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ABSTRACT: In this paper, an adaptive sliding mode observer is designed to reconstruct the 

states of nonlinear stochastic systems with uncertainties from the measurable system output 

and the reconstructed states are employed to construct a sliding mode controller for the 

stabilization control of complex nonlinear systems. It takes the advantages of the sliding mode 

schemes to design both observer and the controller. The convergence of the observer and the 

globally asymptotical stability of the controller are analysed in terms of stochastic Lyapunov 

stability, and the effectiveness of the control strategy is verified with numerical simulation 

studies. 

KEY WORDS: Adaptive Observer, Stochastic System Control, Sliding Mode Scheme, Itô 

Differential Equation 

1. INTRODUCTION 

Up to now, considerable research work has been done in the control system design for many classes of 

nonlinear deterministic systems with uncertainties in the literature. The types of uncertainties include 

external disturbances, lack of knowledge of the system dynamics and time varying of system 

parameters. Generally, the main objective of the control system design is to set up a control strategy to 

eliminate or attenuate the influence of the uncertainty on the overall performance of the systems. The 

uncertainties in the dynamic systems could also be modelled as random noise. Recently, the global 

stabilization of nonlinear stochastic systems has gained increasing attraction, referring to Florchinger 

(1995), Deng and Krstic (1997a, 1997b and 1999) and the references therein. The widely employed 

concepts of stability in stochastic systems were introduced by Khas'minskii (1980) for boundedness in 

probability and asymptotical stability in the large in his classical work. 

Sliding mode control (SMC) for variable structure systems (VSS) is well applied as a robust approach 

for control of dynamic systems with uncertainties for its various features such as fast response, good 

transient performance, and robust to system uncertainties and external disturbances. SMC for VSS was 

first proposed and elaborated in the early 1950s in the former Soviet Union by Emelyanov and several 

co-researchers (Emelyanov, 1967, Itkis, 1976 and Utkin, 1977). From then on, SMC has been 

expanded into a general design method being examined for a wide spectrum of system types including 

nonlinear systems, multi-input/multi-output systems, discrete time models, large scale and infinite 

dimensional systems, and stochastic systems. And today, research and development continue to apply 

SMC to a wide variety of modern but complex engineering systems to achieve high quality products 

and specified operational performance (Hung, et al, 1993). 

There have been many contributions of SMC in stochastic systems (Zhong, etc., 2007; Zheng, etc., 

1992; Chan, 1999, Niu, etc., 2005; Niu and Ho, 2006, Chang and Wang, 1999). In practice, it is usually 

not easy or expensive to obtain whole system states by physical measurements, so, observer based 

SMC were employed in Edwards and Spurgeon (1996), Niu, etc. (2004), Pai and Sinha (2000) and 

Rundell, etc. (1996). And some researchers contributed their work to the reconstruction of unmeasured 

states for stochastic systems and chaotic synchronization, such as Azemi and Yaz (2000), Raoufi and 

Khaloozadeh (2005), Niu and Ho (2006), and Qiao, etc. (2008). But up to now, to the author’s 

knowledge, there has been an open area for the problem of SMC for uncertain stochastic systems with 

un-measurable (but observable) states. 
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It is proposed, in this paper, an adaptive observer based controller is designed to enhance the design of 

nonlinear stochastic system control with sliding mode schemes. First of all an adaptive sliding mode 

observer (ASMO) is developed to reconstruct the system states with the system output, and then a SMC 

law is synthesized based on the estimated states. The convergence of the observer and the asymptotic 

stability in probability of the controller based on sliding mode schemes are theoretically analysed and 

the effectiveness of the proposed control strategy is verified with numerical simulation studies. 

The remaining part of this paper is organised as follows: in Section 2, the dynamic model of nonlinear 

stochastic systems with uncertainty is described and the objective of the controller design is stated with 

some preliminaries; in Section 3, an adaptive observer based sliding mode scheme is developed for 

reconstructing the states of the stochastic systems; in Section 4 SMC law for system stabilisation is 

synthesized based on the estimates of the system states; in Section 5 numerical simulation is studied to 

verify the effectiveness of the proposed control strategy; and in Section 6 conclusions are drawn to 

summarise the sudy. 

