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Abstract

The increase in available data from sensors embedded in industrial equipment has led to a recent rise in the use of
industrial predictive maintenance. In the aircraft industry predictive maintenance has become an essential tool for
optimising maintenance schedules, reducing aircraft downtime and identifying unexpected faults. Despite this there is
currently no comprehensive survey of predictive maintenance applications and techniques solely devoted to the aircraft
manufacturing industry. This article is an in-depth state-of-the-art systematic literature review of the different data
types, applications, projects, and opportunities for predictive maintenance in this industry. The goal of this review is
to identify, and highlight the challenges and opportunities for future research in this field. This review found that the
current focus of research is too biased towards aircraft engines due to a lack of publicly available data sets, and that
greater automation is an important step to optimise aircraft maintenance to its full potential.
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1. Introduction

All engineered objects are inherently unreliable as they
degrade with age and use, and will ultimately fail if un-
maintained [1]. Regular maintenance is important to ex-
tend the operational lifetime of industrial equipment and
reduce the loss in revenue caused by its downtime. This
is particularly important for aircraft, where airlines and
customer have high expectations for aircraft to be flight
ready, and the high loss in revenue induced from out of
service aircraft. In 2018 around $69 billion was spent by
airlines globally on conducting maintenance, repairs and
overhaul, consisting of 9% of their total operational costs
[2]. Between 2009 and 2019 there was a 183% increase in
scheduled passengers on airlines globally [3], and between
2019-2039 the size of aircraft fleets globally is predicted to
almost double [4]. As older models of aircraft with fewer
sensors are retired and replaced, both the maintenance re-
quirements of aircraft systems and the recorded data will
greatly increase across this time frame, requiring more .

The various maintenance strategies used across differ-
ent industries can be broadly split between reactive and
proactive methodologies, for rectifying equipment failures
immediately and preventing them from occurring respec-
tively. Corrective maintenance (CM) is a reactive method-
ology where maintenance is unscheduled and performed
immediately after an asset fails. This is the oldest method
that best utilises the maximum lifetime of components and
is the easiest strategy to implement for technicians. Pre-
ventative Maintenance (PM) is a proactive methodology

where maintenance is scheduled and performed at prede-
fined intervals to reduce the probability of failure in the
future. Interval periods for PM are generated by follow-
ing maintenance programs, such as the Maintenance Re-
view Board Report [5], where engineers use their experi-
ence to perform experiments and collect data to determine
the most appropriate length of maintenance intervals.

Predictive maintenance (PdM) is where the system is
regularly monitored, and maintenance action is only trig-
gered by a pre-defined condition of the system. PdM can
exploit networks of sensors to gather data which can be
analysed to identify the health and degradation of a given
system. By analysing a systems physical parameters such
as temperature, pressures or vibration using either trend
analysis, pattern recognition or statistical analysis, it is
possible to predict the condition of the system at which
failure is imminent. Therefore, before the degradation
level reaches this threshold, the system that is about to fail
can be replaced. PdM is not a perfect strategy. Perform-
ing a combination of the different maintenance strategies
is still the most reliable approach for maintaining aircraft
effectively.

The increase in available data recorded from on board
sensors across different aircraft systems, has driven
greater use of data-driven PdM. The data collected from
an aircraft can be analysed using statistical models to
determine relationships and generate predictions of mea-
sured parameters. There are three main use cases for PdM
in the aerospace industry; real-time diagnostics, real-time
flight assistance and prognostics [6]. Real-time diagnos-
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tics allows for faults detected in flight to be recorded for
immediate repair on landing, and real time fight assis-
tance can provide guidance for the pilot. Prognostics is
responsible for predicting the degradation of a system by
interpreting the operational and environmental condition
to estimate the systems remaining useful lifetime (RUL)
[7] or its end-of-life (EOL). These metrics can be used
to help determine the optimal maintenance schedules for
replacing and repairing aircraft components to maximise
their lifespan. Without effectively utilising this data for
PdM, terabytes of available data are effectively wasted
where it could be used to save money, time, and manpower.

1.1. Contributions

Contribution of this paper: There are several state-
of-the-art reviews for different industrial predictive
maintenance techniques [8][9][10], ML methods for PdM
[11] and PdM for specific aircraft components [12]. To our
knowledge, there does not exist an exhaustive evaluation
of the current state-of-the-art focused on PdM for all
available aircraft systems. This paper compiles and
compares the current demographic of publications in
the field of aircraft maintenance, to support readers and
future research. The documents collected can be used
to identify areas where predictive maintenance has and
could be applied, which datasets and predictive models
that have been used to compare results against, and the
challenges and new opportunities the field contains.

1.2. Paper Organisation

This paper follows the review structure outlined in Fig-
ure 1 to provide a thorough literature review and pro-
vide detailed discussion on future opportunities for new
researchers to this field. It starts with an extensive re-
view of available academic literature regarding which data
types can be used for prognostics in section 2, and what
benchmark datasets are used for replicating results. This is
expanded by identifying which models and tools have been
applied to these datasets and other in different PdM ap-
plications in section 3. Section 4 outline different projects
and industrial services for PdM, to highlight the growth
within academia and industry. Section 5 reviews the chal-
lenges researchers in this field will encounter, as well as
opportunities afforded by new technologies. Section 6
concludes the main points, summarizing the trends from
the most impactful papers from the literature review, and
identifying key research areas in the future.

