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Abstract
The following fundamental result for the domination number (G) of a graph G was proved
by Alon and Spencer, Arnautov, Lovdsz and Payan:

< In(6+1)+ 1n

- d+1 ’

where n is the order and ¢ is the minimum degree of vertices of G. A similar upper bound
for the double domination number was found by Harant and Henning [On double domination
in graphs. Discuss. Math. Graph Theory 25 (2005) 29-34], and for the triple domination
number by Rautenbach and Volkmann [New bounds on the k-domination number and the
k-tuple domination number. Applied Math. Letters 20 (2007) 98-102], who also posed the
interesting conjecture on the k-tuple domination number: for any graph G with 6§ > k — 1,

7(G)

(6 — k +2) + In(dp_1 + dp_s) + 1
<
k() < S—k+2 "

where Em = Z?zl (fg) /n is the m-degree of G. This conjecture, if true, would generalise

all the mentioned upper bounds and improve an upper bound proved in [A. Gagarin and V.
Zverovich, A generalised upper bound for the k-tuple domination number. Discrete Math. (to
appear)].

In this paper, we prove Rautenbach—Volkmann’s conjecture.
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1 Notation

All graphs will be finite and undirected without loops and multiple edges. If G is a graph of
order n, then V(G) = {v1,v9,...,v,} is the set of vertices in G, d; denotes the degree of v; and
d = Y ,d;/n is the average degree of G. Let N(z) denote the neighbourhood of a vertex z.
Also let N(X) = UzexN(z) and N[X] = N(X) U X. Denote by §(G) and A(G) the minimum
and maximum degrees of vertices of G, respectively. Put § = §(G) and A = A(G). A set X
is called a dominating set if every vertex not in X is adjacent to a vertex in X. The minimum
cardinality of a dominating set of G is the domination number v(G). A set X is called a k-tuple
dominating set of G if for every vertex v € V(G), |[N[v] N X| > k. The minimum cardinality of a
k-tuple dominating set of G is the k-tuple domination number vy (G). The k-tuple domination
number is only defined for graphs with § > k — 1. It is easy to see that v(G) = vx1(G) and
Yxk(G) < yxw(G) for k < k'. The 2-tuple domination number v«2(G) is called the double
domination number and the 3-tuple domination number v43(G) is called the triple domination

number. A number of interesting results on the k-tuple domination number can be found in
[3]-[8] and [11].



2 Introduction

The following fundamental result was proved by many authors:

Theorem 1 ([1, 2, 9, 10]) For any graph G,

In(6+1)+1

—————n.
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A similar upper bound for the double domination number was found by Harant and Henning
[4]:

7(G) <

Theorem 2 ([4]) For any graph G with § > 1,

Ind+In(d+1)+1
5 n.

Rautenbach and Volkmann posed the following interesting conjecture for the k-tuple domina-
tion number:

Yx2(G) <

Conjecture 1 ([11]) For any graph G with 6 > k — 1,
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For m < 4, let us define the m-degree cjm of a graph G as follows:

n
~

dp = (@) =3 <7‘i> /n.
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Note that Jl is the average degree d of a graph and c?o = 1. Also, we put J_l =0.

Since
d; +1 . d; I d;
E—1) \k—-1 k—2)°

we see that the above conjecture can be re-formulated as follows:

Conjecture 1’ For any graph G with 6 > k — 1,

In(6 — k4 2) + In(dp_1 + dp_s) + 1
n.
0—k+2
It may be pointed out that this conjecture, if true, would generalise Theorem 2 and also
Theorem 1 taking into account that d_; = 0. Rautenbach and Volkmann proved the above
conjecture for the triple domination number:

Txk(G) <

Theorem 3 ([11]) For any graph G with 6 > 2,

In(d — 1) + In(dy + d) + 1
5_1 n.

The next result generalises all the above theorems, but it is still far from Conjecture 1’.

1x3(G) <

Theorem 4 ([3]) For any graph G with § > k — 1,

(3 = k+2) +In (S5 (k= m)dm +€) +1
S—k+2

ka(G) < n,

where e =1 if k=1 o0r2, ande=—d if k > 3.



3 Proof of the Conjecture

The following theorem proves Rautenbach—Volkmann’s conjecture.
Theorem 5 For any graph G with 6 > k — 1,

In(8 — k + 2) + In(dp_1 + dp—_s) + L
0—k+2

Proof: Let A be a set formed by an independent choice of vertices of G, where each vertex is
selected with the probability p, 0 < p < 1. For m =0,1,....,k — 1, let us denote

By, ={vi € V(G) — A:|N(v;) N A| = m}.

Yxk(G) <

Also, for m =0,1,...,k — 2, we denote
Ay, ={vi € A:|N(v;) N A| =m}.

