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Abstract

Robots are becoming standard collaborators not only in factories, hospitals, and offices, but also in people’s homes, where they
can play an important role in situations where a human cannot complete a task alone or needs the help of another person (i.e.,
collaborative tasks). Variable impedance control with contact forces is critical for robots to successfully perform such manipulation
tasks, and robots should be equipped with adaptive capabilities because conditions vary significantly for different robotic tasks
in dynamic environments. This can be achieved by learning human motion capabilities and variable impedance skills. In this
paper, a neural-network-based framework for learning variable impedance skills is proposed. The proposed approach builds the
full stiffness function with the acquired forces and position learned from demonstrations, and then is used together with the sensed
data to achieve the variable impedance control. The proposed algorithm can adapt to unknown situations that change the learned
motion skill as needed (e.g., adapt to intermediate via-points or avoid obstacles). The proposed framework consists of two parts:
Learning motion features and learning impedance features. The motion features learning is validated by reproducing, generalizing,
and adapting to transit points and avoiding obstacles in the LASA dataset. Impedance features learning is validated based on a
virtual variable stiffness system that achieves higher accuracy (approximately 90%) compared to traditional methods in a manual
dataset, and the whole framework is validated through a co-manipulation task between a person and the Franka Emika robot.
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1. Introduction

With the development of robotics, robots are widely used in
various fields, such as manufacturing and rehabilitation [1, 2].
In these scenarios, robots are expected to perform complex ma-
nipulation tasks that require interaction with unknown and un-5

structured environments (i.e., humans), making fixed coding
unfeasible. In this case, learning from demonstration (LfD) is
an intuitive and user-friendly method that helps robots implic-
itly learn task constraints and acquire manipulation skills from
demonstrations [3]. Most LfD methods mainly focus on learn-10

ing motion trajectories; for robots operating in unknown and
unstructured environments, however, learning motion trajecto-
ries alone is not sufficient. Extending robot learning capabili-
ties to force and impedance domains [4, 5] is critical for robots
working in dynamic environments.15

In this paper, a neural network based framework is proposed
for learning variable impedance skills (see Fig. 1). The learn-
ing framework encodes not only the motions but also the inter-
action model that encapsulates the expert dynamics. The main
contributions of this paper are listed below:20

• A dynamic system approach is proposed to learn the point-
to-point motions using neural networks while maintaining
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Figure 1: Structure of the proposed approach.
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stability.

• The proposed algorithm can easily modify the generat-
ed motions to pass through via-points or avoid obstacles,25

while retaining the characteristic shape of the demonstra-
tion motions.

• A neural network with the encoder-decoder architecture is
used to construct a function between stiffness and motion
information and implement variable impedance control.30

The paper is structured as follows: In Section 2, the related
works are presented. In Section 3, the neural network which
has the inherent property of keeping stability while modify-
ing readily and the encoder-decoder structure which achieves
the variable impedance control is introduced. In Section 4, the35

performance of the methods is evaluated by simulation and by
experiments on the Franka Emika robot. In Section 5, the con-
clusion is made.

2. Related Work

The present work is mainly related to three areas, which are40

discussed in this section.

2.1. motion modeling

In the context of motion modeling, probabilistic approach-
es have achieved the desired performance in various scenarios
[6, 7]. In [8], the motion features are extracted from multi-45

ple demonstrations using the Gaussian mixture model (GM-
M), and the new motions are generated using Gaussian mix-
ture regression (GMR). Another powerful motion modeling
tool is the dynamic system (DS), which is robust to perturba-
tions [9, 10]. Dynamic Movement Primitives (DMP) is one of50

the most widely used DS algorithms that learns from a demon-
stration and generates motion trajectories based on a nonlinear
spring-damper system [11], which has the inherent property of
guaranteeing stability.

The stable estimator of dynamical systems (SEDS) is the first55

state-dependent DS algorithm proposed in [9]. It encodes the
demonstration motions using the GMM and restricts the param-
eters of the GMR to guarantee global stability. However, the
accuracy of motion modeling under strict stability constraints
is low when learning from demonstrations, which is referred to60

as the accuracy vs stability dilemma [12].
Recently, several approaches have been proposed by re-

searchers to improve the accuracy of reproduction with stability
constraints. In [13], the use of a neural network to estimate the
Lyapunov function based on demonstration is proposed, and65

the accuracy of the reproduction can be improved as the data
of violation of the Lyapunov function is reduced. In [14], an
algorithm for controlling Lyapunov function-based dynamics
movements (CLF-DMs) is proposed which first learns a Lya-
punov function that approximately matches the demonstration70

data, then uses a regression technique to model the motion, and
finally guarantees the stability of the reproduction motions by

solving an optimization problem online, which makes the algo-
rithm complex and sensitive to the parameters. In [12], diffeo-
morphic transformation (τ -SEDS) is proposed to project the da-75

ta into another space to improve the accuracy while keeping the
learned motions stable. In [15], a fast stable learning method
(FSM-DM) is proposed to model the demonstration motions
using Extreme Learning Machine (ELM) considering stability,
but the algorithm has unsatisfactory performance in reproduc-80

ing and generating new motions. In [16], stable dynamical sys-
tem learning using Euclideanizing flows (SDS-EF) is proposed
to learn stable dynamical systems through a neural network to
learn a diffeomorphism transformation which not only has good
performance in generating new motions but also can gain high85

accuracy in reproduction, except for the cost of learning time.
In [17], an attention-based approach for dynamical system to
learn while keeping stability is proposed, which can be easily
extended to learning high-dimensional complex motions.

