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This paper makes a contribution to research on digital twins that are generated

from robot sensor data. We present the results of an online user study in which

240 participants were tasked to identify real-world objects from robot point

cloud data. In the studywemanipulated the render style (point clouds vs voxels),

render resolution (i.e., density of point clouds and granularity of voxel grids),

colour (monochrome vs coloured points/voxels), and motion (no motion vs

rotational motion) of the shown objects to measure the impact of these

attributes on object recognition performance. A statistical analysis of the

study results suggests that there is a three-way interaction between our

independent variables. Further analysis suggests: 1) objects are easier to

recognise when rendered as point clouds than when rendered as voxels,

particularly lower resolution voxels; 2) the effect of colour and motion is

affected by how objects are rendered, e.g., utility of colour decreases with

resolution for point clouds; 3) an increased resolution of point clouds only leads

to an increased object recognition if points are coloured and static; 4) high

resolution voxels outperform medium and low resolution voxels in all

conditions, but there is little difference between medium and low resolution

voxels; 5) motion is unable to improve the performance of voxels at low and

medium resolutions, but is able to improve performance for medium and low

resolution point clouds. Our results have implications for the design of robot

sensor suites and data gathering and transmission protocols when creating

digital twins from robot gathered point cloud data.
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1 Introduction

In recent years the use of robots for inspection and maintenance has become

increasingly prevalent. In many use cases data produced by such robots needs to be

human understandable, i.e., when there is a requirement for there to be a human in the

loop to make decisions on how to act upon this data, e.g., for action planning and/or robot

teleoperation. Indeed, for our particular use case of nuclear decommissioning there is a

safety requirement by the nuclear industry for there to be a human in the loop. One way in
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which this data can be made human understandable is through

digital twins of the environment, rendered based on robot sensor

data. We refer to such representations as digital twins as they are

faithful digital reconstructions of real world objects, such that

observers of the digital twin of the environment can make

operational decisions there that can be relied upon for real

world actions (e.g., robot teleoperation, radioactive object

identification).

A human user of a VR based teleoperation system can then

operate in a Virtual Environment (VE) composed of digital

twins. The need for such twins is driven by robots operating

in unknown environments in which a direct camera feed may be

either unavailable or inadequate for proper scene understanding

and effective teleoperation. It is therefore important that a user of

this system is able to recognize features of this digital twin

environment such that they can operate effectively. How the

environment is rendered will have a direct impact on this.

An important factor to consider in the rendering of digital

twins is the availability of data. The sensors typically used to

capture environmental features that can be used for digital twins,

laser scanners and RGB-D cameras, generate point clouds from

which digital twins can be composed. The significant size of point

cloud data makes the transmission difficult and slow (Zhou et al.,

2020). Further, there are many factors that affect the density of

the resultant point clouds, for example, scanner specifications,

data gathering time, communication bandwidth, and

environmental features (smoke, radiation etc.). Additionally,

there may be issues of computational overhead (which can

cause frame rate reduction) in rendering large point clouds,

such as might be required for a digital twin of a large

environment. Consequently, it is important to understand the

implications of reduced density point clouds on the human

ability to recognise digital twins of environmental objects.

The capability to render digital twins in colour, another likely

factor in object recognition, is also reliant on data availability. In

recent systems where colour information is available it is utilised

to add fidelity to the rendered virtual environment (Mossel and

Kroeter, 2017; Giorgini and Aleotti, 2018; Stotko et al., 2019;

Valenzuela-Urrutia et al., 2019). However, in addition to the

factors affecting the density with which point clouds can be

rendered listed above, point clouds may need to be coloured to

display sensor information present at each point (rather than

visible colour) such as temperature or radiation. A common use

of artificial point colouring is to display point elevation (Bergé

et al., 2016; Schwarz et al., 2017). Figure 1 shows a point cloud

coloured in this way. Consequently it is important to understand

how colour impacts human identification of digital twins of

environmental objects.

Quantifying the impact of colour and point cloud density will

inform the selection of sensors, data gathering procedures, data

communication protocols, and facilitate the minimisation of

computational overhead for rendering (to maximise frame

rates when navigating in the virtual environment).

Faithful rendering of point cloud data results in the highest

fidelity digital twins. Indeed, it is a typical and reasonable

approach for remote scene reconstruction for dynamic scenes

where real-time point cloud to model rendering is almost

impossible (Lesniak and Tucker, 2018). However, doing so is

not without issue. The apparent solidity of point cloud objects is

dependent on viewer distance, as an object is neared it can appear

to dissipate for the viewer (Bruder et al., 2014). Perhaps more

importantly for robot teleoperation and operational planning,

point cloud objects cannot be natively selected and manipulated

using standard ray-based methods (Bruder et al., 2014).

Relatedly, in many virtual environment rendering engines

occlusion culling for point clouds is a challenging and

memory intensive problem often resulting in more points

than necessary being rendered (even when invisible to an

observer) unnecessarily increasing computational overhead. It

has been found that as computational overhead goes up the data

refresh rate must be slowed to ensure a smooth control

experience (Codd-Downey et al., 2014).