The following notation will be used throughout this paper: R  is the set of non-negative real numbers. 
nx R  ( n mA R ) denotes an n -vector ( n m  matrix) with real elements with the associated norm, 

or Euclidean norm, 1/ 2( )Tx x x  ( 1/ 2( )TA A A ), where (  )T  denotes transposition, ( )A  and 

( )A  denote the maximum and minimum eigenvalues of a symmetric matrix A . 
1

x  denotes the 

sum of absolute values of the vector or 1-norm of a vector; it is clear that 
1

x x  for any nx R . 

The symbol exp  is used for the exponential function. 
0C  and 

1C  denotes the continuous and 

differentiable functions, respectively. 
mI  is an identity matrix with m m  dimension. ( , , )F P  is 

a complete probability space where  is the sample space, F  is the -algebra of the subsets of 

the sample space and P  is the probability measure. E  denotes the expectation operator with 

respect to probability measure P . 

2. PROBLEM STATEMENT AND PRELIMINARIES 

Consider the following nonlinear non-autonomous stochastic system given by the It  differential 

equation 

( ) ( ( ) ( )) ( ( ), ( )) ( ( )) ( )xdx t Ax t Bu t dt f x t t dt g x t dv t       (1a) 

with the measurable output equation 

 ( ) ( ) ( ( )) ( )ydy t Cx t dt g x t dw t            (1b) 

where t R , ( ) nx t R  is the system state vector, ( ) pu t R  is the system input vector, ( ) my t R  

is the measurable system output, n nA R , n pB R  and m nC R  are matrices with suitable 

dimensions, : n nf R R R  represents the nonlinear and uncertain dynamics, ( )t  is the 

deterministic process disturbance that can not be measured, and the intensities of noises are shown by 

, : n n

x yg g R R R , and 
xg  and 

yg  are bounded as ( ( ))x xg x t  and ( ( ))y yg x t , ( )v t  

and ( )w t  are standard Wiener process noises independent of 
0x  defined on complete probability 

space of ( , , )F P . 

The following assumptions are imposed to system (1) for discussion. 

A. 1. The pair ( , )A C  is detectable and observable so that there exists an observer gain 

n p

oK R such that 
o oA A K C  is a strictly Hurwitz matrix. 

A. 2. ( ( ), ( ))f x t t  is separable into two parts 

1 2( ( ), ( )) ( ( )) ( ( ), )f x t t f x t f x t t    

where the known nonlinearity 
1( )f x  satisfies a Lipschitz condition as 

 1 1 1 2 1 2( ) ( )f x f x x x    

for all 
1 2, nx x R  where R  is a known constant. On the other hand, 

2 ( , )f x t is an excessive 

unknown bounded uncertainty or unmeasurable deterministic disturbance, and is assumed to satisfy a 
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classical matching condition (Azemi and Yaz, 2000) 

 1

2( , ) ( ( ), ))Tf x t P C y t t     

where : m pR R R , satisfies 

 
0

( ( ), )) ( ( ), )
N

i is
i

y t t c y t t             (2) 

for unknown values of 
ic R , known bounded 0

i C  such that : m

i R R R , 

0,1, ,i N , and TP P  is the unique positive definite solution to  

 T

o oPA A P Q               (3) 

for some positive definite matrix 0TQ Q  

A. 3. The Lipshitz constant  satisfies (Thau, 1973): 

1 ( )

2 ( )

Q

P
   

The following definitions are imposed for the stability in probability: 

D 1. The stochastic system in (1) is globally stable at the equilibrium ( ) 0x t  if there exists a region 

D  at the origin, for any 
0x D  and 0 , there exists a class k  function ( )  (i.e. ( )  is a 

strict ascending continuous function at (0) 0  at R R ) satisfying 

  0{ ( ) ( , )} 1P x t x t , 0t , 
0x D .  

D 2. The stochastic system in (1) is globally asymptotically stable at the equilibrium ( ) 0x t  for any 

0x D  and 0  there exists a class kL  function ( , )  (i.e. the continuous function ( , )r s  

defined on R R R  is strictly ascending and ( , )s  with respect to r  for fixed s , 

and descending and lim ( , ) 0
s

r s  with respect to s  for fixed r ), satisfying 

  0{ ( ) ( , )} 1P x t x t , 0t , 
0x D .  

