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Abstract 
 

With the ever-increasing complexity of sound 
synthesisers, there is a growing demand for automated 
parameter estimation and sound space navigation 
techniques. Recent research in this domain has focused 
on the application of general-purpose evolutionary 
algorithms to match specific types of target sounds.  
However, it is difficult to establish whether success or 
failure of a particular match is due to the inefficiency of 
the optimisation engine, or the limitations of the matching 
synthesiser. In this paper the distinction between 
optimiser inefficiency and synthesiser limitations is 
elucidated with a contrived target test methodology that 
enables the performance of different optimisation 
techniques to be measured and compared. The 
methodology is applied to a Frequency Modulation 
synthesiser, in order to compare the performance of 
different Evolution Strategy-based algorithms. The 
algorithm producing the best results with contrived 
targets is then used to match a non-contrived acoustic 
instrument tone.  
 
1. Introduction 
 

Contemporary audio synthesisers provide composers 
with the musical freedom to play any known instrument 
electronically, or to explore beyond the realms of the 
known, to create sounds previously unheard. Controlled 
and efficient navigation of the sound space of a particular 
synthesiser requires expert knowledge of the underlying 
synthesis form, which may stem from an understanding of 
synthesis theory or experiential knowledge. It is often the 
case that composers must defer traditional notions of 
musicianship to concentrate on the task of synthesiser 
programming (manipulating parameters to produce the 
desired effect). 

The synthesiser interface often presents an obstacle 
between artistic ideas and their expression. Each different 
synthesis technique is capable of creating a considerable 
range of timbres (tonal characters). The parameters which 

are used to shape the sound character are specific to the 
particular synthesis architecture being employed, and 
rarely relate to sound in human terms. Consequently, 
there is a complex mapping between the dimensions of a 
synthesis parameter (or control) space, and the perceived 
sound (or timbre) space. This can often result in a 
synthesiser control being unintuitive and more concerned 
with scientific process than artistic creativity. 

If it were possible to relate the parameters of a 
synthesiser more directly to the user’s timbral 
requirements, synthesis control could become more 
transparently about sound creation than computer 
programming. The first step to achieving this is the 
development of a process which is able to map known 
sound qualities onto sound synthesis parameters. This 
requires a matching technique that can efficiently search a 
synthesis parameter space to achieve specific aural 
requirements. 
 
2. Background 
 

Many efforts have been made to automatically derive 
synthesis parameters that match given target sounds.  The 
most notable and advanced methods have employed the 
optimisation algorithms of evolutionary computation. The 
earliest evolutionary sound matching systems were 
presented by Horner [1], [2] for reproducing sounds 
produced by real acoustic instruments with Frequency 
Modulation (FM) and wavetable synthesis. More recent 
studies have extended this application to physical 
modelling synthesis [3], and additive and granular 
synthesis [4]. 

The difficulty in locating accurate target sound 
reproductions can be directly attributed to 3 components 
of the sound matching process:  

 
1. the mechanisms of the underlying synthesis 

model,  
2. the method by which match quality is quantified, 
3. the characteristics of the target sound.  
 



In many previous matching studies these aspects of the 
problem are not considered in isolation, but together as 
single problem component.  That is, a synthesiser is 
chosen along with an appropriate similarity metric and 
optimiser. The resulting system is then applied to match 
arbitrary target sounds with results presented in the form 
of spectrum error plots. Consequently, it becomes 
difficult examine the pathology of inaccurate matches. It 
is not always clear if the matching synthesiser is 
incapable of reproducing the target, or if the optimisation 
engine is unable to negotiate the problem domain. It is 
desirable that the characteristics of the target sound are 
not circumscribed in the design of the matching system, 
so our attention is drawn to the latter issue. 
 
3. Contrived matching method  
 

The key aim is the development of a process which can 
efficiently negotiate the synthesiser's sound space in its 
entirety. By ensuring that the target sounds can be exactly 
matched by the synthesiser, it is possible to measure the 
performance of the optimiser within the search 
environment. This requirement leads naturally to 
contrived sound matching, originally introduced by 
Justice [5] in his early analytical matching work with FM. 

A contrived target is a sound or tone that originates 
from within the search space of, and is generated by, the 
matching synthesiser. Contrived target sounds provide 2 
significant advantages over experimentation with non-
contrived alternatives: 

 
 Firstly, and most importantly, it is simple to determine 

when an optimal solution has been found, as it will 
match the target sound exactly and achieve a relative 
spectral error of zero. If non-contrived target sounds 
are chosen as test specimens, confirmation of optimal 
convergence is not so easy. For example, the matching 
synthesiser may not be capable of exactly reproducing 
a particular target sound recorded from a real acoustic 
instrument, in which case a match delivering a relative 
error of zero cannot be achieved. In these 
circumstances an optimal match may only be 
confirmed when an exhaustive search yields no better 
result. In a high dimensional synthesis space this is not 
a feasible approach. 