A common solution to the aforementioned issues is to use a

voxel representation of point cloud data (Mossel and Kroeter,

2017; Zhou and Tuzel, 2018; Li et al., 2022). A voxel is a 3D pixel,

i.e., a cube of fixed dimensions arranged as part of a complete 3D

grid. A voxel is visible if it contains within its bounds sufficient

point cloud points (typically set at some threshold to reduce noise

effects).

Voxel colour is some function of the colours of points it

represents. As with point clouds voxels might need to be coloured

in order to display data. Importantly as 3D virtual objects voxels

are subject to scene lighting effects in the virtual environment

and this impacts how they are perceived by users in the virtual

scene.

Voxels effectively down-sample point cloud data, while

maintaining some degree of fidelity. This down-sampling may

impact the ability of users to recognise objects represented in this

way. Coupled with the utility that voxels provide, it is important

FIGURE 1
A voxel environment coloured by the levels of radiation at
each point using a heat map paradigm.
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to quantify the impact voxelisation might have on point

cloud data.

Here we have only considered voxels as a rendering

alternative to point clouds, opting not to include automatic

mesh generation as a rendering alternative. We have made

this decision as voxels are relatively unaffected by lower point

cloud density, maintain the veracity of the data (which can be

distorted with mesh generation), and are less computationally

intensive. These factors are of high importance in our use case

where high data refresh rates are necessary for safe robot

teleoperation.

As the purpose of environmental digital twins is rendering a

virtual environment, users of such a system are able to move

relative objects in the environment. Motion is a fundamental part

of the human visual system, aiding our ability to perceive our

environment (Nakayama, 1985). It therefore seems reasonable to

expect that motion will aid in the identification of digital twins,

and that it might compensate for limitations in available data.

In this paper we report the results of a user study that has

allowed us to evaluate and quantify the impact of rendering

approach (point clouds of different densities, and voxels of

different granularities), colour (monochrome vs coloured), and

motion (no motion vs rotational motion) in digital twins that are

generated from robot point cloud data. The study aims to

evaluate the effects of representation type, resolution, colour

and motion on the identification of digital twins of real world

objects, and the interplay between these factors. In the context of

point clouds we define resolution as point cloud density, and for

voxels we define it to mean the granularity of the voxel grid

(determined by voxel edge length)1. As detailed above these

factors are key in determining rendering and interface design

choices for digital twin virtual environments, thus understanding

of their impact will aid future system design.

2 Literature review

Rendering digital twins of the environment from robot sensor

data is a relatively new field, hence there is limited literature in it. An

early proponent of creating Point Cloud Virtual Environments

(PCVEs) was Bruder et al. (2014). They proposed a novel

approach for rendering a PCVE from robot sensor data. A

number of authors have extended this idea using different

approaches to render PVCEs (Schwarz et al., 2017; Lesniak and

Tucker, 2018; Valenzuela-Urrutia et al., 2019), Voxel Virtual

Environments (VVEs) (Mossel and Kroeter, 2017; Zhou and

Tuzel, 2018; Stotko et al., 2019; Li et al., 2022), and VEs

composed of precomposed objects based on automated

recognition of objects from the point cloud data (Zhou et al., 2020).

Common features of all of this prior work are: assumption on

the availability of high density point cloud data, accurate colour

information is also often assumed; description of a technical

implementation, but with little or no user study to evaluate the

efficacy of the system in use. These common features highlight

the need for a large scale user study to evaluate the utility of

rendering VEs as point clouds or voxels, and, in light of issues

addressed in the introduction, the need to understand the impact

of reductions in rendered object resolution.

An area of research which has examined object recognition of

objects from sparse point clouds (described as random dots

therein) is psychophysics (Sperling et al., 1989; Van Damme

et al., 1994). In the psychophysics literature random dots are

composed to display simple geometric shapes, and used to

investigate the kinetic depth effect (how motion cues aid

vision). However, as noted in Van Damme et al. (1994) the

features of the shape being rendered effects the ease with which it

can be recognised. This highlights the need to evaluate object

recognition using objects with a high degree of ecological validity.

Further, psychophisics studies perform in-depth testing of a

small number of participants, in order to generate data that

can be tested with robust statistics and be generalisable to a broad

population, we have carried out a large scale user study.

More recent research has utilised the motion component of

human vision in VE. Lubos et al. (2014) and Garrido et al. (2021)

present a method by which point cloud data might be

manipulated by a user, i.e., moving the point cloud around to

allow better feature identification. Again these papers present a

technical implementation without an evaluatory user study.

Their work highlights the potential utility of motion in digital

twin object identification, further motivating us to include

motion as one of the features to be investigated.

3 Hypotheses

The user study presented here aims to test the following

hypotheses:

H1. As the resolution of point clouds increases object

recognition will improve.

H2. Point clouds will be easier to recognise than voxels.

H3. As the resolution of voxels increases object recognition

will improve.

H4. Colour will have a greater impact for point clouds than for

voxels.

H5. Motion will have a greater impact for point clouds than

for voxels.

H6. Motion will compensate for a lack of colour.

H7. Motion will compensate for reduced resolution in point

clouds but not voxels.

1 We use these definitions to give us a common terminology to use
between point clouds and voxel grids rather than suggesting that
resolution is the most appropriate term to refer to these variations
in object rendering.