The following lemmas are introduced for discussion. 

L 1. (Khas'minskii, 1980) Consider the system in (1) and suppose there exists a positive definite, 

radially unbounded, twice differentiable function ( )V x such that the infinitesimal generator 

 
2

2

( ) 1 ( )
( ) ( ) ( ) ( ( ), ( ))

2

T

x x

V x V x
LV x Ax t Bu t f x t t Tr g g

x x
 

is negative definite. Then the equilibrium 0x  of the system in (1) is globally asymptotically stable 

in probability. 

It is quite common in practice that not all of the system states are always measurable due to the 

limitation of physical condition and/or capital investment. Hence, in order to realize the stabilization of 

the closed-loop stochastic system with uncertainty in (1) at the origin ( ) 0x t , a SMC law with 

investigated in this research work with estimated system states from an adaptive observer. The 

objective of the system control is to determine the control law ( )u t  to guarantee the globally 

asymptotic stabilization of the system in (1) in probability at the origin. 

The controller to be designed for the stochastic system in (1) is based on the reconstructed system 

states obtained by an adaptive sliding mode observer and the control law is derived from the sliding 

mode scheme. In the following Sections 3 and 4, the adaptive observer and the control law are 

proposed; and the convergence of the estimation error and stabilization of the overall system are 

investigated, respectively. 

3. ADAPTIVE OBSERVER DESIGNED BASED ON SLIDING MODE SCHEME 

In this section, an adaptive observer is proposed based on sliding mode scheme for the stochastic 

system in (1) to reconstruct the system states from the measurable output of the system ( )y t  and the 
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convergence of the estimation error is investigated. 

3.1 Design of the Observer 

The following adaptive observer is designed based on sliding mode scheme for reconstructing the 

states of system (1) from measurement ( )y t   

1
ˆˆ ˆ ˆ ˆ ˆ( ) ( ( ) ( ) ( ( ), )) ( ( ) ( )) ( ( ), ( ), ( ))o o idx t Ax t Bu t f x t t dt K y t Cx t dt s x t y t t dt    (4) 

with the general sliding mode gain 

1

0

ˆ( ) ( )
ˆ ˆˆ( ( ), ( ), ) ( ) ( ( ), )

ˆ( ) ( ) ( )

N
T

o i i i

i

y t Cx t
s x t y t P C t y t t

y t Cx t t
      (5) 

where : R R  is designed as 

1 2

0

ˆ( ) ( ) ( ) ( , )
N

i i

i

t h t h t t y .           (6) 

here, the functions 
1( )h t  and 

2 ( )h t  satisfy the following design conditions: 

C 1  1

1( )h t C , 
1( ) :h t R R  is such that 1sup ( )

t R

h t  and 1sup ( ) 0
t R

h t . 

C 2  0

2 ( )h t C , 
2 ( ) :h t R R  is any function satisfying 

2 ( ) 0.5th t  for all t R . 

The term 
1 2

0

ˆ( ) ( ) ( ) ( , )
N

i i

i

t h t h t t y  in the sliding mode gain in (5) functions as boundary 

layer that vanishes in time. 

The candidate functions for 
1( )h t  can be chosen 2

1

te , cot( )arc t , 
1 2/( )t  where 

1
, 

2
>0. 

The candidate functions for 
2 ( )h t  can be 30.5

t
e  and 

30.5/( )t  where t R  and 
3 0 . 

The adaptation algorithm is based on the expected value of the estimation error as 

1 2

1

ˆ( ) ( )
ˆ ( ) 2 ( ) ( , ( )) 1

ˆ( ) ( ) ( ) ( ) ( ) ( , ( ))
i i i N

i i

i

y t Cx t
t r E Ce t t y t

y t Cx t h t h t t t y t

E
  (7) 

where 
ir  is the adaptation rate which is a positive constant to be designed. 