 Secondly, producing targets by randomly-generating 
points within the synthesis space ensures that the test 
set constitutes a diversity of search space positions, 
and thus assesses performance on a variety of search 
space landscapes (as the topology of the search space 
is dependent on the properties of the target sound). 
Moreover, repeated successful matching of random 
contrived targets demonstrates that it is possible to 
access all regions of the search space. 

 

The contrived sound matching method represents a 
retrieval problem; the target is known to exist within the 
search space, and the ability of a search algorithm to 
derive its location is quantified. It may then be postulated 
that if it is possible to consistently and accurately match 
contrived targets, the system can then be applied to the 
problem of matching arbitrary target sounds. Match 
inaccuracy may then be attributed to the limitations of the 
synthesiser, as the optimisation algorithm is known to be 
well-suited to the problem domain. In section 7 the 
performance of 4 Evolution Strategy-based algorithms are 
examined in application to 3 different FM search 
environments.  In section 8 the most effective algorithm is 
then used to match a tone produced by an acoustic 
instrument.  
 
4. Test domain:  FM synthesis 
 

In this paper the chosen test domain of the contrived 
matching method is FM audio synthesis as originally 
defined by John Chowning [6]. FM audio synthesis 
enables complex spectra to be created simply and 
efficiently. In what is termed "simple FM", the 
instantaneous frequency of 1 sinusoidal oscillator is 
modulated by another. A diagram of the simple FM model 
is shown in figure 1. 
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Figure 1. Simple FM model 

 
In this model, the amplitude of the modulating 

oscillator controls the peak deviation of the carrier 
oscillator frequency from that specified by the parameter 
fc. The amplitude function for simple FM is given by the 
formula: 

( )tfI+tfA=e mc ππ 2sin2sin     (1) 
 

in which e is the modulated carrier output, A is the 
peak amplitude of the carrier, fc and fm are the carrier and 
modulator frequencies respectively, and I is the 
modulation index.  



When I is assigned a value of zero there is no 
modulation, and the generated signal is a sine wave at 
frequency fc. However, when I > 0, frequency partials are 
generated around the carrier at integer multiples of the 
modulating frequency (side-bands). The amplitudes of 
these partials are governed by the Bessel functions of the 
first kind and order n. This non-linear relationship 
between the synthesis parameters and the spectral form of 
the modulated signal can often complicate the process of 
sound design with FM. When parameters are altered by 
hand it can be difficult to find specific combinations of 
partials to produce a particular timbre. A process which is 
complicated further by the unintuitive effects of reflected 
side frequencies; partials synthesised with negative 
frequencies are directly mapped onto their positive values 
with negative phase. With so few parameters with which 
to access such a large range of output forms (and so sound 
characters), combined with non-linear effects outlined 
above, FM has become widely regarded as a difficult 
synthesis type to control [7], [8], [9] and [10]. 

In the work presented here the synthesis model in 
figure 1 (referred to as single simple FM) is examined 
alongside 2 parallel expansions, in which multiple 
instances of the simple FM model are summed at the 
synthesiser output, referred to as double and triple parallel 
simple FM respectively (figure 2). 
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Figure 2. Single, double and triple parallel simple 

FM 
 
5. Evolutionary Algorithms 
 

The Evolutionary Algorithms (EAs) included in the 
experimentation are all based upon the Evolution Strategy 
(ES) developed originally by Rechenberg [13]. Due to 
space limitations, there is only room for a brief 
description of each EA, for a more comprehensive 
treatment the reader is directed to the references cited in 
each section. 
 
5.1. Evolution Strategy (ES) 
 

The traditional (µ, λ) ES is defined in [11], in which µ 
parent individuals are selected from λ offspring at each 
generation. Individuals are comprised from vectors of 

object and strategy parameters which are varied together 
in a process which has been termed self-adaptation [11]. 
For all experiments, the extinctive (comma) selection 
operator is employed and individuals are varied by 
discrete recombination [11] and derandomised mutation 
[12]. 

 
5.2. Multi-Start Evolution Strategy (MSES) 

 
The MSES is a variant of the basic 2-membered (1+1) 

ES as defined originally by Reichenberg [11]. Multiple 
instances of the algorithm are evolved concurrently 
without recombination. This algorithm is also referred to 
as a multi-start hill-climber. Object parameters are 
mutated isotropically according to a single mutation step 
size, which is adapted by the 1/5th rule. 