Frontiers in Robotics and AI frontiersin.org03

Bremner and Giuliani 10.3389/frobt.2022.995342

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.995342


The basis for H1 is that as a higher fidelity representation of

the data, point clouds will be easier to recognise than voxels. The

visibility of details relating to the precise shape and colouring of

objects is reduced as a consequence of the voxelisation process.

Indeed, it is this reduction in fidelity of reproduction that is the

basis for H2 and H3. In the commonly used KITTI benchmark

data set the object recognition difficulty is determined by the

resolution of the point cloud: lower resolution means harder

recognition (Geiger et al., 2013). While this determination is

based on artificial classifiers, it seems likely that it will hold to

some degree for human recognition from point clouds. While not

included in this data set it seems reasonable to conclude that the

same is likely to be true for voxel object recognition.

Colour information is utilised to delineate between different

elements in an image in a variety of applications (Patel et al.,

2012). However, in the presence of shading information human

recognition of images is unaffected by a lack of colour (Kemp,

1996). These findings underpin H4: voxels are subject to lighting

effects, hence colour is less necessary to delineate between

different parts of an object, and thus will have a bigger impact

on point clouds than voxels.

As described in the introduction, movement forms a

fundamental part of human visual processing. Of particular

relevance here is the kinetic depth effect, which enables an

observer to recover an objects 3D structure as result of the

fact that different parts of an object appear to move in

different directions relative to the observer, as it moves

relative to them (Hale and Stanney, 2014). This effect allows

people to more easily recognise shapes in monochrome dot

clouds (Sperling et al., 1989). Studies with random 3D dot

patterns found that motion enabled observers to distinguish

between dots which they were otherwise unable to do

(Nakayama, 1985). Similarly Hardy et al. (1996) found that

rotation was important for recognition of 3D X-ray images.

These findings underpin H5-7: voxels are subject to lighting

effects hence motion is less necessary to delineate between

different parts of an object, and thus will have a bigger impact

on point clouds than voxels. Further, for H6, the shading in

voxels will compensate to some degree if there is an absence of

colour information, aiding delineation of different component

parts of the objects, hence motion will provide a stronger

compensatory effect for point clouds than for voxels.

H7 follows a slightly different line of reasoning in that motion

will provide more detail and contextual cues for the make up of

the digital twin objects for point clouds, but the downsampling

process of reduced resolution voxels means limited additional

information will be provided by rotation.

4 Study design

In order to evaluate our hypotheses we needed to ensure

participants observed data consistently, as well as having a large

sample size, thus we developed an online user study with pre-

rendered images of our digital twins. Our user study follows a

mixed design with render (three resolutions of point clouds and

three resolutions of voxels) as the between subjects condition and

colour (colour or monochrome) and motion (static or rotating)

as the within subjects conditions. The study was conducted on

the Qualtrics survey platform2 and 240 participants (125 male,

104 female, 11 unknown, age M 26.9 SD 8.1) were recruited via

the Prolific Academic recruitment portal3. Average study

duration was 19 min, and participants were compensated

£2.45 for their time. The study was approved by the

University of the West of England ethics committee.

4.1 Stimulus design

To construct the stimulus material scale versions of industrial

objects (such as might be found on a nuclear decommisioning

site) were assembled (see Figure 2). These objects were captured

using a RealSense D415 RGB-D camera. Output from the camera

was input to the RtabMap ROS package4 that automatically

registers multiple point clouds into a single point cloud

map. By panning the camera around each object, a complete

point cloud representation of each object was created and

exported to a file; each point in the file had a RGB values in

addition to XYZ co-ordinates.

The point cloud files were individually imported into Unity

for rendering. In order to import the point clouds a set of Unity

scripts were written based upon the free-point-cloud-viewer

Unity asset5, so that points were arranged into logical mesh

chunks according to their location, and only points within a pre-

defined bounding box were rendered to remove noise (i.e., points

outside the object). An initial render of each point cloud was used

to define the bounding box for each object. Three resolutions

(densities) of point cloud were individually rendered and saved as

assets for later scene composition. To create the different

densities the rendering script was modified to display all

points (PC1), every eighth point (PC8), and every 35th point

(PC35); the densities were selected empirically to give three

distinct resolutions, high, medium and low. Figure 3 shows

example scenes in the three resolutions.

To create the voxel versions of the captured objects a

rendering script was written that divided the bounding box

for each object into a 3D grid, and rendered a voxel at each

grid position containing a sufficient number of points

(empirically set to five points to exclude noise, but render

2 www.Qualtrics.com

3 www.Prolific.co

4 http://wiki.ros.org/rtabmap_ros

5 https://assetstore.unity.com/packages/tools/utilities/point-cloud-
free-viewer-19811
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all component voxels). Each voxel was coloured according to

the mean of the RGB values of the points contained within

that voxel. Three resolutions (granularities) of voxel were

individually rendered and saved as assets for later scene

composition. To create the three voxel resolutions three

different voxel edge lengths were specified 0.2 (VX2), 0.4

(VX4), and 0.6 (VX6) Unity world units. As with the

point clouds these voxel granularities were selected

empirically to give three distinct resolutions, high, medium

and low. Figure 4 shows example scenes in the three

resolutions.