3.2 Convergence of the Observer  

Now, the convergence of the observer designed based on the adaptive sliding mode scheme in (4) is 

investigated with the following theorem T 1 concluded. 

T 1  If the assumptions A 1, A 2 and A 3 hold, the adaptive observer based on sliding mode scheme 

designed in (4) for system (1) converges in probability to a small spherical region at the equilibrium 

state for a small deviation with the adaptation algorithm (7). 

Proof: The observation error is defined as 

ˆ( ) ( ) ( )e t x t x t               (8) 

According to the definition of the observation error (8) and equations (1) and (4), the observation error 

dynamics can be obtained as 

1 1 2
ˆ( ) ( ) [ ( ( )) ( ( ))] [ ( , ) ]o ode t A e t dt f x t f x t dt f x t s dt gd   

where x o yg g K g  and 
T

v w . 

Consider the following positive definite Lyapunov function candidate 
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2

1 2 1

1

1 1
ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )

2

N
T

o o i

i i

V e V e V e P e h t
q

       (9) 

To analyse the behaviour of this stochastic differential equation, infinitesimal generator, equation (9), is 

considered as follows 

1

1

1
ˆ( ( ), ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( )

N
T T

o o o i i

i i

LV e t t e t P e t e t P e t t t h t
r

     (10) 

where 
oP  is a positive symmetric matrix satisfying 

 T

o o o o oP A A P Q  

for some symmetric positive matrix 
oQ  ( 0T

o oQ Q ) and o is selected as a Lipschitz constant 

satisfying A 3. 

Taking (9) into the above equation (10), the equation can be got as follows, 

1 1 2

1 1 2

1

1

ˆ ˆ ˆ( ( ), ( )) { ( ) [ ( ( )) ( ( ))] [ ( ( ), ) ( ( ), ( ), )] } ( )

ˆ ˆ( ) { ( ) [ ( ( )) ( ( ))] [ ( ( ), ) ( ( ), ( ), )] }

1
( ) ( ) ( )

( ) ( ) [

T

o o o o

T

o o o

N

i i

i i

T

o

LV e t t A e t f x t f x t f x t t s x t y t t g P e t

e t P A e t f x t f x t f x t t s x t y t t g

t t h t
r

e t Q e t f2 2

1

1

ˆ ˆ( ( ), ) ( ( ), ( ), )] ( ) ( ) [ ( ( ), ) ( ( ), ( ), )]

1
ˆ( ) ( ) ( ) ( ) ( )

T T

o o o

N
T T T

o o i i

i i

x t t S x t y t t P e t e t P f x t t s x t y t t

g P e t e t P g t t h t
r

 (11) 

Taking (2), (3), (5), and (6) into (11), we can get the following inequality (12). 

2

1 1 2 2

1

1 1

1

1 2

1

ˆ( ( ), ( )) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

ˆ( ) ( , ( ))( ( ) ( ))

( ) ( , ( )) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( , ( ))

( )

T

T

T

o o o o

T
N

o i iN
i

o i i oN
i

i i

i

T

o

LV e t t e t Q e t P e t P e t K

P C t t y t y t Cx t

P C t t y t P e t

y t Cx t h t h t t t y t

e t P P

1

1 1

1

1 2

1

1

1

2

1 1 2 2

ˆ( ) ( , ( ))( ( ) ( ))

( ) ( , ( ))

ˆ( ) ( ) ( ) ( ) ( ) ( , ( ))

1
ˆ( ) ( ) ( )

( ( ) 2 ( )) ( ) 2 ( ) ( )

2 (

T

T

N

o i iN
i

o i i N
i

i i

i

N

i i

i i

o o o o

P C t t y t y t Cx t

C t t y t

y t Cx t h t h t t t y t

t t h t
r

Q P e t P e t K

Ce tE
1

1 2

1

1

1

ˆ( ) ( )
) ( ) ( , ( )) 1

ˆ( ) ( ) ( ) ( ) ( ) ( , ( ))

1
ˆ ˆ( ( ) ( )) ( ) ( )

N

i i N
i

i i

i

N

i i i

i i

y t Cx t
t t y t

y t Cx t h t h t t t y t

t t t h t
r

E

(12) 