The proposed algorithm also uses an invertible neural net-90

work like [16] that is stable and robust to perturbations, which
does not need to calculate the Jacobian of the neural network.

2.2. motion modulation

After modeling motions learned from demonstrations, some
new task conditions may be met in real experiments. Reinforce-95

ment learning (RL) is a solution to refine trajectories to meet the
new conditions and achieve optimal performance. For instance,
a variant of policy improvement with path integrals [18] is em-
ployed to optimize the parameters of the DMP. However, RL
approaches that refine trajectories online as a time-consuming100

search for an optimal strategy are impractical. In contrast to
the RL treatment, probabilistic movement primitives (ProMP)
formulate the modulation of trajectories as a Gaussian condi-
tioning problem, and therefore derive an analytical solution to
adapt trajectories to new via-points or targets [19]. In [20], a105

kernelized movement primitive (KMP) is proposed that allows
the robot to adapt to learned motor skills and to satisfy a variety
of additional constraints that arise during the course of a task.
In [21], a via-points Movement Primitive (VMP) is proposed
that can adapt to arbitrary via-points by using a simple struc-110

tured model to divide the trajectory into an elementary part and
a modulation part and realize the modulation of the trajectory
by adjusting them.

The proposed algorithm transfers this problem in a different
space to a trajectory tracking problem, which is easy to imple-115

ment while keeping more features of the original motion.

2.3. Variable impedance control

In real experiments, unstructured environments are constant-
ly encountered, requiring variable impedance control. As hu-
mans have the ability to perform well in unstructured environ-120

ments, some researchers have attempted to learn variable stiff-
ness skills from human demonstrations [22]. In [23], the pa-
rameters of the variable admittance controller are self-regulated
based on gait prediction by the Deep Gaussian Process method
and the effectiveness is verified in both simulations and real125

experiments. In [24], an algorithm for estimating stiffness from
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interaction force information in a human-robot cooperative task
is developed. First, the demonstration trajectories are modeled
as a task-parameterized Gaussian mixture model (GMM), and
then the stiffness matrices are estimated using convex optimiza-130

tion in each Gaussian component. Finally, the estimated stiff-
ness is used to implement a variable impedance controller. In
[25] the stiffness is estimated using the measured interaction
force, then the relationship between the stiffness matrices and
the interaction forces is modeled by GMM, and GMR is used to135

reproduce the stiffness for given interaction forces. In [26], the
impedance skills are learned from the depth images and then the
desired control torques are output for the multi-fingered dexter-
ous hand, which can realize the human-like compliant behavior
by the end-to-end neural networks.140

The proposed algorithm implements the variable impedance
control using a neural network with an encoder-decoder struc-
ture that models the stiffness with both the interaction force and
motion information.

3. Proposed Approach145

Figure 2: The structure of the whole framework to realize the variable
impedance control.

In this section, a novel PbD architecture is proposed that
combines two neural networks for learning and reproducing co-
operative tasks. A modified stable dynamical system learning
using euclideanizing flows (SDSEF) is used to learn the motion-
s from the demonstration, and a neural network with encoder-150

decoder architecture is used to encode the motions with force
data that encapsulates the dynamics of the demonstration be-
havior. The whole framework is presented in Fig. 2 and ex-
plained in the following sections.

3.1. Interaction Model155

The motion of the robot’s end-effector in the task space can
be modeled as a single unit of mass on which the interaction
forces fe and the control input f c act as follows:

ẍ = fe + f c, (1)

where ẍ is the acceleration of the movement and the simple
dynamic model is borrowed from [27]. Therefore, setting the
robot’s motion control forces as f c can achieve the desired task
dynamics. To obtain the control forces, the robot motion during

interaction in a virtual MSD system is modeled at each time step
t as follows:

ẍt = Kp
t (x

r
t − xt)−Kv

t ẋt + fe
t , (2)

where Kp
t , Kv

t and xr
t are the full stiffness matrix, the full

damping matrix and the reference trajectory of the virtual sys-
tem. xt, ẋt, ẍt, and fe

t are the position, velocity, acceleration,
and interaction forces, respectively.

