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ABSTRACT

Semiparametric mixed model analysis benefits from variability estimates such as stan-
dard errors of effect estimates and variability bars to accompany curve estimates. We
show how the underlying variance calculations can be done extremely efficiently com-
pared with the direct naı̈ve approach. These streamlined calculations are linear in the
number of subjects, representing a two orders of magnitude improvement.

Some keywords: Additive mixed models; Longitudinal data analysis; Penalised splines;
Semiparametric regression; Subject-specific curves.

1 Introduction

A current vibrant area of research is the use of nonparametric regression, or smoothing,
techniques in the analysis of longitudinal data. Prominent examples include [1,2,3,4,5].
Summaries may be found in books such as [6,7,8].

FIGURE 1 NEAR HERE

Figure 1: Spinal bone mineral density data broken down according to ethnicity of the
subjects.

Figure 1 shows an example of data that benefits from such methodology. It consists
of longitudinal measurements on the spinal bone mineral density (SBMD) of a cohort of
young female subjects (source: Reference [9]). One question of interest concerns differ-
ences in mean SBMD among the 4 ethnic groups after accounting for age. An appropriate
model is the additive mixed model

SBMDij = f(ageij) + β2blacki + β3hispanici + β4whitei + Ui + εij , (1)

Here SBMDij denotes the jth (1 ≤ j ≤ ni) SBMD measurement on subject i (1 ≤ i ≤ m),
f is a smooth, but otherwise unspecified, function for the mean effect of age and blacki,
hispanici and whitei are indicator variables for ethnicity. In addition, the Ui i.i.d. N(0, σ2

U )
are random subject intercepts, and the εij i.i.d. N(0, σ2

ε), independent of the Ui’s, account
for within-subject variability. If f is modelled using penalised splines, such as

f(age) = β0 + β1age +
K∑

k=1

uk(age− κk)+, uk i.i.d. N(0, σ2
u),
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where κ1, . . . , κK is a dense set of knots, then (1) reduces to a linear mixed model. The
details are given in Section 2. Standard fitting leads to the summary table given in Table 1
showing, for example, a highly significant difference between black and Asian females in
terms of mean SBMD.

TABLE 1 NEAR HERE

Table 1: Summary of ethnicity effects for linear mixed model fit of (1).

Figure 2 provides a summary of the estimate of f and its variability. The curves cor-
respond to the function f̂(age) with vertical shifting according to β̂i, i = 2, 3, 4. The
variability bars, shown as dashed lines, are ±2 × the estimated standard errors and cor-
respond to approximate pointwise 95% confidence intervals of mean SBMD.

FIGURE 2 NEAR HERE

Figure 2: Data from Figure 1 with estimates of f(age) added. The dashed lines corre-
spond to ±2× the estimated standard error.

Underlying Table 1 and Figure 2 is the estimated covariance matrix of the coefficient
estimates:

[β̂0, . . . , β̂4, û1, . . . , ûK , Û1, . . . , Ûm]T .

This covariance matrix involves the inversion of a (5 + K + m)× (5 + K + m) matrix M.
Typically K is in the range 15–40 regardless of of the sample size variables. However, the
number of subjects m can be arbitrarily large. For the SBMD example m = 230 which
does not pose serious problems. But other studies involve much larger m. For example
the Six Cities Study of Air Pollution and Health, described in [10] (p.210), has m = 13, 379.
Thus, for many situations, the number of subjects m is the dominant term in the dimen-
sion of M. Henceforth, let K be fixed and small but allow m to be arbitrarily large. Then
it is well-known from numerical linear algebra (e.g. Reference [11]) that naı̈ve compu-
tation of M−1 is O(m3). Hence direct variance calculations can be very costly, or even
prohibitive, in large longitudinal studies.

The purpose of this article is to show that variance calculations of interest, such as
those required for the standard errors of Table 1 and the variability bars of Figure 2, can
be done in O(m) operations. The key is recognition that the contribution to M from the
random intercept component is an m×m diagonal matrix. Such streamlining essentially
removes computational obstacles involving variances for models such as (1) for most
practical values of m and, thus, greatly benefits semiparametric mixed model analysis.