The above inequality is derived on the fact that for a positive definite matrix M , the following 

relationship is resulted as 

 ( ) ( )TM x y x My M x y   

Apply the adaptation algorithm to the above inequality (12), we can get, 
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2

1 1 2 2 1

1

1 2

1

ˆ( ( ), ( )) ( ( ) 2 ( )) ( ) 2 ( ) ( ) ( )

ˆ( ( ) ( ))
ˆ2 ( ) ( ( )) ( , ( )) 1

ˆ( ) ( ) ( ) ( ) ( ) ( , ( ))

o o o o o

N

i i N
i

i i

i

LV e t t Q P e t P e t K h t

y t Cx t
t Ce t t y t

y t Cx t h t h t t t y t

E
E

 

According to the design conditions C 1 and C 2, we know that the last two terms on the right side of 

the above inequality is negative. Thus, we can get 

 
1

ˆ( , ) ( )oLV e LV e    

and  

 
2

1 1 1 2 2( ( )) ( ( ) 2 ( )) ( ) 2 ( ) ( )o o o o oLV e t Q P e t P e t K  

As for  

2

1( ( )) ( ) ( ) ( ) ( )T

o oV e t e t P e t P e t   

and  

2

1( ( )) ( ) ( )oV e t P e t   

Then, the following inequality can be obtained, 

2

1 1 1 2 2

1

1 1 1 2 2

( ( )) ( ( ) 2 ( )) ( ) 2 ( ) ( )

( ( ))
              ( ( ) 2 ( )) 2 ( ( )) ( )

( )

o o o o

o o o o

o

LV e t Q P e t P e t K

V e t
Q P V e t P K

P

 

Let,  

1

( ) 2 ( )

( )

o o

o

Q P
A

P
  

and 

1 1 1 2 22 ( )o oB P K   

we solve, 

2

2
1 1 0 1 12

1

1
( ( ) ( ( ( )) ) exp

A
t

V e t A V e t B B
A

E ,  0t  

The steady system state estimate error is obtained 

2
2 1 1

2

1

lim sup ( ) ( )o
t

B
e t P

A
E  

This means that the estimation of the proposed adaptive observer has a mean-square exponential 

ultimately bounded estimation error.             □ 

4. CONTROLLER DESIGNED BASED ON SLIDING MODE SCHEME 

The aim of this paper is to design a controller synthesized on the estimated states which are obtained 

from the adaptive observer discussed in the last section to stabilize the stochastic system dynamics (1) 

in It  differential equation. 

4.1 Sliding mode controller 

The sliding function is designed as  

 ˆ( ) ( ) ( )cs t t Gx t               (13) 

where ˆ ˆ( ) ( ( ) ( ))cd t GBK x t GAx t dt , and G  is selected so that GB  is nonsingularity, and 
cK  is 

the coefficient matrix which is chosen so that 
cA BK  satisfies Hurwitz condition, ˆ( )x t  is the 

estimated state vector obtained from (4). And 0cs  is the sliding surface. 

D 3. For the nonlinear stochastic system in (1),  
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1) the sliding surface 0cs  is reachable if there exists finite time 0T  such that 

( ) 0cs tE  and 
2

( ) 0cs tE  when 
0t t T  for any 

0 0( )x t x . 

2) the sliding surface 0cs  is subordinated reachable if there exists finite time 0T  such 

that ( ) 0cs tE  and 
2

lim ( ) 0c
t

s tE  when 
0t t T  for any 

0 0( )x t x . 

For the stochastic system in (1), the sliding surface still satisfies (0) 0cs , but ( ( ))cs x t  is 

continuously excited by stochastic signals with the system states, we should describe the extent of 

reachability in sense of norm means or norm square means of ( ( ))cs x t , hence, it is said that the sliding 

mode is reachable in probability if the system starts from any initial states 
0 0( )x t x . There exists 

finite time 0T , if 
0t t T , satisfies the condition ( ) 0cs tE  or 

2
( ) 0cs tE . 

