 0ð�Þ
only the dark broken lines correspond such elements. The elements of
Mð�Þ are shown to the right. For the reduced correspondence matrix,
all elements are zero except for those highlighted.

Fig. 17. Patch reconstructions of the leftmost regions of Figs. 16a and

16b.



where hðx; yÞ is the surface height. p0x and p0y are the
gradients of the surface and are related to the Cartesian
components of the unit surface normal in (6) by p0x ¼ �px=pz
and p0y ¼ �py=pz.

The Hessian matrix can be calculated from the normals
estimated using polarization data and the radiance func-
tion. Since we are performing a differentiation, the estimate
of H is not entirely robust to noise. However, since the
Hessian will not form the main part of our cost function (the
normals themselves do), this problem is not severe.

Using (30) directly leads to a view-biased estimate of the
Hessian, due to a foreshortening effect. We therefore
introduce the viewpoint-compensated Hessian derived by
Woodham [41]

C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ px2 þ py2Þ3

q p2
y þ 1 �pxpy
�pxpy p2

x þ 1


 �
H: ð31Þ

The eigenvalues of this matrix are

max ¼ �
1

2
ðc11 þ c22 � SÞ; ð32Þ

min ¼ �
1

2
ðc11 þ c22 þ SÞ; ð33Þ

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11 � c22Þ2 þ 4ðc21c12Þ

q
, and cij denotes ele-

ments of C. max and min are the principle curvature
directions at the surface point and are the sole variables in
the definition of shape index

s ¼ 2

�
arctan

max þ min

max � min

� �
: ð34Þ

In our energy functional, we motivate the use of the
difference in shape index between surface points as follows:
Consider two surface points with identical normal direc-
tions with one lying on a spherical dome ðs ¼ þ1Þ and the
other on a spherical cup ðs ¼ �1Þ. The difference in shape
index is then þ2, which increases the matching cost. Based
on this observation, we propose the following form, which
incorporates both the shape indices and the surface normals

"UV ð�Þ ¼
PjUj

a¼1

PjVj
b¼1 m

0
abð�ÞPabð�Þ�s2

abPjUj
a¼1

PjVj
b¼1 m

0
abð�Þ

; ð35Þ

wherePabð�Þ ¼ ðpxb � p̂xað�ÞÞ
2 þ ðpyb � p̂yað�ÞÞ

2 þ ðpzb � p̂za
ð�ÞÞ2 and �sab ¼ sb � sa.

The “hat” notation is used to represent quantities having
undergone transformation J as before. Note that the shape
index does not depend on the transformation parameters
since it is rotation invariant. MatrixM 0ð�Þ is calculated in the
same way as before, using the Frankot-Chellappa method to
determine the nearest neighbors in the y-direction. Note that
the reconstruction is effectively used only as a means to
account for foreshortening (that is, so that patch U can be
rotated by �rot).

4.3 Final Algorithm

The optimum alignment parameters for patches U and V are
given by

�UV ¼ argmin
�

"UV ð�Þ: ð36Þ

For each pair of corresponding patches W and W0, the
correspondence matrix is Mð�WW0 Þ. The matching cost
"UV ð�UV Þ is calculated for all potential matches. The
algorithm sorts the list of costs into an ascending order
(that is, the most confident match first) and confirms the
matches sequentially but rejects those that do not satisfy
the following consistency constraint:

If a point at the y-position yðuÞa corresponds to a point at y
ðvÞ
b ,

then two other corresponding points at y
ðuÞ
a0 and y

ðvÞ
b0 must

satisfy

sgn y
ðuÞ
a0 � yðuÞa

� �
¼ sgn y

ðvÞ
b0 � y

ðvÞ
b

� �
: ð37Þ

Due to occlusion, not all patches have a correspondence
at all, so we ideally require a cost threshold. Any matches
with a cost above the threshold are then discarded. At
present, we are yet to develop an adaptive means of setting
this threshold.