Twelve scenes were created with three or four objects pseudo-

randomly selected, such that no scene contained more than two

of the same object, and howmany objects to expect was unknown

to participants. Objects were placed in close proximity on a white

plane such that there was some overlap between objects when

viewed from an isometric viewpoint selected for the static images.

Figure 3 shows an example scene. Each scene was created in all

six rendering conditions, and had a single light source such that

shadows were created in the voxel scenes. Monochrome versions

of each scene were created by setting the colour of all points to

green: this ensured they were distinct from the base plane

FIGURE 2
The named object picture displayed for each trial in the questionnaire.

FIGURE 3
An example scene rendered at the three resolutions of point clouds.
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regardless of lighting effects or display settings (of participant’s

monitors). Figure 5 shows example monochrome scenes.

The motion condition was created by recording the scenes

rotating around a central point (converted to GIFs for embedding

in the questionnaire, example GIF included in the Supplementary

Material). This rotation is somewhat analogous to users of a

virtual environment panning around an object for examination

while keeping it in view (as we observed participants doing in ?).

Moreover, it matches the motion utilised in the psychophysics

literature investigating the kinetic depth effect (Nakayama, 1985;

Sperling et al., 1989; Hale and Stanney, 2014).

4.2 Questionnaire design

Using the Qualtrics survey builder an identical version of the

questionnaire was built for each of the rendering conditions.

Participants first saw an explanation of the identification task:

select how many objects are present in each image, and then

specify, for each object, where in the image it appears, and select

the object from the set of possible objects shown in the image

(Figure 2, not all objects shown appeared in the scenes, this image

was available on each experimental trial). Participants answered

three trials per motion/colour combination, for a total of twelve

trials, presented in a random order. Each of the twelve stimulus

scenes was randomly assigned to a different trial, so no scene was

repeated, and each participant saw a different combination of

conditions and scenes.

For the motion conditions participants were shown both the

rotating image and the static image so that they could specify

locations for each object they identified. This is somewhat

analogous to being in the virtual environment where motion

can be controlled, i.e., the results will still be applicable to the use

of digital twins in actual virtual environments.

In the Prolific Academic recruitment portal participants were

constrained to only be able to participate in one study condition.

5 Results

The results are processed to calculate the mean percentage

correct object identifications for each participant over the three

FIGURE 4
An example scene rendered at the three resolutions of voxels.

FIGURE 5
An example scene rendered in monochrome as a high resolution point cloud and high resolution voxels.
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trials that they performed for each condition. The results ignore

the object location participants were asked to complete:

ambiguities in the position labels for some of the scenes

meant that the data was unreliable, often objects would be

correctly identified but the position would be slightly wrong

(e.g., back left for an object that was centre left as there were no

objects in the back row).

The data was analysed using R to perform a three-way mixed

ANOVA, and follow up statistical tests6. The results of the three-

way Anova are shown in Table 1, significant main effects were

found for all three conditions, as well as all two-way and the

three-way interactions being significant. The key result here is

that there is a three way interaction between the conditions, in

the following sections we decompose this interaction for analysis.

To analyse the significant three-way interaction simple two-way

interactions were calculated for render:motion and render:colour.

The results are shown in Tables 2, 3. In both cases the key result is

that the two-way interactions were found to be significant across both

levels of the third variable at Bonferroni adjusted p < 0.025. To better

illustrate the two-way interactions we have produced a set of

interaction graphs, Figures 6–13. In the colour condition as point cloud resolution decreases

recognition decreases for static objects but increases for objects in

motion (Figure 6). For voxels the impact of motion varies with

resolution: at medium and low resolution motion has less effect

than at high resolution (Figure 7). In the monochrome condition

for point clouds motion has a larger effect at high resolution than

TABLE 1 3-Way Mixed ANOVA results showing main effects and
interactions.

Effect DFn DFd F p

Render 5 226 55.538 1.78e−37*

Colour 1 226 55.962 1.63e−12*

Motion 1 226 121.345 7.20e−23*

render:colour 5 226 3.376 6.00e−03*

render:motion 5 226 11.307 9.57e−10*

colour:motion 1 226 69.275 8.16e−15*

render:colour:motion 5 226 18.628 1.73e−15*

Significant results where p < 0.05 indicated with *.

TABLE 2 Simple two way interactions of render:motion across both
levels of colour, Colour and Monochrome.

Colour Effect DFn DFd F p

C render 5 229 46.7 3.83e−33*

C motion 1 229 6.11 1.4e−2*

C render:motion 5 229 24.3 1.27e−19*

M render 5 232 34.6 2.17e−26*

M motion 1 232 186 1.61e−31*

M render:motion 5 232 6.85 5.58e−6*

Significant results where p < 0.025 (Bonferroni adjusted) indicated with *.

TABLE 3 Simple two way interactions of render:colour across both
levels of motion, Rotating and Static.

Motion Effect DFn DFd F p

R render 5 227 61.9 1.65e−40*

R colour 1 227 0.22 6.40E−01

R render:colour 5 227 10.2 7.21e−9*

S render 5 234 29.8 2.3e−23*

S colour 1 234 124 2.43e−23*

S render:colour 5 234 12.2 1.72e−10*

Significant results where p < 0.025 (Bonferroni adjusted) indicated with *.