The controller law is constructed based on the estimate ˆ( )x t  as 

 ˆ( ) ( ) ( ) ( )sgn( ( ))c c cu t s t K x t t s t           (14) 

where the switching gain ( )t  is designed as 

 
1 1 1 ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ), ( ), ( )))o o o it GB G x t K Cx t GB GK y t GB Gs x t y t t (15) 

and  a small positive constant.  

T 2  Suppose that the sliding function is designed in (13), and the sliding mode control law in (14), 

the state trajectories of the observer dynamics (4) can be driven on the sliding surface ( ) 0cs t  in 

finite time and remain there in subsequence time. 

Proof: From (13) and (4), it can be obtained that 

 
1

1

ˆ( ) ( ) ( )

ˆ ˆ( ( ) ( ))

ˆˆ ˆ ˆ ˆ[ ( ) ( ) ( ( ), )) ( ( ) ( )) ( ( ), ( ), ( ))]

ˆˆ ˆ ˆ ˆ[ ( ) ( ) ( ( ), ) ( ( ) ( )) ( ( ), ( ), ( ))]

c

c

o o i

c o o i

ds t d t Gdx t

GBK x t GAx t dt

G Ax t Bu t f x t t K y t Cx t s x t y t t dt

GBK x t GBu t Gf x t t GK y t Cx t Gs x t y t t dt

 

Let 1

3

1
( ) ( )

2

T

c cV t s GB s , the infinitesimal generator is considered as follows 

1

3

1

1

1

1

( ) ( )

ˆ ˆ( ) [ ( ) ( ( ) ( ) ( ) sgn( ( )))

ˆˆ ˆ ˆ( ( ( ), ) ( ( ) ( )) ( ( ), ( ), ( )))]

ˆ ˆ ˆ( ) ( ) sgn( ( )) ( ) ( ( ( ), ) ( ( ) ( )) ( (

T

c c

T

c c c

o o i

T T T

c c c o o

LV t s GB s

s GB GBK x t GB s t K x t t s t

G f x t t K y t Cx t s x t y t t

s s t t s s t s GB G f x t t K y t Cx t s x t

1

1 1 1

ˆ), ( ), ( )))

( ) ( )

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ( ), ( ), ( )))

i

T

c c

o o o i c

y t t

s s t t s

GB G x t K Cx t GB GK y t GB Gs x t y t t s

 (16) 

then 
2

3( ) ( ) 0cLV t s t , for ( ) 0cs t           (17) 

The above inequality (17) is derived by taking (15) into (16) and employing the fact 
1c cs s . 

Following the fact that ( ) 0LV xE  for 0cs , it can be obtained that lim ( ) 0c
t

s tE  and 

2
lim ( ) 0c
t

s tE . This implies that with the sliding mode control law in (13), the sliding surface is 

reachable and the state trajectories of the observer dynamics (4) can be driven onto the sliding manifold 

( ) 0cs t  in finite time and remain there in subsequence time. This completes the proof of the theorem. 

                   □ 

According to the sliding mode theory, it follows from ( ) 0cs t  that the equivalent control law can be 
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obtained as 

1 1

1
ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )) ( ) ( ( ( ), ) ( ( ), ( ), ( )))eq c o o iu t K x t GB GK y t Cx t GB G f x t t s x t y t t  

and the sliding mode dynamics in the state estimation space can be obtained as  

1

1 1

1

ˆ ˆ ˆ ˆ( ) ( ( ) ( ( )) ( ) ( ( ))

ˆ ˆˆ ˆ ˆ ˆ( ( ), ) ( ) ( ( ), ) ( ( ), ( ), ( )) ( ) ( ( ), ( ), ( )))

ˆˆ ˆ ˆ ˆ( ) ( ( ) )[ ( ( )) ( ( ), ) ( ( ), ( ), (

c c c

o i o i

c c o i

dx t A x t K y Cx t B GB GK y Cx t

f x t t B GB Gf x t t s x t y t t B GB Gs x t y t t dt

A x t dt I B GB G K y Cx t f x t t s x t y t ))]t dt

 

4.2 Stability Analysis of overall closed-loop systems 

It will be concluded that that the overall closed-loop of the stochastic system in (1) can be 

asymptotically stabilised in probability with the controller designed in (14) based on the estimated 

states in (4). 