The algorithm was first tested using (35) as the energy
functional. One problem encountered when using (35) is
that an area of a patch may be occluded in one view but not
in the other. Another issue is that, even though (35) only
needs the Frankot-Chellappa method as a convenient way
to account for foreshortening, it still introduces a distortion
in the patch shape and, therefore, a nonoptimal correspon-
dence matrix. We reduce the impact of these problems by
replacing (35) with the following functional, which takes the
median energy of the separate costs for each horizontal
cross-section of the patches:

"UV ð�Þ ¼
1

Kð�Þ
median

x2‘

PjUj
a¼1

PjVj
b¼1 m

00
abð�; xÞPabð�Þ�s2

abPjUj
a¼1

PjVj
b¼1 m

00
abð�; xÞ

 !
:

ð38Þ

Here, ‘ ¼ fxug
T
fxvg is the set of unique x-positions

covered by both patches and

m00abð�; xÞ ¼
m0abð�Þ if xðuÞa ¼ x

ðvÞ
b ¼ x

0 otherwise:

�
ð39Þ

We have also introduced the quantity Kð�Þ, which rewards
patch overlap

Kð�Þ ¼
PjUj

a¼1

PjVj
b¼1 m

0
abð�ÞPjUj

a¼1

PjVj
b¼1 mabð�Þ

: ð40Þ

It is not necessary for the algorithm to calculate the cost
for every conceivable pair of patches. This is because we
know that the two pixels in any given correspondence pair
lie on the same horizontal scan line for our particular
experimental arrangement. Instead, it only calculates the
cost of patch pairs where there is some overlap in the
vertical coordinates (that is, ‘ 6¼ 
). For such pairs, "UV ð�Þ is
minimized using the Nelder-Mead method [42].

We have also experimented with introducing an affine
skew parameter into the vector �. This is to further reduce
the impact of patch distortions arising from the local
reconstruction process. The skew is particularly useful for
long and thin patches such as those in Fig. 17 since
imperfect surface normal estimates have a greater detri-
mental effect in such cases. It is straightforward to add
additional parameters to the translation vector using our
method to increase the generality of the technique.
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After the patch matching is complete, we can disambig-
uate the azimuth angles for the regions where correspon-
dence was established. We do this using the knowledge that
the patches reconstructed using � > 0 have � < 180� (that is,
� ¼ �1 in Fig. 5) and patches where � < 0 have � > 180�

ð� ¼ �2Þ. Fig. 19a shows these unambiguous regions for the
bear model images. We still have two estimates of these
unambiguous surface normals, one from each view. Our final
value is taken from the view where the zenith angle was
greatest since the raw polarization data would have con-
tained less noise for this estimate.

4.4 Correspondence for Remaining Areas

Large areas of the images remain without correspondence
after the above matching procedure and, thus, remain
ambiguous. To assign a value for the azimuth angle for these
areas, we use piecewise cubic Hermite interpolating polynomials
(PCHIP) [43]. This form of interpolation is similar to the spline
technique in that a continuous curve is generated that passes
exactly through the data points. The difference is that the
spline maintains continuous first and second derivatives,
whereas PCHIP allows discontinuities in the latter. The
advantage of this, from our point of view, is that PCHIP
ensures that a monotonic curve is generated, thus, ensuring
point correspondences satisfy the condition in (37).

The algorithm effectively plots the y-positions of corre-
sponding points from each view against each other and
applies PCHIP to interpolate between correspondences. This
method only provides relatively crude correspondence for
areas not in the vicinity of the regions disambiguated
previously. This is one reason for us currently relying on
integration methods to recover depth instead of triangula-
tion. However, it is sufficient as a means of selecting the most
reliable azimuth angle (�1 or �2) for most image pixels.

To demonstrate the effects of disambiguation errors and to
further motivate our choice of the Frankot-Chellappa
algorithm for shape reconstruction from surface normals,

consider Fig. 20. For this figure, a synthetic sphere was
created, and the surface normals were calculated at each
point. For a slice of the sphere, the signs of the px and py
values were changed to simulate the effects of a correspon-
dence error. The surface normals were then integrated using
the Frankot-Chellappa method to obtain a depth map. The
difference between the original sphere and the recovered
depth is shown in the figure and is clearly relatively small,
given the magnitude of the error introduced. Had triangula-
tion been used with such an error, then the reconstruction
would be more severely deformed.

We do not use the results of PCHIP for areas of the image
where j�j < �rot. Instead, we propagate from surrounding
areas and align surface normals to the mean of local
3� 3 windows. This is advantageous since these areas are
the most susceptible to noise due to lower degrees of
polarization. Fig. 19b shows the unambiguous azimuth
angles for the full image for each view.