FIGURE 6
The render:motion interaction for point clouds in colour.

FIGURE 7
The render:motion interaction for voxels in colour.

6 To aid legibility numerical results of the statistical tests have been left in
the results tables and are not included in the text detailing the findings.
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FIGURE 8
The render:motion interaction for point clouds in
monochrome.

FIGURE 9
The render:motion interaction for voxels in monochrome.

FIGURE 10
The colour:motion interaction for static point clouds.

FIGURE 11
The render:motion interaction for static voxels.

FIGURE 12
The render:motion interaction for rotating point clouds.

FIGURE 13
The render:motion interaction for rotating voxels.
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at medium and low resolutions. Also of note is that the change of

resolution from high to medium results in a larger effect in the

static condition than in the rotation condition (Figure 8). For

voxels performance change is similar across resolutions, though

at low resolution there is less improvement with motion

(Figure 9).

In the static condition for point clouds colour has a much

higher impact at high resolution, compared to a minimal impact

at medium and low resolutions. Also of note is that as resolution

decreases there is a decrease in performance for colour point

clouds, where as performance at low and high resolutions is

similar for monochrome point clouds, with an increase in

performance at medium resolution (Figure 10). For voxels,

colour has a similar effect at high and medium resolutions, but

decreases in efficacy at low resolution (Figure 11). In the

rotation condition for point clouds colour has similar impact

at high and medium resolutions, but at low resolution

performance sharply decreases for monochrome point clouds

but increases for colour point clouds (Figure 12). For voxels,

colour only produces a small increase in performance at high

resolution and has almost no impact at low and medium

resolutions (Figure 13).

To decompose the significant interactions render:motion and

render:colour we have calculated simple simple main effects for

render across all colour and motion conditions. The simple

simple main effect of render was significant for all

combinations of colour and motion, thus indicating how the

data is rendered is significant in all these cases. The results are

shown in Table 4.

To decompose the simple simple main effects of render we

have calculated simple simple pairwise comparisons were run for

each motion and colour condition across all levels of the other

conditions, p values were adjusted using Bonferroni correction.

The results are shown in Table 6 and Table 7. Summaries of key

statistics pertaining to the proposed hypotheses follow. The data

underlying these pairwise comparisons is shown in Figure 14.

In order to address H1, H4 and H5 we compare point clouds

and voxels in each colour-motion condition separately. For colour-

rotation, point clouds at all three resolutions perform equally as well

as the high resolution voxels, but significantly better than voxels at

medium and low resolutions. For colour-static: point clouds at high

resolution are significantly better than voxels at all resolutions; point

clouds at medium resolution are significantly better than medium

and low resolution voxels; low resolution point clouds are

significantly better than low resolution voxels, but significantly

worse than high resolution voxels. For monochrome-motion,

point clouds at all three resolutions significantly outperform

medium and low resolution voxels, but only medium resolution

point clouds significantly outperform high resolution voxels. For

monochrome-static, medium and high resolution point clouds

significantly outperform medium and low resolution voxels, the

low resolution point clouds only significantly outperform the low

resolution voxels.

In order to address H4 andH5we compare across resolutions

within each render style (point clouds and voxels) in each colour-

motion condition separately. Point cloud performance

significantly decreases with resolution in the colour-static

condition, but is only significantly different between high and

low resolutions in the colour-rotation condition, where it

increases. For monochrome-rotation high and medium

resolution point clouds perform significantly better than low

resolution point clouds, where as for monochrome-static

performance is not significantly different across all three

resolutions. High resolution perform significantly better than

medium and low resolution voxels in all colour-motion

combinations. Medium resolution voxels perform significantly

better than low resolution voxels in the colour-static condition

but are not significantly different in the other conditions.

Simple simple pairwise comparisons were run for each

motion and colour condition across all levels of the other

conditions, p values were adjusted using Bonferroni

correction. The results are shown in Table 5. Summaries of

key statistics pertaining to the proposed hypotheses follow.

To address H4 and H5 we compare the monochrome-static

condition with the colour-static and monochrome-rotation

conditions for each render style at the different resolutions.

For point clouds rotation has a highly significant effect on

performance at all resolutions where as for voxels the effect

significance decreases as resolution decreases. The significance of

colour decreases with resolution for point clouds, with no

significance at low resolution, but significance remains almost

constant for voxels at all resolutions.

To address H7 we compare the rotation conditions across

resolutions within each rendering style. There is no significant

difference between point clouds in the rotation conditions at high

and medium resolutions. There is a significant increase in the

colour-rotation condition between the highest and lowest

resolution. For voxels high resolution voxels perform

significantly better than medium and low resolution voxels in

both rotation conditions.

6 Discussion

The key finding from our initial analysis shows that there is a

three-way interaction between our independent variables. Our

TABLE 4 Simple simple main effect of render.

Colour Motion Effect DFn DFd F p

C R render 5 231 39.0 5.91e−29*

M R render 5 232 43.7 1.26e−31*

C S render 5 234 39.2 3.69e−29*

M S render 5 236 12.2 1.62e−10*

Significant results where p < 0.0125 (Bonferroni adjusted) indicated with *.
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TABLE 5 Pairwise render comparisons.