Section 2 gives the details of our streamlined approach to variance calculations for
models like (1). In Section 3 we describe the extension of the approach to subject-specific
curve models. Closing remarks are made in Section 4.

2 Additive Mixed Models

In this section we consider a more general version of (1):

yij = f(sij) + xT
ijβx + Ui + εij . (2)

Here yij is the jth (1 ≤ j ≤ ni) measurement of the response of the ith subject (1 ≤ i ≤ m),
sij is a predictor with a possibly non-linear effect, xij is a p× 1 vector of predictors with
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a linear effect, with corresponding coefficient vector βx. Again Ui i.i.d N(0, σ2
U ) is a ran-

dom intercept and εij i.i.d N(0, σ2
ε), independently of the Ui’s. The smooth function f is

modelled using penalised splines of the form:

f(s) = β0 + β1s +
K∑

k=1

uk zk(s),

where zk, 1 ≤ k ≤ K, is an appropriate spline basis. The simplest choice is zk(s) =
(s− κk)+ for a dense set of knots κ1, . . . , κK but many other options exist (e.g. Refer-
ence [6], Section 3.7). If we let uk i.i.d N(0, σ2

u) then (2) becomes a linear mixed model
y = Xβ + Zu + ε, where

β = [β0, β1,βx
T ]

T
, Z =

[
ZG ZR

]
, u =

[
uT

G uT
R

]T
,

X =



1 s11 xT
11

...
...

...
1 s1n1

xT
1n1

...
...

...
1 sm1 xT

m1
...

...
...

1 smnm
xT

mnm


, ZG =



z1(s11) · · · zK(s11)
...

...
z1(s1n1

) · · · zK(s1n1
)

...
...

z1(sm1) · · · zK(sm1)
...

...
z1(smnm

) · · · zK(smnm
)


, (3)

ZR = blockdiag
1≤i≤m

(
1ni

)
, uG = [u1, . . . , uK ]T , uR = [U1, . . . , Um]T ,

GG = Cov(uG) = σ2
uIK , GR = Cov(uR) = σ2

UIm

and the vectors y and εεε are defined analogously. Note that the random effects have been
partitioned into spline coefficients (subscript G) and subject effects (subscript R).

Let ĜG and ĜR be the restricted maximum likelihood estimates of GG and GR and
β̂ and û be the empirical best linear unbiased predictors of βββ and u (e.g. Reference [6],
Section 4.5). Then all variance calculations can be done using the estimated covariance
matrix

Ĉov
[

β̂
û− u

]
= M−1

where

M = σ̂−2
ε CTC + B̂, C =

[
X Z

]
and B̂ = blockdiag(0, Ĝ−1

G , Ĝ−1
R )

(e.g. Reference [6], Section 4.7).
The direct approach to obtaining standard errors of the entries of β̂ (as in Table 1) and

variability bars for the smooth function estimate (as in Figure 2) involves inversion of
M. As mentioned in Section 1, the matrix M will increase in dimension as the number of
subjects, m, grows and for very large m it will become too computationally intensive to
invert practically, since inversion is an O(m3) process. However we do not need to find
all the entries of the matrix. For example, some entries relate to the correlation between
different subjects’ responses, which would rarely be useful. We can also exploit the fact
that, for large m, most of M is diagonal. Hence, we propose a streamlined approach
based around a block decomposition of M:

M = σ̂−2
ε

XTX XTZG XTZR

ZT
GX ZT

GZG + σ̂2
εĜ

−1
G ZT

GZR

ZT
RX ZT

RZG ZT
RZR + σ̂2

εĜ
−1
R

 ≡ σ̂−2
ε

[
M11 M12

M21 M22

]
.

3



Using standard results on the inverse of a block-partitioned matrix (e.g. Reference [12])

M−1 = σ̂2
ε

[
M11 M12

M21 M22

]
where M11 = (M11 −M12M

−1
22 M21)

−1,

M12 = −M11M12M
−1
22 , M21 = (M12)T (4)

and M22 = M−1
22 −M−1

22 M21M
11M12M

−1
22 .