 
5.3. Fuzzy Clustering Evolution Strategy (FCES) 
 

The FCES [14] is a global optimisation EA designed to 
reduce the likelihood of preconvergence, by combining 
the local search characteristics of the ES with the 
strengths of fuzzy-cluster analysis. Evolution proceeds 
with the alternate application of optimisation and 
clustering, in which the fuzzy membership information is 
used to reduce the disruptive effects of variation, by 
limiting recombination between individuals belonging to 
different clusters. As the standard ES selection 
mechanism is employed, the entire FCES population is 
driven towards search space regions that offer the highest 
payoff, preventing the maintenance of multiple search 
space optima. 

 
5.3. Clustering Evolution Strategy (CES) 
 

The CES is a development of the FCES algorithm 
which has been designed by the first author to improve 
niching capabilities in rugged multimodal search space 
environments, such as the FM matching problem. The 
algorithm follows the same procedure as the FCES, 
however species are preserved with a local selection 
operator (termed restricted cluster selection), which 
ensures that a finite number of individuals from each 
cluster are carried into subsequent generations. Cluster 
boundaries are also reinforced with the use of K-means 
cluster analysis in place of the c-means fuzzy cluster 
analysis. The CES algorithm is represented by the pseudo 
code provided in figure 3, in which µ and λ represent the 
parent and offspring populations respectively, and t is the 
generational counter. 



 
Figure 3. CES pseudo code 

 
6. Experimental setup 
 
6.1. Fitness measurement 
 

Unsupervised sound matching requires a method for 
automatically determining the quality of a sound 
simulation. A fitness function is then required that enables 
strong individuals to be identified and selected for 
breeding. 

In this experimentation sound similarity is measured 
by computing the relative spectral error between spectra 
of the target and candidate sounds. Recent studies, 
performed by Beauchamp et al [15], have established that 
the relative spectral error delivers the best correspondence 
to average discrimination data, extracted from human 
listeners, when compared with alternative spectral error 
metrics.  

The relative spectral error is computed by 
accumulating the normalised difference between each 
frequency component of the candidate spectrum from 
their corresponding components in the target spectrum, 
both of which are extracted by Fast Fourier Transform 
(FFT). The error metric is defined by: 
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Where T is a vector of the target spectrum amplitude 

coefficients, S a vector of synthesised candidate spectrum 
amplitude coefficients and Nbin the number of frequency 
bins produced by spectrum analysis. An exact match will 
result in a relative squared error of zero. 
 
6.2. Synthesis parameter ranges 
 

Within the matching system, the frequency parameters 
fc and fm are expressed as multiples (range 0-8) of 440Hz. 
The parameter A controls the carrier amplitude and thus 
the overall amplitude level of the synthesiser output 
(range 0-1). The amplitude of the modulating oscillator 
specifies the deviation of carrier frequency around fc, and 
is controlled by the modulation index I (range 0-8).  

No a priori information of the problem is employed in 
order to tune the system for matching any particular types 
of sounds (harmonic or otherwise). Each synthesis 
parameter is represented by a real number, which may 
take any value within the specified range without bias. 

 
6.3. Algorithmic parameters 
 

To ensure parity across all experiments, consistent 
algorithmic parameters and operators are fixed for all test-
cases. Indicated results are calculated by the mean 
average and standard deviation of the final relative error 
produced by 50 separate runs when matching a set of 50 
randomly generated contrived targets. Also indicated is 
the number of successful matches of the entire set, where 
a successful match produces a relative error of less than 
0.05 (i.e. 95% of the target spectrum is matched). Each 
algorithm is tested when matching the same target set and 
populations are initialised with the same random data 
points, enabling performance differences to be attributed 
to the search properties of the EAs.  

For the multimembered ESs, selection pressure is 
maintained at a fixed ratio of µ/λ =1/7, as indicated to be 
optimal by Schwefel [16]. Population sizes are set to 
(400, 2800) for all experiments and run for 100 
generations. Algorithms that include cluster analysis 
partition the population into 80 clusters, corresponding to 
a cluster cardinality of 5. The parameters of the MSES 
have been chosen such that 1000 separate (1+1) ESs 
compute an equivalent number of fitness evaluations in 
280 generations as the multimenbered ESs compute in 
100 generations. The objective for each algorithm is to 
minimise the relative spectral error (equation 2).  

 
7. Contrived matching results 
 

For each algorithm type, the results of the contrived 
matching experiments for each synthesis model with each 
Evolutionary Algorithm are provided in table 1. S 
indicates the number of successful contrived matches out 
of 50, E is the mean, and σ is the standard deviation of the 
error for all 50 matches. 