Colour Motion group1 group2 n1 n2 Statistic df p p.adj

C R PC1 PC35 40 40 −3.5549569 39 1.00E−03 1.50E−02*

C R PC1 PC8 40 40 −1.3659849 39 1.80E−01 1.00E+00

C R PC1 VX2 40 40 −1.9969039 39 5.30E−02 7.92E−01

C R PC1 VX4 40 40 4.5328175 39 5.40E−05 8.10E−04***

C R PC1 VX6 40 40 6.5290408 39 9.56E−08 1.43E−06****

C R PC8 VX2 40 40 −0.8005131 39 4.28E−01 1.00E+00

C R PC8 VX4 40 40 4.9728769 39 1.36E−05 2.04E−04***

C R PC8 VX6 40 40 8.9517366 39 5.34E−11 8.01E−10****

C R PC35 PC8 40 40 2.1287393 39 4.00E−02 5.94E−01

C R PC35 VX2 40 40 1.2357095 39 2.24E−01 1.00E+00

C R PC35 VX4 40 40 7.0746476 39 1.69E−08 2.54E−07****

C R PC35 VX6 40 40 10.3327348 39 1.00E−12 1.50E−11****

C R VX2 VX4 40 40 6.4611644 39 1.19E−07 1.78E−06****

C R VX2 VX6 40 40 9.2473611 39 2.24E−11 3.36E−10****

C R VX4 VX6 40 40 1.9257072 39 6.20E−02 9.22E−01

C S PC1 PC35 40 40 9.3045261 39 1.89E−11 2.84E−10****

C S PC1 PC8 40 40 5.4389377 39 3.11E−06 4.66E−05****

C S PC1 VX2 40 40 3.8877231 39 3.83E−04 6.00E−03**

C S PC1 VX4 40 40 10.3253183 39 1.03E−12 1.55E−11****

C S PC1 VX6 40 40 13.8416573 39 1.24E−16 1.86E−15****

C S PC8 VX2 40 40 −0.3613254 39 7.20E−01 1.00E+00

C S PC8 VX4 40 40 4.7041023 39 3.17E−05 4.75E−04***

C S PC8 VX6 40 40 6.8102794 39 3.91E−08 5.86E−07****

C S PC35 PC8 40 40 −3.7726311 39 5.37E−04 8.00E−03**

C S PC35 VX2 40 40 −3.5757021 39 9.51E−04 1.40E−02*

C S PC35 VX4 40 40 0.4804497 39 6.34E−01 1.00E+00

C S PC35 VX6 40 40 3.494462 39 1.00E−03 1.80E−02*

C S VX2 VX4 40 40 4.8812217 39 1.82E−05 2.73E−04***

C S VX2 VX6 40 40 8.4130699 39 2.68E−10 4.02E−09****

C S VX4 VX6 40 40 3.5152592 39 1.00E−03 1.70E−02*

M R PC1 PC35 40 40 3.2627296 39 2.00E−03 3.40E−02*

M R PC1 PC8 40 40 −0.9245654 39 3.61E−01 1.00E+00

M R PC1 VX2 40 40 2.1212116 39 4.00E−02 6.05E−01

M R PC1 VX4 40 40 7.3929615 39 6.22E−09 9.33E−08****

M R PC1 VX6 40 40 11.1837269 39 9.81E−14 1.47E−12****

M R PC8 VX2 40 40 3.4209934 39 1.00E−03 2.20E−02*

M R PC8 VX4 40 40 8.1384375 39 6.19E−10 9.28E−09****

M R PC8 VX6 40 40 12.7363707 39 1.79E−15 2.68E−14****

M R PC35 PC8 40 40 −4.1263255 39 1.87E−04 3.00E−03**

M R PC35 VX2 40 40 −0.3830965 39 7.04E−01 1.00E+00

M R PC35 VX4 40 40 3.8293739 39 4.54E−04 7.00E−03**

M R PC35 VX6 40 40 6.7498512 39 4.73E−08 7.10E−07****

M R VX2 VX4 40 40 4.7330588 39 2.90E−05 4.35E−04***

M R VX2 VX6 40 40 9.03987 39 4.12E−11 6.18E−10****

M R VX4 VX6 40 40 2.8293887 39 7.00E−03 1.10E−01

M S PC1 PC35 40 40 0.9557043 39 3.45E−01 1.00E+00

M S PC1 PC8 40 40 −1.9236397 39 6.20E−02 9.25E−01

M S PC1 VX2 40 40 −1.1484918 39 2.58E−01 1.00E+00

(Continued on following page)
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followup analysis shows that the effect of both colour and motion

is affected by how the objects are rendered, indeed render

impacts performance for all combinations of colour and

motion. This leads us to suppose that the utility of colour and

motion is dependent on how the data is rendered. In order to

investigate this supposition, and thus investigate our hypotheses,

we conducted pairwise analysis for all conditions, across all levels

of the other conditions.