Notice that ẋt and ẍt are the first and second time derivatives160

of xt, which can be acquired after the position and time have
been obtained. Moreover, the interaction forces fe

t are obtained
by the force sensor mounted at the robot’s end-effector. Varying
both the stiffness and the attractor in this interaction model (2)
can shape robot behavior as needed. To acquire an expert-like165

ideal behavior, the variables xr
t and Kp

t will be learned from
demonstrations provided by human teachers. These variables
are learned using the framework in Fig. 2 that are explained in
the rest of this section. Moreover, Kv

t can be specified accord-
ing to the desired response of the interaction system (2) selected170

by experts or just chosen by the neural network learning from
the demonstrations.

3.2. Motion learning and modulation

Figure 3: Comparison of the original SDSEF and the Modified SDSEF to model
motions.

SDSEF [16] treats demonstration trajectories as goal-
directed motions governed by a stable DS on a Riemannian175

manifold, which can be learned by invertible neural network-
s. The DS on the manifold is essentially the same as the DS
in the original space, therefore, the generated trajectories are
stable in the original space and converge to the goal point.

Considering that demonstration motions are modeled by a
DS:

ẋ = f(x), ∀x ∈ Rd, (3)

where x is the state of motion, ẋ is the first-order time deriva-
tive of x and f provides the dynamics. After an initial s-
tate x0 is given, the whole motion is generated by solving the
ordinary differential equation (ODE), which can be evaluated
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with a numerical integrator (i.e., Runge-Kutta method and Eu-
ler method). When SDSEF is used to model the motions, the
ODE can be transformed using invertible neural networks as
follows:

ẏ = −αy, ∀y ∈ Rd, (4)

where α is a positive constant, ẏ is the first-order time deriva-180

tive of y, y = G(x) and G is a diffeomorphism transformation
achieved by the invertible neural networks. Therefore, the mo-
tions are generated by SDSEF using the Jacobian and numerical
integrator methods.

In contrast to the original SDSEF, this work modifies the
model as shown in Fig. 3. The motions are first generated on
this Riemannian manifold and then transformed to the original
space using the inverse of the trained invertible neural network-
s, so that it is no longer necessary to calculate the Jacobian of
the forward pass of the invertible neural networks, and the mo-
tions can be explicitly expressed in Riemannian space utilizing
the numerical integrator. With the given initial state, the whole
motion on this Riemannian manifold can be generated as:

y = G(x0)e
−αt. (5)

Therefore, after training the model using the demonstration da-185

ta, arbitrary motions can be obtained as x = G−1(y) using the
backward pass of the invertible neural networks. In this setting,
the generated trajectories can be easily adapted to different s-
tarting or ending points and are robust to spatial perturbations.

Each coupling layer in SDSEF can be formally expressed as
follows:

zk =

[
za
k

zb
k

]
=

[
za
k−1

zb
k−1 ⊙ exp(sk(z

a
k−1)) + tk(z

a
k−1)

]
, (6)

where exp denotes pointwise exponential and ⊙ denotes point-
wise product; zk denotes the input or intermediate variable in
the flow. The dimension of these parameters is zk ∈ Rn×1,
za
k ∈ Rn/2×1 or za

k ∈ R(n+1)/2×1 and zb
k ∈ Rn/2×1 or

zb
k ∈ R(n−1)/2×1. For concise, assume that n is an even num-

ber. Just like [16], the sk(·) is set as a neural network with the
layer resembling an approximated kernel machine [28]. The
Gaussian kernel is approximated by, which has the inherent
property of imposing a strict smoothing constraint. The sk(·)
is expressed as:

sk(z) = φ(z)Tw, (7)

where

φ(z) =

√
2

m


cos(αT

1 z + β1)
cos(αT

2 z + β2)
...

cos(αT
mz + βm)

 ∈ Rm·[n/2]]×[n/2], (8)

and w ∈ R1×m·[n/2]] is the parameters learned by gradient de-190

scent. φ(z) is an approximate for K(z, z′) ≈ φ(z)Tφ(z′)
which is composed of m randomly sampled Fourier features,
the K(·) means the Gaussian kernel, the coefficients {αi}mi=1

and the bias {βi}
m
i=1 are sampled from the zero-mean Gaussian

distribution N (0, l−2I) and the uniform distribution U(0, 2π),195

respectively. l is a hyperparameter. The detail proof can be
found in [28].