Straightforward matrix multiplication finds XTX, XTZG and ZT
GZG in O(m) steps, but

ZT
RX and ZT

RZG are more complicated since ZR is at least m × m. However the spe-
cial structure of ZR means that the matrix products amount to within-subject row sums,
which are O(m), since for A = X or A = ZG

ZT
RA =

1 · · · 1 0
. . .

0 1 · · · 1




aT
11
...

aT
1n1
...

aT
m1
...

aT
mnm



=


∑n1

j=1 aT
1j

...∑nm
j=1 aT

mj


.

In addition, M22 is diagonal:

ZT
RZR + σ̂2

ε σ̂
−2
U Im = diag

1≤i≤m

(
ni + σ̂2

ε/σ̂2
U

)
.

This feature is crucial. It enables us to find the biggest inverse required in (4) in O(m)

steps since M−1
22 = diag1≤i≤m

( bσ2
Ubσ2

Uni+bσ2
ε

)
. Thus we can write M as

σ̂−2
ε

[
M11 M12

M21 M22

]
= σ̂−2

ε


M11 h1 · · · hm

hT
1 n1 + bσ2

εbσ2
U

0
...

. . .

hT
m 0 nm + bσ2

εbσ2
U


,

where hT
i =

∑ni
j=1

[
1 sij xT

ij z1(sij) · · · zK(sij)
]
. Then using (4) we see that:

M11 =

(
M11 −

m∑
i=1

σ̂2
UhihT

i

σ̂2
Uni + σ̂2

ε

)−1

.

This inverse is (2+p+K)×(2+p+K) and is relatively easy to compute. The summation
term renders this whole process O(m). This matrix is all we require to plot global or
group error bars, or perform hypothesis tests as in Table 1. However to find the error
covariance of the individual subjects’ fitted responses we need M12 and M22, where

M12 =
[
− bσ2

Ubσ2
Un1+bσ2

ε
M11h1 · · · − bσ2

Ubσ2
Unm+bσ2

ε
M11hm

]
.

Each submatrix is a constant times (2 + p + K) × (2 + p + K) times (2 + p + K) × 1.
However we must calculate m of them, so M12 (and consequently M21) requires O(m)
calculations.

4



Finally, we only need to find the diagonal entries of M22 since we would rarely be
interested in the correlation between two subjects’ fitted responses. These are given by

M22
ii =

σ̂2
U

σ̂2
Uni + σ̂2

ε

(
1 +

σ̂2
U hT

i M11hi

σ̂2
Uni + σ̂2

ε

)
, 1 ≤ i ≤ m.

The relevant diagonal entries can be calculated in O(m) steps. Therefore the total asymp-
totic complexity of this process is O(m), representing an improvement of order m2 over
the naı̈ve approach to matrix inversion. As the number of subjects, m, increases the im-
provements due to streamlining become enormous.

We could alter the model in (2) to include more random subject effects, such as ran-
dom slopes. This would only affect the final stage of the calculation as it would alter the
structure of M22. However the result of this is that M22 becomes block-diagonal, so it
can still be inverted in O(m) calculations.

The practical benefits of streamlined variance calculations were explored in a simula-
tion study. Data were generated according to

yij = − sin(2πsij) + 0.3 xij + Ui + εij , 1 ≤ i ≤ ni, 1 ≤ i ≤ m (5)

where the sij were generated from the uniform distribution on (0, 1), the xij were gener-
ated from the Bernoulli distribution with P (xij = 0) = P (xij = 1) = 1

2 , Ui i.i.d. N(0, 0.52)
and εij i.i.d. N(0, 0.22). The 0.3 xij term represents a binary offset from the smooth func-
tion in sij . The within-subject sample sizes ni were generated uniformly from {1, 2, 3, 4}
and values of m ∈ {100, 500, 2500, 12500} were considered. For each value of m, twenty-
five replicate data sets were generated. All computations we done in the R language [13]
on a Dell Optiplex SX280 PC with a 2.8GHz Intel Pentium 4 Processor. The Appendix
contains code used for the streamlined variance calculations. The time taken to compute
variability bars and the standard error of the offset estimate was recorded. Table 2 sum-
marises the results. Note that the naı̈ve method approach failed for m = 12500 due to
required storage for M exceeding memory restrictions.