5 RESULTS

Fig. 21 shows the recovered depth maps of some of the objects
used in Section 3. They were obtained by applying the
Frankot-Chellappa algorithm to the recovered needle maps.
A reasonable estimate is made in each of the six cases. There
are two poorly recovered object areas. First, the paws of the
bear model do not protrude as they should due to interre-
flections. Although using the estimated radiance function
helped to accurately recover the zenith angles here, the
azimuth angles were incorrect for these areas. Second, the
handle of the basket does not arch from one side of the object
to the other as a result of the needle map integration method.
Results for three other objects of different materials are shown
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Fig. 19. (a) Azimuth angles of disambiguated regions of the bear model. (b) Final estimates of azimuth angles for entire image.

Fig. 20. Illustration of the effects of an incorrect disambiguation in
recovered height. (a) Image of py for a synthetic sphere with a
disambiguation error introduced. (b) Magnitude of the error in recovered
height expressed as a percentage of the radius.

Fig. 21. Recovered 3D geometry of some of the objects in Figs. 7 and

12. The texture on the cat model has been mapped back onto the

surface.



in Fig. 22. Here, the original red, green, blue (RGB) images
have been used to reapply the texture onto the reconstruction.
This final step is for aesthetic purposes only since we do not
have full illumination control.

Fig. 23a shows ground-truth cross-sections of the

porcelain vase compared to the recovered height. The

ground truth was calculated using the volume of revolution

of the object contour. The comparison proves that the

method works well for the simplest case, namely, that of a

smooth object with basic geometry. The difference image

between the ground truth and the recovered height is

shown in Fig. 23b. Note that any symmetries in the true

object geometry are not always preserved in the error. This

is a result of small environmental interreflections and is

possibly accentuated by imperfect polarizer calibration. For

comparison, Fig. 23c shows the difference image when the

raw zenith angle estimates were used (that is, those

calculated directly from (5) without estimating the radiance

function). The root-mean-square height errors were 8 units

when the radiance function was used and 18 units when it

was not used. Note that the depth of the vase is 150 units.
Fig. 24 shows a comparison of the ground truth profiles

of the porcelain urn and the orange. The urn profile shows
that, although the general shape is recovered, the height
variations are less pronounced than they should be for
objects with complicated geometry. The method performed
better for the orange. Fig. 24b also shows the profile
estimate of the orange without using the radiance function.
Here, the radiance function was clearly essential for
accurate shape estimation.

The method has been tested on a greater range and number

of objects than in most of the previous contributions, and the

results show several strengths and weaknesses. When the

algorithm is applied to objects with complicated geometry,

our method is less accurate than those that use specular

reflection such as that in [17]. This is mainly due to higher

degrees of polarization associated with specular reflection.

As mentioned previously, however, specular reflection is

often difficult to measure for an entire surface or scene. Our

method has a more general and complete disambiguation

than that in [20] and allows reconstructions from different

views but gives less accurate results in some cases. Compared

to SFS, our method has stronger constraints, and the results

are generally superior, although less general to illumination

conditions. For cases where triangulation is possible, those

methods are more accurate, provided that correspondences

are reliable. For this reason, we will consider a combined

integration and triangulation final step for future work.

6 CONCLUSION

We have devised a new shape recovery technique that
combines polarization, shading, and stereo information.
Polarization images are acquired from two views of an object
on a turntable. The first part of our proposed algorithm
estimates the reflectance function of the object under study.
This is accomplished globally using the distributions of the
initial zenith angle estimates and the pixel brightnesses.
Using ambiguous surface normal estimates from the polar-
ization images and refined using the estimated reflectance
function, the proposed algorithm then establishes stereo
correspondence between the views. This task is accomplished
using an optimization scheme, where the cost function is
based on the surface normals and the shape index. Our results
show that the technique is applicable to smooth objects
composed of a variety of materials with a known value of the
refractive index. The fact that the refractive index must be
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Fig. 22. Recovered shape of objects of different materials with the

original textures mapped onto the surface.

Fig. 23. (a) Three ground-truth cross-sections of the vase (solid lines) compared to the recovered height (broken lines). (b) Difference between the

recovered height and ground truth when the radiance function is used to refine the zenith angles and (c) when the radiance function is not used. The

scales to the right of the images indicate the absolute height error and are in the units of pixel lengths. Note that the scale is different for each image.