In the proposed algorithm, the tk(·) is set as

tk(z) = ζ(z)Tw′, (9)

where

ζ(z) =

√
2

m


sigmoid(γT

1 z)⊙ z
sigmoid(γT

2 z)⊙ z
...

sigmoid(γT
mz)⊙ z

 ∈ Rm·[n/2]]×[n/2], (10)

and {γi}
m
i=1 are also sampled from the zero-mean Gaussian

distribution N (0, l−2I), sigmoid(γz) = 1/(1 + exp−γz) and
sigmoid(γz)⊙ z can be seen as the Swish function in [29]. In200

this case, both the original trajectories and the transformed tra-
jectories in the Riemannian manifold converge simultaneously
to zero. It can be proved that s and t are continuous and con-
tinuously differentiable with respect to z, which is essential for
invertible neural networks [30].205

In some cases, additional requirements can be met when gen-
erating the motion (i.e., some tasks require the robot to traverse
certain specific locations in the workspace). It is not easy to
modulate the trajectories generated by the dynamical system
methods through the intermediate via-points, like the trajecto-210

ries generated with ODE, which is the determination. To han-
dle this problem, a variational ODE on the Riemannian mani-
fold is proposed that allows the modulation of trajectories while
preserving the motion features learned from demonstrations.
When the via-points are provided, the corresponding points in215

the transformation space can be determined using the forward
pass of invertible neural networks. Equation (4) indicates that
these corresponding points are in the rectilinear trajectories in
the transformation space. Therefore, to pass through particular
points in the task space, the modulation of the trajectories can220

be achieved by following the rectilinear trajectory in the trans-
formation space that contains the traversal point.

Given an initial point x0 and a via-point xv , the corre-
sponding coordinates in the transformation space are G(x0)
and G(xv). The initial motion in the transformation space is
a rectilinear trajectory pointing to the zero point, which implies
that the energy function

V =
1

2
yTy (11)

is a dissipation that guarantees the stability of the proposed al-
gorithm. Using the energy function (11), the initial energy and
the via-point energy are obtained as V0 = 1

2G(x0)
T
G(x0)

and Vv = 1
2G(xv)

T
G(xv), respectively. The point with the

same energy as Vv in a rectilinear path containing G(xv) can
be easily determined as ys. Then the reference point on the
desired trajectory can be selected as follows:

yr = ys − αβys, (12)

where β is a positive constant selected by experience, if V0 is
close to Vv, β can be selected little and vice versa. Therefore,
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the new ODE in the transformed space can be modified as:

ẏ = α
|y|

|yr − y|
(yr − y), ∀y ∈ Rd, (13)

where |·| denotes the 2-norm. Finally, using the new ODE in
(13) in the transformation space, the trajectories can be generat-
ed to pass through the intermediate via-point, while preserving225

the motion feature learned from the demonstrations.
When there is more than one passing point, the via-points

have to be sorted according to the energy calculated in (11) and
the reference point to be tracked must change when the gen-
erated motions pass through a via-point, therefore, the entire230

generated trajectories can pass through one via-point after an-
other until they converge to the target point. It is worth men-
tioning that the modulation of trajectories with the proposed
method does not require retraining of the model, which means
that the proposed algorithm does not increase the computation235

time to modulate the generated trajectories to pass through the
via-points.

In practise, there are often static obstacles that require trajec-
tories to be modulated to avoid them. Since the proposed algo-
rithm can pass through an arbitrarily via-point near the demon-
stration region, a method for modulating the trajectory to avoid
an obstacle xo is proposed that assumes the trajectory can pass
a point in the security boundary while always maintaining a safe
distance from the obstacle. The security boundary is defined as
a circle with a radius r to simplify the problem and the gener-
ated trajectory would be tangent to the circle, which means that
the straight-line trajectory in the transformation space is also
tangent to the boundary transformed by the circle. The tangent
points xp are calculated as follows:{

|xp − xo| = r,
< G−1(γG(xp))− xp,xp − xo >= 0,

(14)

where γ is a constant selected by experience (approximately e-
qual to 1), G(·) is the diffeomorphism transformation realized
by the trained SDSEF, |·| denotes the 2-norm and < · > mean-240

s the inner product. The complete modulation for generating
trajectories that avoid an obstacle in a 2D coordinate system is
summarized in Algorithm 1, which can be easily extended to
high-dimensional space.

3.3. Stiffness Estimation Model245

The purpose of estimating the stiffness matrix is to shape
the compliance of the robot like that of the human teacher. It
can be learned from equation 1 and equation 2 that estimating
the stiffness matrix is not the goal but an intermediate process
to obtain the control torque for the robot. Unlike the method250

proposed in [24, 25], which first estimates the stiffness ma-
trix from the demonstrations using convex optimization or least
square method, then builds the model between the stiffness and
Gaussian component or force data, and finally achieves variable
impedance control using the built model and interaction model,255

an encoder and decoder neural network consisting of a modified
SDSEF is proposed to achieve variable impedance control.

Algorithm 1: Generate a trajectory to avoid obstacle
Input: initial point x0, obstacle o, safety radius r.
Output: a generated trajectory to avoid obstacle while

keeping the characteristics of demonstrations.
1: generate a trajectory from the initial point using the

modified SDSEF
2: if the trajectory is always keeping a safe distance then
3: output the trajectory
4: else
5: Calculate tangent point xpn in the security boundary

which is nearer to the generated trajectory. Using x0 as
the initial point and xpn as the via-point to generate a
new trajectory.