TABLE 2 NEAR HERE

Table 2: Average times in seconds (standard errors) for computing variability bars and
standard error of the binary offset.

There is little practical difference between the two methods for m = 100 and m = 500.
However for m = 2500 streamlined variance calculation is much faster — taking about
one tenth of a second on average compared with almost 4 minutes for the naı̈ve approach.
For m = 12500 the streamlined approach is still well under one second, while the naı̈ve
approach is not viable for typical 2006 computing environments.

3 Extension to Subject Specific Curves

Models (1) and (2) featured random intercepts: the difference between the fitted subject
response and estimated population mean curve is constant. This may not in general be
realistic; the subject-specific difference may be as complicated as the underlying func-
tion f . Durban, Harezlak, Wand & Carroll [14] develop a subject-specific curves model,
based on penalised splines, in which the subject-specific difference is modelled by a ran-
dom semiparametric function:

yij = f(sij) + xT
ijβx + gi(sij) + εij . (6)
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Earlier work on models of this type includes [15,2,3,5,16]. In this new model Ui is replaced
by

gi(s) = Ui0 + Ui1s +
Kg∑
i=1

υik zgk(s), υgk i.i.d. N(0, σ2
υ),

where zgk, 1 ≤ k ≤ Kg, is an appropriate spline basis. It is an advantage of our setup
that gi need not share the same spline basis as f . Therefore the splines of f are labelled
zfk, 1 ≤ k ≤ Kf . The model (6) can be written as a linear mixed model y = Xβ + Zu + ε
where

X =

 X1
...

Xm

 , Z =

 Z1 T1 W1 0
...

. . .
Zm 0 Tm Wm

 ,

Xi =

1 si1 xT
i1

...
...

...
1 sini

xT
ini

 , Zi =

 zf1(si1) · · · zfKf
(si1)

...
...

zf1(sini
) · · · zfKf

(sini
)

 ,

Ti =

1 si1
...

...
1 sini

 , Wi =

 zg1(si1) · · · zgKg
(si1)

...
...

zg1(sini
) · · · zgKg

(sini
)

 ,

u = [uT
G,UT

1 ,υT
1 , . . . ,UT

m,υT
m]T , Ui = [Ui0, Ui1]

T , υi = [υi1, . . . , υiKg
]T ,

GG = Cov [UT
1 ,υT

1 , . . . ,UT
m,υT

m]T = blockdiag(D, σ2
υIKg

, . . . ,D, σ2
υIKg

),

and y, β, εεε, uG and GG are the same as in (3). D is a general, symmetric, 2 × 2 matrix.
Note the Z matrix takes a different form from that given in [14] and Section 9.3 of [6]. It
has been changed to make the calculations more manageable.

As before the variance calculations require the estimated covariance matrix M−1. This
matrix is now even larger than that of Section 2. Therefore we propose a streamlined
approach, again based around a block decomposition of M:

σ̂−2
ε

[
M11 M12

M21 M22

]
≡ σ̂−2

ε


M11 H1 · · · Hm

HT
1 L1 0

...
. . .

HT
m 0 Lm

 ,

where M11 =
[∑m

i=1 XT
i Xi

∑m
i=1 XT

i Zi∑m
i=1 ZT

i Xi

∑m
i=1 ZT

i Zi + λIKf

]
, λ =

σ̂2
ε

σ̂2
u

,

Hi =
[
XT

i Ti XT
i Wi

ZT
i Ti ZT

i Wi

]
and Li =

[
TT

i Ti + σ̂2
εD̂

−1 TT
i Wi

WT
i Ti WT

i Wi + τIKg

]
, τ =

σ̂2
ε

σ̂2
υ

.