Fig. 24. Ground-truth profiles of (a) the porcelain urn and (b) the orange

(solid lines). The broken lines show estimates of the profile. The bottom

curve in (b) was estimated without using the radiance function.



known is a weakness of the method, although only an

approximate estimate is required.
Our method currently requires a special lighting config-

uration that limits potential applications. In future work, we
intend to relax the retroreflection assumption to enable
reflectance function estimation and shape recovery in more
general illumination conditions. We aim to recover a greater
fraction of the BRDF by using a fixed object and light source
but different camera positions. This may also allow for the
separation of specular and diffuse reflection components,
reducing the effects of specularities and interreflections.
Finally, estimating the camera response function may yield
more accurate initial estimates of the surface normals.

The work may pave the way to the development of a sensor
that can estimate object shape for smooth and slightly rough
surfaces. Unlike structured light range scanners, our techni-
que is nonintrusive. The surface matching aspect of the
algorithm can be applied not only to patches of the same
object, but also to different objects within a scene. It should
also be possible for the sensor to classify materials within a
scene according to their reflectance function.

REFERENCES

[1] R. Zhang, P.S. Tsai, J.E. Cryer, and M. Shah, “Shape from Shading:
A Survey,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 21, pp. 690-706, 1999.

[2] R.T. Frankot and R. Chellappa, “A Method for Enforcing
Integrability in Shape from Shading Algorithms,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 10, pp. 439-451, 1988.

[3] A. Agrawal, R. Chellappa, and R. Raskar, “An Algebraic
Approach to Surface Reconstruction from Gradient Fields,” Proc.
Int’l Conf. Computer Vision, pp. 174-181, 2005.

[4] P.N. Belhumeur, D.J. Kriegman, and A.L. Yuille, “The Bas-Relief
Ambiguity,” Proc. Computer Vision and Pattern Recognition,
pp. 1060-1066, 1997.

[5] L.B. Wolff, S.K. Nayar, and M. Oren, “Improved Diffuse
Reflection Models for Computer Vision,” Int’l J. Computer Vision,
vol. 30, pp. 55-71, 1998.

[6] A. Treuille, A. Hertzmann, and S. Seitz, “Example-Based Stereo
with General BRDFs,” Proc. European Conf. Computer Vision,
pp. 457-469, 2004.

[7] A. Robles-Kelly and E.R. Hancock, “Estimating the Surface
Radiance Function from Single Images,” Graphical Models,
vol. 67, pp. 518-548, 2005.

[8] H. Ragheb and E.R. Hancock, “Surface Radiance Correction for
Shape from Shading,” Pattern Recognition, vol. 38, pp. 1574-1595,
2005.

[9] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, 2000.

[10] M.Z. Brown and G.D. Hager, “Advances in Computational
Stereo,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 25, pp. 993-1008, 2003.

[11] H. Jin, A. Yezzi, and S. Soatto, “Stereoscopic Shading: Integrating
Shape Cues in a Variational Framework,” Proc. Computer Vision
and Pattern Recognitio, pp. 169-176, 2000.

[12] D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” Int’l J. Computer Vision, vol. 60, pp. 91-110, 2004.

[13] R.J. Woodham, “Photometric Method for Determining Surface
Orientation from Multiple Images,” Optical Eng., vol. 19, pp. 139-
144, 1980.

[14] T. Zickler, P.N. Belhumeur, and D.J. Kriegman, “Helmholtz
Stereopsis: Exploiting Reciprocity for Surface Reconstruction,”
Int’l J. Computer Vision, vol. 49, pp. 215-227, 2002.

[15] E. Hecht, Optics, third ed. Addison Wesley Longman, 1998.
[16] L.B. Wolff and T.E. Boult, “Constraining Object Features Using a

Polarization Reflectance Model,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 13, pp. 635-657, 1991.

[17] D. Miyazaki, M. Kagesawa, and K. Ikeuchi, “Transparent Surface
Modelling from a Pair of Polarization Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 26, pp. 73-82, 2004.

[18] D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi, “Determining
Surface Orientations of Transparent Objects Based on Polarisation
Degrees in Visible and Infrared Wavelengths,” Optical Soc. Am.
J. A, vol. 19, pp. 687-694, 2002.

[19] L.B. Wolff, “Surface Orientation from Two Camera Stereo with
Polarizers,” Proc. SPIE Conf. Optics, Illumination, Image Sensing for
Machine Vision IV, vol. 1194, pp. 287-297, 1989.

[20] D. Miyazaki, R.T. Tan, K. Hara, and K. Ikeuchi, “Polarization-
Based Inverse Rendering from a Single View,” Proc. Int’l Conf.
Computer Vision, vol. 2, pp. 982-987, 2003.
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