6: end if

The demonstration data are recorded when the hu-
man teacher executing the interaction tasks repetitively as{
xk,n, ẋk,n, ẍk,n,f

e
k,n | k = 1, 2, ...,Kn; n = 1, 2, ..., Nd

}
,260

where n is the nth demonstration and k is the kth sampling
time; Nd and Kn denote the total number of demonstrates and
the whole sampling number of the nth demonstrated motion,
respectively. The state variable x represents the coordinates of
the robot’s end-effector in Cartesian space and fe are the forces265

read by the force sensor mounted at the robot’s end-effector.
There is no stiffness in the demonstrations and it is tough to ob-
tain the ground-truth stiffness because the actual reference mo-
tions are unknown. However, the estimated reference motions
can be generated using the modified SDSEF method described270

in 3.2, and the interaction model (2) can be used to estimate the
varied stiffness.

The structure of the proposed algorithm is shown in Fig. 2.
The encoder aims to learn a lower triangular matrix, which is
the Cholesky decomposition of the stiffness after sensing posi-275

tion, velocity, and force, to satisfy the symmetric and positive
definite (SPD) constraints, while the decoder expresses the in-
teraction model (2) that uses the estimated stiffness and sensor
data to output the torque of the robot. The encoder is designed
as a three-layer network, which can be viewed as a function280

Kp
t = F (xt, ẋt,f

e
t ) learned from demonstrations. Therefore,

just like human teachers, the learned model can change compli-
ance after perceiving this information.

In the framework proposed in this paper, the neural network
directly outputs the control torque f c in (1) for the robot after285

acquiring the robot’s perception and haptic information from
the force sensors, which is then transformed to joint torques
τ of the robot using the Jacobian transpose JT as follows:
τ = JTf c. It is worth noting that when using the encoder
and decoder neural network, the damping term in the interac-290

tion model (2) can be simply specified as Kv
t = TT

t (ζΛ
1
2
t )T t,

where T t and Λ are the eigenvector and eigenvalue of Kp
t as

Kp
t = TT

t ΛtT t, and ζ ∈ R+ is a manually specified tuning
parameter, which is difficult to achieve using the least square
methods in [25]. In contrast, the eigenvalue decomposition of295

Kp
t can be easily implemented using the package in pytorch

(i.e., torch.linalg.eigh).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Results obtained by applying KMP to both the reproducing and modu-
lating trajectories. (a) shows the reproducing trajectories with the same starting
points while the others are the modulating trajectories with different predeter-
mined times for passing through the via-point.

4. Experiment Results and Discussions

To evaluate the effectiveness of the proposed neural network
based framework, both simulations and real experiments are300

conducted. The simulation is implemented in Python 3.8 and
the experiment is implemented using Franka Emika robot in
C++ 14 on the platform of CPU Inter Core i5-8300H, Ubuntu
20.04. The experiments used in the evaluation are summarized
as follows:305

• The effect of the modified SESEF in modulating the trajec-
tories is verified by simulation in the LASA dataset [31] to
perform the motion learning and modulation of the trajec-
tories.

• The performance of the estimated stiffness is evaluated in a310

self-made dataset generated by a 2-DoF MSD with a man-
ually designed fe

t and Kp
t with the attractor of the inter-

action model (2) at zero.

• The whole framework is evaluated using a common
human-robot transportation task by a human with the Fran-315

ka Emika robot.

4.1. Trajectories Modulation in Simulation
In this section, several handwritten letter trajectories are used

as demonstrations to train the modified SDSEF, various points
near the demonstrate domain are provided as passing points,320

and then the proposed algorithm is used to modulate the gener-
ated trajectories to pass these points. To evaluate the effective-
ness of the proposed algorithm, the KMP [20] which can realize

trajectory modulations and extrapolations is also implemented
for comparison purposes. Finally, several points with a certain325

radius are provided as obstacles to show the performance of the
proposed algorithm in avoiding obstacles.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Results are obtained by applying KMP for passing two via-points,
where the time for passing the first point is 0.6s. The time for passing the
second point is set from 1.45s to 1.95s in photos a to f, and from 1.75s to
1.95s in frames g to i with unreasonable velocity.

KMP is an effective method for modeling motion with time
inputs. Fig. 4 displays different trajectory modulation using
KMP with different predetermined times to pass the via-point.330

Fig. 4(a) shows the reproduction trajectories without modula-
tion with the same starting points as the demonstrations. The
dotted gray curves are the demonstration trajectories and the
solid pink curves are the generated trajectories with the same
starting points. The relevant parameters of KMP are the same335

as 4. The time duration of each trajectory is 2s and Fig. 4(b) to
Fig. 4(i) are the modulation trajectories with the predetermined
times for passing the via-point at 0.3s to 1.0s with interval 0.1s.

