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How to reproduce and generalize the skills acquired by demonstrating is a hot topic for researchers. (1)
A compliant continuous drag demonstration system based on discrete admittance model was designed
to continuously and smoothly drag or demonstrate. (2) The modified DMP including the scaling factor
and the force coupling term was used to improve the poor generalization ability of the classical DMP.
(3) Curve drawing experiments were carried out to show the effectiveness of our proposed learning
and generalization framework.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Humans can adapt well to posture and strength when per-
orming tasks in unknown environments. However, robots need
o employ a complex set of planning algorithms for specific
asks [1–3]. To enable robots to learn human manipulation skills,
earning by demonstration (LfD) has been studied in recent years
4,5]. In the absence of kinematic models, trajectory planning and
ssembly problems can be well solved using LfD. Human demon-
tration is when a human expert teaches a robot how to perform
ertain specialized skills. The motion trajectory will be recorded
nd used to train the skill model [6]. Robotic manipulators not
nly repeat learned skills, but are often expected to generalize
o new tasks and situations. This requires skill models that are
asy to train and adapt to new tasks and environments. For LfD,
ne of the difficulties and challenges is generalization, which
equires learning skills to deal with uncertain and unknown tasks
7]. Numerous methods have been proposed, optimization-based
rajectory planning methods [8], data-driven methods [9,10], to
andle trajectory generation in the above-mentioned situations
11,12].

Most industrial robots only open the position servo interface
nstead of the torque control interface, and do not provide the
nterface to obtain the dynamic parameters of robots. This means
hat using the drag demonstration based on robotic dynamic
ompensation needs to identify the dynamic parameters and
riction model [13]. However, there are often large errors in the
dentification process, which will affect the performance of drag
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921-8890/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
demonstration [14]. Although most industrial robots, such as UR
robots, have their own drag demonstration function, it is difficult
to drag the manipulator to follow a smooth and continuous
spatial trajectory. In many cases, they can only obtain a con-
tinuous and smooth trajectory through interpolation after single
point teaching, which makes the demonstrating process time-
consuming and laborious. Therefore, it is of great practical value
to develop a continuous and compliant demonstration scheme for
industrial robots [15].

Dynamical motion primitive (DMP) is widely used in trajectory
planning of robotic arms to imitate the behavior of
human tutor [16–18]. The DMP model is essentially a second-
order nonlinear system (spring–damping system) to approximate
a motion trajectory. DMP and its evolutionary structure have
been proposed by many researchers, and motion information is
represented by a set of nonlinear differential equations. They
are widely used in imitation learning and trajectory generaliza-
tion [19,20]. In order to solve the problems that the original DMP
could not produce the right trajectories under some special cases,
some researchers improved DMP model. Some researchers com-
bined neural network control with DMP to solve complex tasks
with special constraints, such as obstacle avoidance and interac-
tion with the external environment [21–23], most of which added
coupling terms based on the basic transformation system [24–26].

In this paper, the reference trajectory on the flat surface is ob-
tained by continuously drag demonstration, and then the in-situ
reproduction, flat and curved surface generalization are carried
out by the modified DMP model. The contributions can be sum-
marized as follows. (1) A continuous drag teaching algorithm
based on discrete admittance model is designed, which improves
the problem that it is difficult for Elite industrial robot to teach

by dragging compliantly and effortlessly. (2) The classical DMP

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Overview of the proposed robotic learning and generalization framework.
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odel is modified by introducing scaling factor and force cou-
ling term, which improves the generalization ability of DMP
odel in flat and curved surface.
The rest of the article structure is organized as follows. In

ection 2, materials and methods were described. Discrete admit-
ance model, original DMP and modified DMP used in this paper
re introduced. In Section 3, the experimental study is presented
nd then the effectiveness of the framework proposed in this
aper is verified via Elite robot. Finally, in Section 4, conclusions
ere given to summarize the whole paper.

. Materials and methods

.1. Overview of the framework

The overall structure block diagram of the proposed learning
nd generalization framework is shown in Fig. 1. First, reference
rajectories are obtained by using the method of LfD. In this part,
e propose a continuous drag demonstration method based on
iscrete admittance model to improve the problem that some
ndustrial robots cannot drag compliantly and effortlessly. Then
he classical DMP model is improved by adding scaling factor and
orce coupling term. After that, through the learning, reproducing
nd generalizing of the modified DMP model, a new desired
rajectory xd is obtained. Finally, the validity of the proposed
framework is verified by Elite robot.