It is clear from our findings that in the majority of cases

objects are easier to recognise when rendered as point clouds

than when rendered as voxels, particularly lower resolution

voxels, providing support for H1 (Point clouds will be easier to

recognise than voxels.). However, it is worth noting that in most

cases high resolution voxels perform as well as higher resolution

point clouds, and out perform low resolution point clouds in the

majority of conditions. This suggests that at high resolution the

utility of voxels might be leveraged in user interface design

without sacrificing object recognition. At lower resolutions of

voxels, object recognition is clearly a significant challenge,

limiting their utility to cases where precise object

identification is not necessary. They may have a use to reduce

computational overhead for initial rendering of data, and areas

requiring more detailed inspection could be tagged for re-

rendering in a higher resolution format. Additionally, further

TABLE 5 (Continued) Pairwise render comparisons.

Colour Motion group1 group2 n1 n2 Statistic df p p.adj

M S PC1 VX4 40 40 3.4164084 39 2.00E−03 2.20E−02*

M S PC1 VX6 40 40 5.1822505 39 7.04E−06 1.06E−04***

M S PC8 VX2 40 40 0.4565612 39 6.51E−01 1.00E+00

M S PC8 VX4 40 40 4.713054 39 3.08E−05 4.62E−04***

M S PC8 VX6 40 40 7.1811758 39 1.21E−08 1.82E−07****

M S PC35 PC8 40 40 −2.9568625 39 5.00E−03 7.90E−02

M S PC35 VX2 40 40 −2.1374752 39 3.90E−02 5.83E−01

M S PC35 VX4 40 40 2.0396524 39 4.80E−02 7.23E−01

M S PC35 VX6 40 40 4.2971382 39 1.12E−04 2.00E−03**

M S VX2 VX4 40 40 3.718221 39 6.29E−04 9.00E−03**

M S VX2 VX6 40 40 6.5161235 39 9.96E−08 1.49E−06****

M S VX4 VX6 40 40 1.5783085 39 1.23E−01 1.00E+00

Significance indicated by *s for Bonferroni adjusted p values.

FIGURE 14
The mean percentage of correct object identifications across all conditions. PC, Point Cloud; VX, Voxel. Resolution for each render style
decreases from left to right. C, Colour; M, Monochrome; R, Rotation; S, Static.
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work is required to investigate whether user training might make

object identification easier at lower voxel resolutions.

Our findings only support H2 (As the resolution of point

clouds increases object recognition will improve.) in the colour-

static condition. There is only partial support for H2 in the

monochrome-rotation condition as high resolution is no better

than medium resolution, but both are better than low resolution.

It seems plausible that there might be a ceiling effect on the

benefit of increased point cloud resolution in some cases. In the

monochrome-static condition there is no difference in

performance across the resolutions. Looking at the pattern of

results for the monochrome-static condition appears to have a

floor effect, performing similarly in all render conditions.

Counter intuitively in the colour-rotation condition

performance improves as resolution decreases, further study is

needed to find out why this is. Taken together the findings

regarding H2 imply that provided motion cues are available high

resolution is not vital.

Our findings provide only partial support for H3 (As the

resolution of voxels increases object recognition will improve.) as

high resolution voxels outperform medium and low resolution

voxels in all conditions, but there is very little difference between

medium and low resolution voxels. This reinforces our

conclusion that lower resolution voxels are of limited utility.

The utility of colour decreases with resolution for point

clouds, with no effect at low resolution, but remains almost

static for voxels at all resolutions, largely refuting H4 (Colour will

have a greater impact for point clouds than for voxels.) with the

TABLE 6 Pairwise motion comparisons.

Colour Render group1 group2 n1 n2 p p.adj

C PC1 R S 40 40 2.47E−07 2.47E−07****

M PC1 R S 40 40 9.57E−11 9.57E−11****

C PC8 R S 40 40 3.04E−01 3.04E−01

M PC8 R S 40 40 1.04E−08 1.04E−08****

C PC35 R S 40 40 4.62E−11 4.62E−11****

M PC35 R S 40 40 1.80E−07 1.80E−07****

C VX2 R S 42 42 8.80E−02 8.80E−02

M VX2 R S 42 42 7.89E−05 7.89E−05****

C VX4 R S 40 40 6.32E−01 6.32E−01

M VX4 R S 40 40 4.00E−03 4.00E−03**

C VX6 R S 40 40 3.08E−01 3.08E−01

M VX6 R S 40 40 1.20E−02 1.20E−02*

Significance indicated by *s for Bonferroni adjusted p values.

TABLE 7 Pairwise colour comparisons.

Motion Render group1 group2 n1 n2 p p.adj

R PC1 C M 40 40 1.00E+03 1.00E−03**

S PC1 C M 40 40 2.34E−13 2.34E−13****

R PC8 C M 40 40 4.00E−03 4.00E−03**

S PC8 C M 40 40 9.00E−03 9.00E−03**

R PC35 C M 40 40 1.60E−05 1.60E−05****

S PC35 C M 40 40 7.60E−02 7.60E−02

R VX2 C M 40 40 3.50E−02 3.50E−02*

S VX2 C M 40 40 1.07E−04 1.07E−04***

R VX4 C M 40 40 8.90E−01 8.90E−01

S VX4 C M 40 40 6.85E−04 6.85E−04***

R VX6 C M 40 40 4.35E−01 4.35E−01

S VX6 C M 40 40 3.00E−03 3.00E−03**

Significance indicated by *s for Bonferroni adjusted p values.