It can be seen from Fig. 4 that the KMP can acquire a good
performance in the reproduction and modulation trajectories340

when a suitable time is chosen to pass the points. However, set-
ting a specified time for passing the via-points is not convenient
in practical, and an inappropriate time leads to poor trajectories
generation (i.e., Fig. 4(b) and Fig. 4(i)).

Fig. 5(a) to Fig. 5(f) display different trajectory modulation345

passing two via-points using KMP, where the time for pass-
ing the first point is 0.6s, and the time for passing the second
point is 1.45s to 1.95s with interval 0.1s. Fig. 5(g) to Fig.
5(i) show different modulations of trajectories passing two via-
points with the same time as in Fig. 5(d) to Fig. 5(f), but with350

an inappropriate velocity setting.
Fig. 6 displays different trajectory modulation using the
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(a) (b) (c)

Figure 6: Results obtained by applying the proposed algorithm on both repro-
ducing and modulating trajectories.

Figure 7: Heatmap results of the proposed algorithm to learn the motion of the
handwriting letter ”G”. The first and second raw images are generated without
and with energy constraints, respectively.

modified SDSEF algorithm. The number of the coupling layers
is set as 8, the neuron is set as 128, learning rate is set as 0.001
and the optimizer is set to ”AdamW” from [32].355

It can be observed from Fig. 5 and Fig. 6 that both KM-
P and the proposed algorithm successfully generate trajecto-
ries that pass through the via-point. However, the trajecto-
ries generated by the proposed algorithm can preserve more
features of the demonstration data that can be quantitatively360

measured by the position smoothness cp, which is defined as
cp = 1

Kn

∑Kn−1
k=1 (xk+1 − xk)

T(xk+1 − xk). The result of
cp of different trajectories passing through one via-point gen-
erated by KMP and the proposed algorithm is summarized in
Table 1. The trajectories generated by KMP use the predeter-365

mined time of 0.6s to pass through these via-points. It can be
observed from Table 1 that the cp between the proposed algo-
rithm and the demonstrations are very close, which means that
the proposed algorithm can retain more features of the demon-
strations. In particular, trajectories modulated by the proposed370

algorithm do not require a well-designed time and speed to pass
the desired point.

It is worth mentioning that the performance of the proposed
algorithm in modulating trajectories is extremely dependent on
the value calculated from the energy function (11) on the Rie-375

mannian manifold. However, after learning, the rectilinear tra-
jectories in the transformation space are uncontrolled, which
means that the energy of the initial points can vary greatly, so
the proposed algorithm cannot pass through some via points n-
ear the demonstration zone.380

A loss function ensures that the energy of the starting points
is close to each other is very important for the modulation of

(a) (b) (c)

Figure 8: Heatmap results for three handwriting letters are obtained by apply-
ing the proposed algorithm in reproducing trajectories and avoiding obstacles.
From top to bottom, the generated trajectories in the original space with the
same starting points as the demonstrations, the generated trajectories in the
transformation space, and the generated trajectories in the original space avoid-
ing one obstacle, the corresponding trajectories in the transformation space,
the generated trajectories in the original space avoiding two obstacles, and the
corresponding trajectories in the transformation space, respectively.
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Table 1: The values of trajectories smoothness

cp of cp of the cp of the
KMP proposed algorithm demonstration

First Trajectory 0.097 0.3516 0.3725

Second Trajectory 0.0966 0.3560 0.3606

Third Trajectory 0.0957 0.3624 0.4095

Fourth Trajectory 0.0977 0.3405 0.3999

Mean 0.0967 0.3526 0.3857

the trajectories and the results in learning the handwritten letter
”G” are shown in Fig. 7. The first raw images show the trajec-
tories generated by the model without considering the energy385

constraints, while the second raw photos show the trajectories
generated considering the energy constraints. In each raw pic-
tures are shown from left to right as, the movements which arise
in the original space, in the transformation space, when try-
ing to pass through a via-point with comparatively high energy390

in the original space and in the transformation space. In Fig.
7, the white dotted lines represent the demonstration data, the
red solid lines demonstrate the generated trajectories from the
same starting points with demonstrations, and the red dot is the
via-point. The reproduction trajectories are more similar to the395

demonstrations when the model is trained without considering
the energy constraints which are calculated by the swept error
area (SEA) error [14] but are invalid for some starting points
to pass through some points near the demonstration region. To
overcome this dilemma, more parameters may be required in400

the model (i.e., the number of coupling layers is increased).
In real experiments, there are often obstacles. Fig. 8 shows

the heatmap of three handwritten letter trajectories reproduc-
tion and obstacles avoided using the proposed algorithm in the
LASA dataset. From top to bottom are shown the generated tra-405

jectories in the original space with the same starting points as
in the demonstrations, the generated trajectories in the transfor-
mation space, the generated trajectories in the original space to
avoid one obstacle, the corresponding trajectories in the trans-
formation space, the generated trajectories in the original space410

to avoid two obstacles, and the corresponding trajectories in the
transformation space, respectively. Moreover, the white dotted
lines represent the demonstration data, the red solid lines show
the generated trajectories from the same starting points with the
demonstration, the black solid lines are the security boundary415

to avoid obstacles, and the yellow solid lines are the contours
obtained from the Lyapunov-function V (y) = 1