For each set A,,, we form a set A/ in the following way. For every vertex in the set A,,, we
take k —m — 1 neighbours not in A and add them to A/, . Such neighbours always exist because
d > k — 1. It is obvious that |A],| < (k — m — 1)|A,,|. For each set B,,, we form a set B}, by
taking k —m — 1 neighbours not in A for every vertex in By,. We have |B],| < (k—m — 1)|By,|.
We construct the set D as follows:
k—2 k—1
D=AU (U A%)u(U BmuB;n>.

m=0 m=0
The set D is a k-tuple dominating set. Indeed, if there is a vertex v which is not k-tuple dominated
by D, then v is not k-tuple dominated by A. Therefore, v would belong to A,, or B,, for some

m, but all such vertices are k-tuple dominated by the set D by construction.
The expected value of |D| is

k—2 k—1 k—1
E(D]) < E (\AI + 3 AL+ D [Bul+ Y IBIWI>
m=0 m=0 m=0

k—2 k—1
< Eom+§:%—m—Dmm+§:%—mW%0
m=0 m=0
k—2 k—1
= E(A)+ Y (k—=m—1DE(An]) + Y (k= m)E(|Bn)).
m=0 m=0
We have .
B(A) = 3 P(vi € 4) = pn.
i=1
Also,

E(Anl) = " P(oi € An)



and

E(|Bm|) = ) P(v; € Bn)

.
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Taking into account that d_q = 0, we obtain

k—2 k—1

E(D|) < pnt Y (k=m—1p" (1 =p)" "dun+ Y (k—m)p™ (1 —p)* " dyn
m=0 0
k—1 R o1 i
m=1 m—0
k—1 R )
= pn+ Y (k=m)p"™(1=p)" " (dp1 + du)n
m=0
k—1 R )
= pn+ (]. —p)5—k+2n Z (k; _ m)pm(l _ p)k_m_l(dm,1 + dm)
m=0
Let us denote
p=0—k+2.

T

Using the inequality 1 —x < e™, we obtain

(1—p)’ F2 =1 —pr <ePn

Thus,
E(|D]) < pn + e P'n@,
where
k—1 R ~
m=0
We will prove that R )
S) S dk—l + dk—2-
We have
k-1 R =R k—m—1 Sk m—1 .
e = (k — m)(dm + dmfl) Z (_1)L ( ; >p7n+z
m=0 i=0
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+(1)((§k—1 + C/Z\k_Q) <8) (—1)0pk-1

k—1 k—j—1 i R R 4
= ( Z (—1)1( i])(i+j+1)(dk—i—j—l +dk—i—j—2>)pk_]_l
j=0 = i=0
k—1
= Zsjpk i1
j=0
where
k—j—1 Ny ~ ~
o= X O () 4 )i+ i)
i=0
(taking into account that d_; = 0)
k—j—1 Ny ~ k2 ~
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n k—j—1 . .
_ i [t dy
= Y S o () ()
=1 =0
" (d—j—1
= (j+1)z k-1 /n (by Lemma 3)
I=1
> 0

Thus, the function O(p) = sop" 1+ s1pF 2+ .+ sp_q is monotonously increasing in 0 < p < 1.
Therefore, (1) implies
O <dp_1+dp_s.

We obtain - -
E(ID]) < pn+ ¢ 6 < pn + ¢ Pn(dy_1 + di_o).
Let us denote
f(p) = pn+ e P n(dp_1 + dp_2).
For p € [0, 1], the function f(p) is minimised at the point min{1, z}, where

L In o+ In(dj—1 + dj_2)
U




There are two cases to consider.
If z <1, then

(D) < £(2) = (4 ) n

_ﬂnﬂ+hﬂﬁfr+@kﬂ+1n
L

Since the expected value is an average value, there exists a particular k-tuple dominating set of
order at most f(z), as required.
Suppose now that z > 1. Taking into account that u > 0, we obtain

1 1 In(dy_ du_ 1
’Yxk(G)§n<(z+lu)n_ n 4+ In( k;-i- k—2) + n.

as required. The proof of Theorem 5 is complete. 1

For s > 1, let us denote

5= () (1) e )

s (s—1
w= (")
Proof: Induction on ¢:

= (3)-ma=(0)-(02) =)

Lemma 1

|

Lemma 2 Forj > 1,

1 ) S L
(214 () s (1) = (711,
0 1 7 1
Proof: Induction on i:
e N e A Y s F C A e EAa )
0 1 ) 71— 1 7 )

|

)
2 i 1—i) l '

Proof: Induction on j. If j =0, then
l (it " ; i r r r—1
B ()W) g (L) - (7).
as required.

Suppose that j > 1 and the equation of Lemma 3 is true for any j° < 7 —1. Applying Lemmas
1 and 2, we obtain:



~

s () () = Ze () (e 0 G0

= (r 7]l B 1) . (by hypothesis)
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