The following theorem shows that the sliding motion of the sliding function designed in (13) is 

reachable in stochastic theory. 

T 3  Consider the system in (1) which satisfies the assumptions A 1, A 2 and A 3, the system state 

vector which is not completely measurable and estimated by the ASMO proposed in (4), the sliding 

manifold is designed by (13), and the control law is designed by (14), the system can be stabilized and 

asymptotically stable in probability in the bounded region of the equilibrium ( ) 0x t . 

Proof: The stochastic Lyapunov candidate function is chosen as 

 
1

ˆ ˆ( ( ))
2

T

c cV x t x P x   

where 
cP  is a positive symmetric matrix satisfying 

 T

c c c c cP A A P Q  

for some symmetric positive matrix 
cQ  ( 0T

c cQ Q ). 

Using Itô formula, it can be obtained  

1

1 1

1 1

1

ˆ ˆ ˆ ˆ( ( ))

ˆ ˆ ˆ ˆ[ ( ) ( ( )) ( ) ( ( ))

ˆ ˆˆ ˆ ˆ ˆ( ( ), ) ( ) ( ( ), ) ( ( ), ( ), ( )) ( ) ( ( ), ( ), ( ))]

ˆ ˆ ˆ[ ( ) ( ( )) ( ) ( (

T T

c c c

T

c c c c

o i o i

c c c

LV x t x P x x P x

x P A x t K y Cx t B GB GK y Cx t

f x t t B GB Gf x t t s x t y t t B GB Gs x t y t t

A x t K y Cx t B GB GK y Cx

1 1

1 1

1 1

))

ˆ ˆˆ ˆ ˆ ˆ ˆ( ( ), ) ( ) ( ( ), ) ( ( ), ( ), ( )) ( ) ( ( ), ( ), ( ))]

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( ( ) ) ( ( )) ( ( )) ( (( ) ) )

ˆ ( ( )

T

o i o i c

T T T

c c c c

T T T T T T

c c c c

T

c

t

f x t t B GB Gf x t t s x t y t t B GB Gs x t y t t P x

x P A x t x A P x t

x P I B GB G K y Cx t y Cx t K I G GB B P x

x P I B GB 1 1

1 1

1 1

2 21

ˆ ˆ ˆ) ( ( ), ) ( ( ), )( (( ) ) )

ˆ ˆˆ ˆ ˆ ˆ( ( ) ) ( ( ), ( ), ( )) ( ( ), ( ), ( ))( (( ) ) )

ˆ ˆ( ) ( ( ) ) ( )

T T T T

c

T T T T T

c o i o i c

c c c c

G f x t t f x t t I G GB B P x

x P I B GB G s x t y t t s x t y t t I G GB B P x

Q x I B GB G P x

 

where 
c
is the Lipschitz constant satisfying the assumption A 3, and 

c
 is a small positive constant 

proportional to bound the estimation error of the observer designed in Section 3. 

Similar to the discussion in Section 3 about the convergence of the observer, we can conclude that if 

cQ  and G  are suitably designed, then the globally asymptotic stability in probability of the overall 

closed-loop uncertain stochastic system in (1) can be guaranteed by the control law in (15). Such 

completes the proof of the theorem.             □ 

5. SIMULATION STUDIES 

In order to verify the effectiveness of the proposed control strategy, a simulation study is made for 

stabilisation of the nonlinear stochastic system in the presence of excessive uncertainties and polluted 

by noises. The system dynamics of uncertain stochastic system in the It  differential equation with the 

measurable output is as follows 



 9 

1 2

2 3 1 3

3 1 2 3 1 2

( ) 4 ( ) 2cos(10 ) ( )

( ) 2 ( ) ( ) ( ) ( )

( ) 2 ( ) 2 ( ) 6 ( ) ( ) ( ) 2 ( ) ( )

dx t x t dt t dt dv t

dx t x t dt x t x t dt dv t

dx t x t dt x t dt x t dt x t x t dt u t dt dv t

 

and 

1( ) ( ) ( )dy t x t dt dw t   

The above system is formulated to the same form in (1) with 

 

0 4 0

0 0 2

2 2 6

A , 

0

0

2

B , 1 0 0C ,  

1 2 1 3

1 2

0 2cos(10 )

( ( ), ) ( ( )) ( ) ( ) ( ) 0

( ) ( ) 0

t

f x t t f x t f t x t x t

x t x t

,  

1

1 0 0

( ( )) 0 1 0

0 0 1

g x t , 2 ( ( )) 1g x t  

and 1 2 3( ) ( ) ( ) ( )
T

v t v t v t v t and ( )w t  are Gaussian white noises with variances 

1 2 3 0.002v v v
 and 0.01w

, respectively. 