2y
Ty. It can be

seen that the proposed algorithm can efficiently handle the ob-
stacles avoidance problems while preserving the main features
of the demonstrations.420

4.2. Stiffness Estimation in Simulation
Before the stiffness is estimated in the simulation experi-

ment, manually designed fe profiles are used to calculate the
[xt, ẋt, ẍt] of the 2-DoF MSD system at each step t, where the
specific stiffness matrix varies in a rule. The manually designed425

20 0 20 40 60 80 100 120
30

20

−10

0

10

20

30

−

−
−

t

(a)

(b) (c) (d)

Figure 9: Results of applying the compared algorithm and the proposed algo-
rithm in estimating the stiffness. Green demonstrates the truth stiffness, which
changes during the process and red is the estimated stiffness. If the estimated
stiffness ellipse matches the true stiffness ellipse, it turns brown.

Table 2: The mean square error of the control torque in two dimensions

The proposed Convex Optimization plus The encoder-decoder
algorithm in [25] the encoder network networks

First Trajectory 2.97 / 1.06 0.03 / 0.04 0.06 / 0.10

Second Trajectory 0.46 / 0.21 0.04 / 0.06 0.07 / 0.13

Third Trajectory 5.97 / 3.16 0.11 / 0.13 0.09 / 0.18

Fourth Trajectory 0.52 / 0.23 0.06 / 0.08 0.12 / 0.24

Fifth Trajectory 7.12 / 4.99 0.08 / 0.10 0.15 / 0.31

Mean 3.40 / 1.93 0.06 / 0.08 0.10 / 0.19

stiffness is considered as the ground truth to compare the per-
formance of the estimation with the state.

Ten groups of different but proportional interaction forces are
applied to the 2-DoF MSD system to generate ten trajectories.
The stiffness is initialized starting from a horizontally orient-430

ed ellipsoid and then continuously rotated clockwise RT
t K

pRt

until it is vertically oriented (as shown in Fig. 9(a)). Five trajec-
tories with corresponding forces are set as the training dataset
while the rest are used as the test dataset. The encoder network
of the proposed algorithm is a three-layer network with 32 hid-435

den neurons and 3 output neurons whose activation functions
are relu. The compared algorithm is proposed in [25], which
leads to the fact that the stiffness estimates obtained by con-
vex optimization can reach a higher accuracy. For a fair com-
parison, the stiffness estimation of the compared algorithm is440

performed using convex optimization which can be realized by
CVXPY (a software package in python for convex optimiza-
tion), and the damping is set as a constant matrix with the same
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coefficient as the compared algorithm in [25]. Since the stiff-
ness estimated from convex optimization is close to the ground445

truth, the estimated stiffness can be used as a label to train the
encoder network.

The estimated stiffness profile and the actual stiffness profile
for the five test trajectories are displayed in Fig. 9(b), Fig. 9(c),
and Fig. 9(d). The stiffness matrices are shown as stiffness450

ellipses which were proposed in [33] for graphical visualiza-
tion of stiffness matrix. Intuitionally, the convex optimization
together with the encoder network can achieve the best perfor-
mance in estimating the stiffness profile of the test data. The
algorithm proposed in [25] performs well when the test data is455

very close to the training data and the encoder-decoder network
does not perform poorly on all test data.

As mentioned in 3.3, the purpose of stiffness estimation is to
determine the control torque f c = −Kp

txt−Kv
t ẋt. For the re-

al experiment demand, the calculated control torque is used for460

comparison, and the results are displayed in Table 2. It is obvi-
ous that the convex optimization plus the encoder network can
still achieve the best accuracy in comparing the truth value in
both dimensions, while the encoder-decoder networks can ob-
tain the approximate accuracy. Meanwhile, the algorithm pro-465

posed in [25] would get poor performance when the trajectory
is away from the demonstrations. The main reason for the poor
performance maybe be that only modeling the stiffness with the
interaction force, which ignores the relationship between the s-
tiffness and the motion. The deficiency is circumvented by the470

proposed algorithm.
However, convex optimization assumes that the stiffness pro-

file is totally the same on the different trajectories at the same
time, which does not correspond to the facts in real experi-
ments. Therefore, in the real robot experiment, the encoder-475

decoder is applied to output the torque to realize the variable
impedance control.