 
 ES MSES 

Model S E σ S E σ 
Single Simple FM 30 0.223 0.280 6 0.269 0.170 
Double Simple FM 4 0.408 0.211 0 0.501 0.124 
Triple Simple FM 2 0.428 0.193 0 0.578 0.106 
 FCES CES 
Model S E σ S E σ 
Single Simple FM 34 0.157 0.241 50 0 0 
Double Simple FM 6 0.385 0.220 10 0.246 0.151 
Triple Simple FM 0 0.507 0.187 2 0.356 0.141 

Table 1. Contrived matching results 
 

From the result provided in table 1 it is apparent that 
the problem space becomes less tractable as the number 

t = 0 
initialise( µ(t) ); 
loop begin 
 cluster( µ(t) ) 
 λ(t) = recombine( µ(t) ); 
 λ(t) = mutate( λ(t) ); 
 evaluate( λ(t) ); 
 µ(t+1) = select( λ(t) ); 
 t = t + 1; 
loop end; 



of parallel simple FM elements in the matching 
synthesiser is increased. This result is expected, as all 
algorithmic parameters remain constant while the 
dimensionality of the problem is increased. All tested EAs 
struggle to produce successful matches when optimising 
parameters for the triple simple FM model. The contrived 
matching method enables this deficiency to be attributed 
to the optimisation algorithms, since the target is known 
to exist within the search space. In all tests, CES produces 
the lowest average error with all 50 matches classed as 
successful in the experimentation with the single simple 
FM model. This result indicates that the CES is effective 
at navigating all regions of the simple FM search space. 
The performance advantage is attributed to the improved 
maintenance of population species due to the K-means 
cluster analysis method and the restricted cluster 
selection operator implemented in this algorithm. Of the 
other algorithms tested, the MSES appears to perform 
least well on all problems, while the FCES appears to 
outperform the ES on the smaller single and double FM 
models, while the reverse is true for the larger triple FM 
model.  

 
8. Acoustic tone matching results 
 

In the previous section, the CES was found to be the 
most advantageous for matching contrived FM target 
tones. In this section the CES is used to derive FM 
synthesis parameters that match a real acoustic instrument 
tone.  The target tone originates from a muted trumpet 
recorded by Opolko and Warpnick [17]. The algorithm is 
set up as it was for the contrived experiments and the 
mean relative error and standard deviation are tabulated 
for 5 runs on each of the 3 FM synthesis models, with the 
population initialised randomly anew for each test case. 
 

 CES 
Model E σ 
Single Simple FM 0.199 0.003 
Double Simple FM 0.137 0.0152 
Triple Simple FM 0.119 0.008 

 Table 2. Trumpet tone matching results 
 

Interestingly, the results (table 2) exhibit the opposite 
trend to those produced in the contrived matching 
experiments. Previously the relative error rates were 
shown to increase when using the larger synthesis models, 
whereas here, the error rates decrease with the larger 
model. These results illustrate the opposing limitations of 
the matching process. As established in section 7, the 
CES is well suited to the problem domain of the single 
simple FM model. The small standard deviation for this 
model suggests that all 5 runs have converged at the same 
fitness level - the optimum for this synthesis model. In 
attempting to match the trumpet target sound the CES has 
reached the limitations of the matching synthesiser. This 
error result cannot be improved upon unless a more 

elaborate synthesis model is employed.  The introduction 
of additional oscillators to the model directly results in a 
more accurate match. While the results in table 1 
suggested that the CES is less effective at exploring the 
double and triple simple FM synthesis spaces, when 
approaching the limitations of the matching synthesiser 
(table 2), the larger space is beneficial.  
 
9. Spectrum plots 
 

In the previous sections the accuracy of each match 
has been indicated in terms of the relative squared error. 
Figure 4 provides a spectrum plot of the original muted 
trumpet sound (top), and a corresponding match 
synthesised by the triple simple FM synthesiser (bottom) 
(this particular match achieves a relative squared error of 
0.105). 

 

 
Figure 4. Muted trumpet tone (top), triple simple 

FM match (bottom). 
 

The successes and limitations of the match are 
apparent in the figure. All of the peaks in the synthesised 
tone coincide accurately with the frequencies of partials in 
the target spectrum, with a good match in terms of 
amplitude (spectral envelope). However, several partials 
at the upper end of the frequency spectrum (beyond the 
11th harmonic) have limited amplitude or are absent from 
the synthesised sound.  The matching synthesiser is not 
sufficiently complex to accurately recreate those details.  
 
10. Conclusions 
 

A contrived matching methodology has been 
developed and tested that enables practitioners to further 
understand the limitations of the sound matching process. 
It has been possible to clearly identify that the important 



limiting factors in complex FM matching systems are the 
ability of the underlying evolutionary algorithm to 
navigate the complex synthesis space, and the ability of 
the synthesis form to recreate the target sounds. A 
selection of ES-based EAs have been tested and it has 
been possible, through the contrived matching method, to 
accurately compare their results. The proposed CES was 
shown to consistently outperform all of the other 
algorithms tested, as it is the only algorithm to enable 
species to be maintained. The CES-driven matching 
synthesisers were then applied to accurately match a real 
acoustic tone produced by a muted trumpet. 
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