Both 
1( ( ))f x t  and 

2( )f t  satisfy the assumption in A.2 and 1 0
( ( )) 0

x
f x t  

 

The observer is designed as follows. 

The observer gain 
oK , is chosen as [5,100,0.1]T

oK  to meet the requirement of the assumption in 

A1. 

The positive definite matrix 
oQ  is selected as 

 

15 0 0

0 10 0

0 0 5

oQ  

thus 0T

o oP P  can be obtained as 

0.377 0.0308 0.0003

0.0308 2.7815 0.0069

0.0003 0.0069 2

oP  

The eigenvalues of 
oP  and 

oQ  are, 0.4534 1.0332 11.0261  and 15 10 5 , respectively. 

The Lipschitz constant is selected as 0.9 (
1

( ) / ( )
2

o oQ P ). 

1

1
( )

(1 )
h t

t
, 

2

0.5
( )

1
h t

t
, 50ir . 

The sliding function is designed as 

 ˆ( ) ( ) ( )cs t t Gx t     

with ˆ ˆ( ) ( ( ) ( ))cd t GBK x t GAx t dt  

where 
cK  is designed as 2 50 1cK  and 0 1 0.1G . 

The controller is designed as 

ˆ( ) ( ) ( ) ( )sgn( ( ))c cu t s t K x t t s t  

where 5 . 
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The simulation period T  is set to 4T s , and the sampling rate is 0.002t s . 

In order eliminate or attenuate the chattering effect aroused by pure SMC strategy, a think boundary 

layer in adopted in the control law in (14) by replacing sgn( ( ))cS t  with ( ) /( ( ) 0.01)c cs t s t . 
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e
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e
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e
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x
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x
2

x
3

e
1

e
2

e
3

 

Figure 1 The trajectories of system states and the estimation errors 

The trajectories of the system states under the SMC law in (14) is shown in Figure 1 (a) and the 

trajectories of the estimation error of the ASMO is shown in Figure 1(b). And Figure 2 (a) and (b) show 

the trajectory of sliding scalar and the control input. It can be seen, from Figures 1 and 2, that the 

reachability of sliding surface ( ) 0cs t  can be guaranteed and the overall closed-loop system is 

globally asymptotically stable in probability. And also, in Figure1 (b), the effectiveness of the adaptive 

observer is numerically verified. 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1
(a)

t(s)

S
c

0 0.5 1 1.5 2 2.5 3 3.5 4
-400

-200

0

200

400
(b)

t(s)

u

 

Figure 2 The trajectory of sliding function and the control input 
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6. CONCLUSIONS 

This study has been contributed to some challenging issues in control of nonlinear stochastic systems. 

Sliding mode mechanism has been properly referred to accommodate the un-measurable (but 

observable) system states and therefore to design the controller. An adaptive sliding mode observer is 

designed to reconstruct the unmeasured system states with measurable output, and a sliding mode 

control law is constructed by synthesizing the estimated system states from the observer. The 

convergence of ASMO designed is proved and its estimation error is mean-square exponential 

ultimately bounded. The overall closed-loop nonlinear stochastic systems can be guaranteed to be 

globally asymptotically stabilized in probability with the design strategy. 

 

In summary, the design procedure has been well justified from the demand of application background, 

concept development, mathematical derivation and proof, tool development and integration, and 

simulation bench tests. Obviously this is a promising procedure to be applied to a wide range of 

practical operations. Additionally this theoretical-algorithm-simulation study will advance the 

investigations on complex system control and coordination. Therefore the contributions will go to both 

academia and industry. 
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