In this model the matrix M22, the contribution from the random subject component, is
block-diagonal. It can therefore be inverted in O(m) steps, enabling streamlined variance
calculations, again using (4):

M−1 = σ̂2
ε

[
M11 M12

M21 M22

]

where M11 =

(
M11 −

m∑
i=1

HiL
−1
i HT

i

)−1

,
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M12 =
[
−M11H1L

−1
1 · · · −M11HmL−1

m

]
,

and M22
ii = L−1

i + L−1
i HT

i M11HiL
−1
i , 1 ≤ i ≤ m.

Since M11, Hi and Li have dimensions much smaller than m, the complexity of the matrix
calculations required in these submatrices does not increase as m increases. Therefore the
calculations with the highest order of complexity are the summations in M11 and M11,
and the calculation of the m relevant submatrices of M12, M21 and M22. This renders
the whole process as O(m), preserving the improvement over naı̈ve inversion that we
already witnessed for random intercepts.

FIGURE 3 NEAR HERE

Figure 3: Heights of 190 girls with Acute Lymphoblastic Leukaemia. We have high-
lighted two subjects (one column for each) with different shaped responses. The top
row shows the subjects’ individual response profiles, and the bottom row the estimated
subject-specific fitted responses (solid lines). The bottom panels also show±2×estimated
standard error bars from both model (7) (dashed lines) and a random intercepts model
(dotted lines).

Durban et al. [5] fit a semiparametric model with subject-specific curves to longitudi-
nal data on the heights of 190 girls with Acute Lymphoblastic Leukaemia. We fit a similar
model in which height is modelled as a smooth function of age:

heightij = f(ageij) + gi(ageij) + εij , (7)

where f and gi are modelled using radial cubic splines with 15 and 10 knots respectively.
Figure 3 shows some fitted functions and error bars from this model, superimposed

on the data. We have drawn out two subjects’ responses that differ from each other in
order to show how the subject-specific curves model can produce different estimated
smooth curves for each subject. We have plotted error bars according to the subject-
specific curves model (7) and also a random intercepts model such as (2), both obtained
via the streamlined method. The random-intercepts error bars are much wider than those
of the subject-specific curves model.

4 Closing Remarks

The use of semiparametric regression in the analysis of longitudinal data has become
commonplace in the last decade. The sample sizes of datasets arising from longitudinal
studies are also on the increase, and semiparametric regression methods are susceptible
to breakdown if implemented naı̈vely. The methods developed in this article overcome
such problems, even for massive datasets, and therefore are recommended for general
practice.

Appendix: R implementation

In this Appendix we provide Rcode that demonstrates the streamlined variance calcula-
tions described in Section 2, for data simulated according to (5). In December 2006 this
code successfully ran on version 2.4.0 of R under the Linux operating system on the
second author’s computer and produced the output

Estimated effect of x=1 and standard error is:

est. s.e.
0.3080 0.0661
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and the plot shown in Figure 4. A text file containing this code is available on request
from the second author. At the time of writing his e-mail address is mwand@uow.edu.au .

FIGURE 4 NEAR HERE

Figure 4: Plot obtained from running the code in this Appendix.

Load required packages:

library(nlme) ; library(lattice)

Generate synthetic data according to (5):

set.seed(39402) ; m <- 250 ; nVals <- sample(1:4,m,replace=TRUE)
betaVal <- 0.3 ; sigU <- 0.5 ; sigEps <- 0.2
f <- function(x) return(-sin(2*pi*x))
U <- rnorm(m,0,sigU)
sVals <- NULL ; xVals <- NULL
Uvals <- NULL ; idNum <- NULL
for (i in 1:m)
{

idNum <- c(idNum,rep(i,nVals[i]))
stt <- runif(1,0,1-0.05*(nVals[i]-1))
sVals <- c(sVals,seq(stt,by=0.05,length=nVals[i]))
xCurr <- sample(c(0,1),1)
xVals <- c(xVals,rep(xCurr,nVals[i]))
Uvals <- c(Uvals,rep(U[i],nVals[i]))