2.2. Continuous drag demonstration based on discrete admittance
model

The Elite robot used in this paper has poor continuity for drag
emonstration, so the smooth dragging effect cannot be achieved
nly by adjusting the internal parameters such as starting force
oefficient and friction coefficient. Therefore, we uses the open
osition servo interface of Elite robot to design the continuous
rag demonstration based on the admittance controller.
The six-dimensional force acting on the drag tool is obtained

rom the six-dimensional force/torque sensor, and the obtained
orce data needs to be compensated to eliminate the influence
f tool weight, sensor drift and installation inclination [27]. The
pecific force compensation method is the same as our previous
esearch work paper [28]. The compensated six dimensional force
ata is then input into the designed discrete admittance model
o calculate the expected speed and position of the current robot
nd. The specific calculation formula is:

ẍr (k) = M−1
r (k) [Fext (k)− Dr (k) ẋr (k − 1)

− Kr (k) (xr (k − 1)− x0)] (1)

˙r (k) = ẍr (k) Tk + ẋr (k − 1) (2)

r (k) = ẋr (k) Tk + xr (k − 1) (3)

here, x0 indicates the initial desired position of the robot end,
¨ (k), ẋ (k) and x (k) are the expected acceleration, speed and
r r r

2

osition of the current robot end calculated by the discrete ad-
ittance controller, Fext (k) represents the six dimensional force
cting on the dragging tool. Tk is the control cycle, k represents

the current time step. Mr (k), Dr (k) and Kr (k) represent the inertia
oefficient, stiffness coefficient and damping coefficient matrix of
he discrete admittance controller respectively.

.3. Original and modified dynamic movement primitives

The original DMP is usually used to represent motor skills and
sed to encode motion trajectories. DMP is essentially a second-
rder spring–damping system, which can be divided into discrete
nd rhythmic types. In this work, we focus on the former. The
MPs model can be expressed by the following formula [29]:

v̇ = k(g − x) − dv + f (s) (4)

τ ẋ = v (5)

τ ṡ = −α1s (6)

here Eq. (4) represents a transformation system consisting of a
econd-order spring–damping system and a nonlinear function,
and v represent the position and velocity of the motion, re-

pectively, k and d represent the spring constant and damping
oefficient of the system, respectively, which are artificially de-
igned parameters, usually let k = d2/4, g denotes the target
osition of the motion, τ denotes the time scaling constant, s is
he phase of the system, determined by Eq. (6). It decays from the
nitial value 1 to 0 with time, then model will become a stable
econd-order spring–damping system. α1 is a positive constant,
(s) is a nonlinear function, which is defined as follows:

(s) =

∑N
i=1 ψi · ωi∑N

i=1 ψi
· (g − x0)s (7)

ψi = exp(−hi(x − ci)2) (8)

where ci and hi are the center and width of the ith Gaussian
function respectively, x0 is the initial position, N is the number
of Gaussian functions, and ωi is the weight of the ith Gaussian
unction.

The original DMP model can translate and scale the demon-
tration trajectory. Nevertheless, for the transformation on the
patial curved surface, the original model learns the nonlinearity
n three directions separately, which will lead to the shape dis-
ortion of the spatial curve. In order to fully describe the position
nd posture of the manipulator, 6 DMPs are employed to denote
ositions and X–Y–Z Euler angles. Therefore, we modified the
lassical DMP model as follows:

V̇ = k(g − X) − dV + α
{T }

f f (s) (9)

τ Ẋ = V + αee(X) (10)

τ ṡ = −α1s (11)

here α
{T }

f = diag(
[
αfx, αfy, αfz, αf α, αf β , αf γ

]
) is the transfor-

ation factor between the surface to be generalized and the
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obot coordinate system, and {T } is the transformation matrix.
(X) is the output error of admittance model, that is, the devi-
ation between the current position and the reference position
of admittance model. αe is adjustment constant matrix. X =

x, y, z, α, β, γ ]
T and V = [vx, vy, vz, ωα, ωβ , ωγ ]

T are state vari-
bles of the system. In this paper, we uses a supervised learning
ethod called locally weighted regression algorithm (LWR) to
etermine the model parameters ω [30].