Frontiers in Robotics and AI frontiersin.org12

Bremner and Giuliani 10.3389/frobt.2022.995342

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.995342


exception of high resolution point clouds where the effect is the

strongest. For point clouds rotation has a large effect on

performance at all resolutions where as for voxels the effect

decreases as resolution decreases, supporting H5 (Motion will

have a greater impact for point clouds than for voxels.). This

implies that for point clouds, motion is the most important cue

for object recognition, where as for voxels, motion or colour is

sufficient for an improvement in object recognition.

For H6 (Motion will compensate for a lack of colour.) to be

supported monochrome-rotation conditions must outperform

monochrome-static conditions, and be close in performance to

colour-static conditions. Our findings show that H6 is supported

for voxels of all resolutions. However, our findings show that for

point clouds this only holds true at high resolution, as

monochrome-motion outperforms colour-static at medium

and low resolutions, this provides partial support for H6, as

the effect of motion exceeds the effect of colour for medium and

low resolution point clouds. This implies that in the case of robot

sensor data where colour information could not be collected,

motion can be used to maintain scene understanding for users.

Our findings provide strong support for H7 (Motion will

compensate for reduced resolution in point clouds but not voxels.)

as motion is unable to improve the performance of voxels at low

and medium resolutions, but is able to improve performance for

medium and low resolution point clouds. By combining this with

our finding that colour and motion effects are similar for voxels,

this suggests that if lower resolution voxels need to be used other

compensatory approaches are required, operator training is one

possible approach that we aim to test in the future.

7 Limitations and further work

There are a number of limitations to our study that restrict

the generalisability of our results to real digital twin virtual

environments. Firstly the motion we have chosen is a pre-

rendered exocentric rotation of the scene, and there are a

large number of ways a particular user might navigate the VE

to facilitate scene understanding. For example linear motion

might be sufficient to elicit the kinetic depth effect, or motion to

change the distance between the user and objects may have

utility. Investigating the impact of different user motions, and

perhaps a user study that aims to capture typical user behaviour

are both promising avenues for future work. Such studies would

aid in the design of tools to allow dynamic digital twin

manipulation similar to those found in Lubos et al. (2014);

Garrido et al. (2021), another area we plan to work on in the

future.

Secondly, in order to have controlled conditions we have

used artificially constructed scenes composed of individually

scanned objects. Real world environments, particularly in our

chosen application area of nuclear decommissioning, are likely to

be far more cluttered. Further, by composing the VE from sensor

data from multiple real robots the VE is likely to have a much

higher incidence of noise. Performing a similar study using a

large VE composed from real world data would allow testing of

the applicability of our findings.

Finally, participants in our study received no prior training.

This would not be the case were a teleoperation system built

using a digital twin VE user interface be deployed in the real

world. It would be instructive to see whether training and/or

practice could improve object recognition for lower resolution

data, particularly for voxels: as outlined in the introduction, high

density colour point cloud data is not always available.

8 Conclusion

In this paper we have presented a user study to evaluate

factors affecting recognition of digital twins of real world objects

created from point cloud data. We have investigated render style,

resolution, colour, and motion. These are factors that effect

design decisions for robot sensing, data transmission, data

rendering and User Interface (UI) design. This work

contributes to the development of a teleoperation system for

survey and maintenance robots in an unknown and/or dynamic

environment, which will utilise onboard robot sensing to capture

environmental data, such that a digital twin virtual environment

can be constructed.

Our main findings were that objects in point cloud digital

twins were easier to identify than voxels, and such objects could

still be recognised at low resolutions provided motion cues were

available; colour aided recognition for point clouds only when

motion was also present. This has implications for the design of

robot sensor suites and data gathering and transmission

protocols. We posit that a useful PCVE could be rendered

using data from lower resolution sensors such as Lidar which

require lower communication bandwidth, and lower

computational overhead to render. By moving around in such

a PCVE an operator could direct the robots to gather additional

sensor data on areas of interest, which could be incrementally

rendered with higher densities of points.

Another important finding was that high resolution voxels

had similar object recognition performance to higher resolution

point clouds. This has important implications for use of voxels as

a rendering style in digital twin teleoperation environments, as

voxels can be more easily manipulated and tagged with

information for mission planning (for example

decommissioning procedures). Further, voxels have other

benefits in delineating components of objects by lighting

effects, and maintaining consistency regardless of viewer

distance.

Finally motion and, to lesser extent, colour cues aided object

recognition. Consequently robots should be endowed with colour

capturing capability where possible, and more importantly, tools

and training should be provided on digital twin VE

Frontiers in Robotics and AI frontiersin.org13

Bremner and Giuliani 10.3389/frobt.2022.995342

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.995342


teleoperationinterfaces to facilitate motion around objects that

need to be identified and inspected.

Our results have application in any area where human data

perception in a digital twin virtual environment (DTVE) is

required, informing design decisions on rendering and UI

design approaches. Further, our testing methodology can be

adapted to facilitate analysis with different environments,

robot sensing capabilities, rendering approaches etc. Further

application of our testing methodology would improve

understanding of the generalisability of our results and testing

procedure.
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