4.3. Validation on Robot

The transport task aims to teach a robot to transport an ob-
ject cooperatively with a person (see Fig. 10). Initially, one480

participant contacts the object while the other person holds the
robot, which operates in a zero gravity model to transport the
object to the target location, which is shown as in Fig. 1. Mo-
tion information is recorded by the robot, while force data is
acquired by the three-axis force/torque sensor equipped on the485

end-effector. Although both the position and orientation may
vary in the demonstrations over several repetitions, only the po-
sition information is concerned in this paper to simplify the ex-
periment.

It is worth pointing out that the algorithm in this experiment490

models the motions with time independence, so the human does
not have to perform the same in every demonstration that is
more user-friendliness. In this experiment, ten demonstration
data are recorded to train the modified SDSEF model and the
encoder-decoder neural networks. After learning, the trained495

models are used to control the robot to test the reproduction and
generalization performance of the transportation task. Preset
maximum torques calculated from the demonstrations are used

to compare the torques output of the model to guarantee that the
real control torques are in the safe range.
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Figure 11: Results are shown for the three-dimensional position and force in-
formation in the task, obtained by applying the proposed algorithm compared
to the zero gravity model, with and without obstacle avoidance considered. The
red solid line expresses the results without considering obstacle avoidance, the
blue solid line shows the results considering obstacle avoidance while the green
solid line means the results acquired when the robot operates in zero gravity
mode.

500

Some snapshots of the experiment are presented in Fig. 10.
At the beginning of the first row, when the person does not ap-
ply any force to move the object, the robot is in an approximate
zero gravity model as the calculated stiffness is small and the
output control torques are also small, which cannot drive the505

robot to move. Then if the human applies a force to transpose
the object, the robot moves and the calculated stiffness varies,
causing the output control torques to change and the robot be-
gins to cooperate with the human to accomplish the task. In the
second row of Fig. 10, the person applies a wrong force and510

tries to move away from the target point, as the person and the
robot transpose the object together, the robot will try to move
the object to the target point, and if the person does not insist
on the incorrect style, they will transpose the object to the tar-
get point. By the figures on the third row of Fig. 10, it can be515

seen that when the start and target points are changed, the pro-
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Figure 10: Snapshots of execution of a transportation task with a person and the Franka Emika robot in three-dimensional Cartesian space. The first raw photos
illustrate the person and the robot transporting the object from a starting point to the target point with the person maintaining the motion style as in the demonstrations;
the second raw photos show the person using a different style in the cooperation task and trying to deviate from the target point; the third raw photos present the
robot and the person starting from a different initial point to a different goal point.

posed algorithm can guarantee that the robot cooperates with
the person to complete the task successfully.

To evaluate the effectiveness of the proposed algorithm in
avoiding an obstacle with a human while transporting the ob-520

ject. Three tests are performed with different configurations: 1)
the robot works in zero gravity model, 2) the robot works with-
out considering obstacle avoidance, 3) the robot works consid-
ering obstacle avoidance. The recorded information of the three
tests is displayed in Fig. 11(b) in green, red and blue colors, re-525

spectively. The pictures in the left column in Fig. 11(b) show
the position information of the end effector measured by the
robot in three dimensions, where the horizontal axis is time.
The photos in the left column display the consistent interaction
force detected by the force sensor in the three dimensions.530

When the robot works in zero gravity model, it can be
dragged anywhere in the working area, and the object is com-
pletely transposed by the human from the starting point to the
destination point. When it works without considering obsta-
cle avoidance, the generated reference trajectory hit the obsta-535

cle in the upper half of the transportation task, and the human
must apply a force to avoid the obstacle. This means that in the
first half of the task, the human dominates the task and when it
avoids the obstacle, the modified SESEF generates a new refer-
ence trajectory, and the human and the robot cooperate to finish540

the task. When the robot works considering the avoidance of
the obstacle, the human and the robot cooperate to complete the
task from the starting point to the target point, which means that
the energy integrated by the interaction force provided by the
human is lowest during this process. The calculated energies in545

the three tests are 0.395N · s, 0.214N · s, and 0.151N · s, re-
spectively. This proves that the proposed algorithm considering
obstacle avoidance is the most relaxed method for the human to
cooperate with the robot to complete the task, and that the zero
gravity model is the most laborious method for the human to550

complete the same task.
The two experiments confirm the effectiveness of the pro-

posed neural network based framework in learning impedance
skills from demonstrations that can not only work well in the
regular pattern to transport an object but also work well to trans-555

port an object while avoiding an obstacle.

5. Conclusions and Future Work

In this paper, a neural network framework is proposed for
variable impedance control learning from demonstration. The
performance of the proposed framework is investigated using560

the demonstrated examples in the LASA handwriting dataset
and a manually designed dateset. The experimental results con-
firm the effectiveness of the proposed method.

It should be noted that the absolute stability of the variable
impedance control is not studied and the hyperparameters of the565

proposed algorithm are designed by the trial-and-error method
which can be studied and optimized in future works. Mean-
while, the training process of the model is time-consuming
compared to the state-of-the-art methods, which can also be im-
proved.570
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