.4. Stability and convergence of the modified DMP

The stability and convergence of the modified DMP are proved
31]. The modified DMP can be written as the following equation:

2ẍ = k
(
g +

αf f + ταeė (x)+ dαee (x)
k

− x
)

− dτ ẋ

= k(u − x) − dτ ẋ (12)

where u is a time-variant input to the linear spring–damper
system. Then the Laplace transform is performed on (12):

G(s) =
x(s)
u(s)

=
k

τ 2s2 + dτ s + k
(13)

n the basis of Routh criterion, the condition for the bound input
ound output (BIBO) stability of a second-order system is k > 0

and d > 0. When time t approaches infinity, αee(x) reaches 0.
And the variable s approaches 0, the function f disappears and
no longer works. The transformation system of the modified DMP
develops into a linear second-order system. The state variable x
onverges to g with time t to infinity.

. Experiment and analysis

In this section, the improved continuous drag demonstra-
ion method based on admittance model was tested by a 6-DOF
lite-EC66 robot as shown in Fig. 2, and the generalization per-
ormance of the improved DMP and the original DMP in the flat
nd curved surface will be compared respectively. The ATI Mini45
orce/Torque sensor was mounted on the end of the manipula-
or through the connecting flange to sense the interacting force
etween the end-effector and the environment in real time. The
en fixing tool made by 3D printing was used to fix the marking
en and was also used as a handle during drag demonstration.
clamping position was designed at the end of the pen fixing

ool, and the marking pens of different colors were stably fixed
hrough the coupling device. The force sensor and the upper
omputer communicated by the UDP protocol, whose sampling
ate and control rate were 100 Hz and 50 Hz, respectively.

.1. Continuous drag demonstration

In order to verify the effectiveness of the improved drag
emonstration method, we implemented the following compara-
ive experiments. Before the drag teaching, a standard sine curve
as given on the experimental plane as the reference trajectory,
s shown by the red curve in Fig. 3(a). At first, the proposed drag
ethod was used. The program was run in the remote mode of
lite robot. The discrete admittance model parameters were set
s follows: Mr = diag [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]; Dr = diag [0.1,

0.1, 0.8, 10, 10, 10]; Kr = diag [0.02, 0.02, 0.02, 0.9, 0.9, 0.9].
Then the operator held the black handle of the pen fixing tool and
performed drag teaching along the reference track, as shown by
the black curve in Fig. 3(d). At the second step, the self-contained
drag teaching function of Elite robot was used as a contrast.
In the Elite teaching mode, the built-in parameters were set as
follows: the forward and reverse friction coefficients of each shaft
were 5%, and the starting coefficient were 10%. The operator
3

Fig. 2. Experimental platform based on Elite robot.

pressed the teaching button at the end of the manipulator to
drag teaching, as shown by the blue curve in Fig. 3(f). During the
demonstration process, trajectory coordinates under the two drag
methods were recorded respectively, and the spatial curve was
shown in Fig. 4.

Combining Figs. 3 and 4, it can be clearly seen that our drag
demonstration method based on the discrete admittance model
has a good performance. Even if the built-in parameters such
as friction coefficient are adjusted to the most compliant state,
there are still problems such as jamming and overshooting under
the drag teaching function of Elite. So those problems may bring
a lot of burden to human tutor and make it difficult to follow
the reference trajectory accurately. Our method, on the other
hand, can follow the target curve compliantly, coherently, and
accurately.

3.2. Drawing task on different surface

In this section, the effectiveness of our modified DMP algo-
rithm was verified. We performed the reproduction and gen-
eralization of the demonstration trajectory on flat and curved
surfaces, respectively. In order to better reflect the advantages
of our algorithm, the original DMP algorithm was also used for
comparative experiments.

3.2.1. Reproducing and generalizing on flat surface
We still used the sine curve as our teaching reference trajec-

tory. The pose information data of the reference trajectory were
input into the modified DMP and the original DMP model for
training. The parameters were set as: d = 20, k = 202/4, τ = 0.5,
N = 80. First, the trajectory was reproduced between the start
point and the end point of the reference trajectory, that is, the two
DMP models were reproduced without changing the start point
(−551.030, 131.399, −17.560) and end point (−660.021, 130.034,
17.538). The effect was shown in Figs. 5 and 6. As was seen from

he trajectory curves, two methods were both able to basically
omplete the reproduction of the given reference trajectory. From
he details, the peak position of the original DMP reproduced tra-
ectory in the Y direction presented an amplitude attenuation of
mm. Instead, the modified DMP can basically keep the original
mplitude of the demonstration curve. We used the wave height
o characterize the amplitude of the curve, that is, the vertical
istance between the peak point and the trough point. The wave
eights of the three curves were shown in Table 1.
In another set of experiments, we changed the start point and

nd point, in which case we verified the generalization ability of
he DMP model for translating and scaling. The new start and end
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1
t