}
epsVals <- rnorm(sum(nVals),0,sigEps)
yVals <- f(sVals) + betaVal*xVals + Uvals + epsVals

Fit an additive mixed model:

numKnots <- 15 ; p <- 1
knots <- quantile(unique(sVals),seq(0,1,length=

(numKnots+2))[-c(1,(numKnots+2))])
X <- cbind(rep(1,length(yVals)),sVals,xVals)
svd.Omega <- svd(abs(outer(knots,knots,"-"))ˆ3)
matrix.sqrt.Omega <- t(svd.Omega$v%*%(t(svd.Omega$u)*sqrt(svd.Omega$d)))
ZSpline <- t(solve(matrix.sqrt.Omega,t(abs(outer(sVals,knots,"-")ˆ3))))
groupVec <- factor(rep(1,length(yVals)))
ZBlock <- list(list(groupVec=pdIdent(˜ZSpline-1)),list(idNum=pdIdent(˜1)))
ZBlock <- unlist(ZBlock,recursive=FALSE)
dataFr <- groupedData(yVals˜xVals|groupVec,

data=data.frame(yVals,X,ZSpline,idNum))
fit <- lme(yVals˜-1+X,data=dataFr,random=ZBlock)
betaHat <- fit$coef$fixed
uHat <- unlist(fit$coef$random)
uSplineHat <- uHat[1:ncol(ZSpline)]

Perform streamlined variance estimation for variability bars and standard error of binary
predictor:

sig.eps.hat <- fit$sigma
sig.u.hat <- intervals(fit)$reStruct$groupVec$est
sig.U.hat <- intervals(fit)$reStruct$idNum$est
M11inv <- diag(c(rep(0,p+2),rep(sig.eps.hatˆ2/sig.u.hatˆ2,numKnots)))
M11inv <- M11inv + crossprod(cbind(X,ZSpline))
M.21 <- rowsum(cbind(X,ZSpline),idNum)
for (i in 1:m)
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{
h.i <- M.21[i,] ; n.i <- M.21[i,1]
M11inv <- (M11inv - sig.U.hatˆ2*tcrossprod(h.i)/

(sig.U.hatˆ2*n.i+sig.eps.hatˆ2))
}
covMat <- (sig.eps.hatˆ2)*solve(M11inv)

Report results:

cat("\n Estimated effect of x=1 and standard error is:\n\n")
outp <- c(betaHat[3],sqrt(covMat[3,3]))
names(outp) <- c("est.","s.e.")
print(signif(outp,3)) ; cat("\n\n")
ng <- 101 ; sValsg <- seq(0,1,length=ng)
ZgSpline <- t(solve(matrix.sqrt.Omega,t(abs(outer(sValsg,knots,"-")ˆ3))))
plotMatrix0 <- cbind(rep(1,ng),sValsg,rep(0,ng),ZgSpline)
fhatgREML <- plotMatrix0 %*% c(betaHat,uSplineHat)
Var0 <- diag(plotMatrix0%*%covMat%*%t(plotMatrix0))
Var1 <- 2*plotMatrix0%*%covMat[,3] + covMat[3,3]
xLabs <- paste("x =",as.character(xVals))
pobj <- xyplot(yVals˜sVals|xLabs,groups=idNum,xlab="value of s",

ylab="value of y",subscripts=TRUE,
panel=function(x,y,subscripts,groups)
{

panel.grid() ; panel.superpose(x,y,subscripts,groups,
type="b",col="grey60",pch=16)

panelInd <- any(xVals[subscripts]==1)
panel.xyplot(sValsg,fhatgREML+panelInd*betaHat[3],

lwd=3,type="l",col="black")
for (multFac in c(-2,2))

panel.xyplot(sValsg,fhatgREML+panelInd*betaHat[3]+multFac
*sqrt(Var0+panelInd*Var1),lty=2,lwd=2,type="l",col="black")

})
print(pobj)
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