Fig. 3. Comparative experiment process between continuous demonstration based on discrete admittance model and built-in drag demonstration of Elite robot.
Fig. 4. Spatial curves of different demonstration methods.
Fig. 5. Reproducing trajectory in X, Y and Z direction at the original start and end point. (a) Reproducing trajectory in X direction. (b) Reproducing trajectory in Y
direction. (c) Reproducing trajectory in Z direction.
coordinates are (−701.698, 132.420, −17.538) and (−807.597,
29.739, −17.518). The trajectory curves after generalization via
he two methods are shown in Figs. 7 and 8. As was seen from
4

the trajectory curves, two methods were both able to basically
complete the generalization of the given reference trajectory on
the flat surface. However, for the original DMP, the amplitude



X. Xue, J. Dong, Z. Lu et al. Robotics and Autonomous Systems 160 (2023) 104323

e

Fig. 6. Spatial curves reproduced on the flat surface and its actual experimental effect. (a) Spatial curves reproduced on the flat surface. (b) Actual experimental
effect via Elite robot.
Fig. 7. Generalizing trajectory in X, Y and Z direction at the new start and end point. (a) Generalizing trajectory in X direction. (b) Generalizing trajectory in Y
direction. (c) Generalizing trajectory in Z direction.
Fig. 8. Spatial curves generalized on the flat surface and its actual experimental effect. (a) Spatial curves generalized on the flat surface. (b) Actual experimental
effect via Elite robot.
Table 1
Wave heights of three curves during reproduction.
Trajectory Demonstration Original DMP Modified DMP

Wave height (mm) 49.979 47.669 49.161

attenuation in the Y direction at the peak of the curve still existed
and increased to 4 mm. For the modified DMP algorithm, the
original amplitude was still kept almost unchanged. The wave
heights of the three curves during generalization were shown in
Table 2.

In general, the above two groups of reproduction and gen-
ralization experiments showed that the two DMPs were both
5

Table 2
Wave heights of three curves during generalization.
Trajectory Demonstration Original DMP Modified DMP

Wave height (mm) 49.979 45.725 49.158

able to realize the trajectory reproduction and simple generaliza-
tion on the flat surface. However, the modified DMP algorithm
showed better performance in terms of maintaining the shape
and amplitude of the demonstration trajectory.

3.2.2. Generalizations on curved surface
In this part, we tested the generalization ability of the mod-

ified DMP model on the curved surface. We also used the flat
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Fig. 9. Spatial curves generalized on the curved surface and its actual task effect. (a) Spatial curves generalized on the curved surface. (b) Actual task effect via Elite
robot.
surface teaching trace of the previous two groups of experi-
ments as the reference trajectory, and then generalized it to
the side curved surface of the experimental bench. The three-
dimensional size information of the test bench model used was
known. The new start and end coordinates on the curved surface
were (−551.698, −37.580, −28.765) and (−657.597, −43.254,
−32.265), respectively. The spatial trajectory curves after gener-
alization via the two DMP models were shown in Fig. 9(a), and
the actual task effect was shown in Fig. 9(b).

Fig. 9(a) showed that the modified DMP were able to realize
curved surface generalization. The generalized trajectory was still
similar to the sinusoidal curve and accurately fit on the target
curved surface. However, when inputting a new start point and
end point on the given curved surface into the original DMP, it
still generalized according to the plane where the Z coordinate
was located, and failed to fit the target curved surface, as shown
by the green curve in Fig. 9(a). The surface drawing task was a
failure at last. At the same time, as was shown from the actual
task effect Fig. 9(b) that the modified DMP algorithm successfully
completed the curved surface generalization task.

4. Conclusions

In this paper, a robotic learning and generalization framework
for curved surface was proposed. Based on the discrete admit-
tance model, a compliant continuous drag demonstration scheme
was designed, and the comparison experiment was carried out
with the built-in teaching function of Elite robot. It can help the
instructor overcome the instability and resistance in the teaching
process, so as to reduce the burden of the instructor and improve
the stability of the demonstration operation. In addition, the
classical DMP model was modified to improve the generalization
performance, then the experimental test was completed through
the curve drawing task. Though this study did not focus on
the precise force control, in future work, we will consider the
design of the force controller and apply this framework to surface
engraving tasks.
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