2. Data Types and Benchmark Datasets

Due to the explosion in new data sources and prognos-
tic techniques, greater use of data-driven prognostics is
being used alongside traditional maintenance techniques

for aircraft systems. Raw sensor data collected from air-
craft components can be interpreted to assess the health of
an aircraft and detect patterns and measurements that in-
dicate health degradation and performance loss. Coupled
with the growing availability of publicly available datasets
for different engineered systems [13], experimentation in
the field of industrial PdM has risen in recent years. The
following section examines the different data types that
have been used for PdM in recent publications. The most
used benchmark datasets that have been used for PdM
have also been identified, providing datasets as compara-
tors between papers of similar applications. These bench-
mark datasets were selected for their aerospace focus and
consistent use within 10 or more state-of-art-papers in the
past 5 years.

2.1. Data Types

There are three main data types for aircraft maintenance
data, time series, natural language and graphical data.
The source, use and papers where this data has been used
for aircraft are displayed in Table 1. The number of time
series datasets greatly outnumber the others due to the
ease in collecting and processing the data compared to nat-
ural language processing (NLP) and computer vision re-
quired for language and graphical data respectively. NLP
could provide a suitable redundancy for identifying indi-
cators of problems with aircraft, however widespread ap-
plication of NLP is doubtful due to integration problems.
There will be inconsistencies between airline reporting pro-
tocols and the written language that pilots use around the
world, producing inconsistent data that will be more diffi-
cult to accurately process. Graphical data has rarely been
used for aircraft PdM so far, but its greatest use is for
technician inspecting aircraft bodies, and since 1998 it has
been proposed that much of this work could be offloaded to
robots [14]. This can be performed by gathering graphical
data consisting of photos using robotics systems. One such
approach recorded aircraft fuselage images taken by drone
Aircraft by Airbus for automated fuselage inspection, re-
ducing inspection times from 2 hours to 10-15 minutes [15].

2.2. Benchmark Datasets

There are datasets that have been released to encourage
research in the field and enable greater cross comparison
between work. Many of these dataset have been available
online by in a Data Repository operated by NASA [13], but
only one has been used in the field of aircraft maintenance.

The Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) is a transient simulation of a large
commercial turbofan jet engine, with a realistic engine
control system developed by NASA [19]. It has been used
frequently in publications to generate multivariate time se-
ries engine datasets for developing novel prognostics and
health management models. The most commonly used
example is a set of run-to-failure datasets [20] which have
been used in at least 68 publications [21]. Each dataset
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Figure 1: Review structure for this state-of-the-art review

contains 100 different engines, and the multivariate time
series is split into 26 fields ranging between engine iden-
tifier, cycle time and 21 different sensor measurements.
These example datasets have been used frequently in air-
craft PdM papers as shown in section 3.1, and are suitable
for comparing models between similar datasets. While al-
lowing for easier comparison of models against similarly
structured simulated datasets, there are drawbacks to over
reliance from researchers using these datasets. As the most
used dataset, applications investigated are skewed towards
turbofan engine models, with significantly fewer academic
papers dedicated to other vital components such as hy-
draulics and bearings which require different sensors and
models to process effectively.

Starting in 2008, the Prognostics and Health Manage-
ment (PHM) society has organized an annual data chal-
lenge competitions for attracting attention to address PdM
problems within different industries. A new dataset from a
different industrial field has been released each year with
a different prognostics goal. This data reflects covers a
couple of additional topics such as Anemometer [22] and
Gearboxes [23]. Two of the datasets generated for these
challenges have been generated using C-MAPSS [24]. Be-
sides the C-MAPSS dataset, there is a general lack of
publicly available dataset, or similar simulation tools to
build datasets for aircraft-specific components. Some air-
craft components such as the PRONOSTIA ball bearings
dataset [25] and batteries [26] can be translated from other
industries where the datasets are available, and are con-
sidered as transferable systems in this review.

3. Predictive Maintenance Applications and Con-
tributions

Strategies for performing PdM are being applied to a
wide range of different industrial fields and applications,
with many novel methods developed in recent years. Many
authors have applied different methods to applications,
using a mix of data analytics and machine learning. A
number of papers have summarised and compared different
machine-learning algorithms for predictive maintenance in
the general industry already [8][27]. This section identifies
the key state-of-the-art methods published in journals in
recent years. This section highlights the paper’s key fea-
tures, the highest performing models for each appellation,
and the future work proposed by each paper to encourage
future innovations.

Of the papers highlighted in this section, different
traditional and ML models were applied. These are
shown in Table 2, with their respective strengths and
weaknesses. What follows is a review of the different PdM
applications that have been addressed within the aircraft
industry specifically and the publications that represent
the current state-of-the-art. Figure 4 shows a treeline
diagram of all the papers that were highlighted by this
review, both for aircraft specifically, and transferable
industries.

There were three primary criteria for the selection of
these publications; being aerospace focused where there
are papers available, having been published in the last
5 years to be considered state-of-the-art, and being well
cited respective to their release date. Where no aerospace
examples exist, transferable industrial systems have been
used instead. The papers were searched for in respected
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Figure 2: PdM Journal Papers Published Over last 5 years available
from IEEE Xplore

Figure 3: PdM Journal Papers Published Over last 5 years available
from ScienceDirect (Elselvier).

research databases IEEE Xplore and Elsevier, using key-
words that have grown in popularity as the field has grown,
as shown in Figures 2 and 3 respectively. These figures
highlight the growth in research in predictive maintenance,
and to a slower extent the focus of aircraft and machine
learning.

3.1. Aircraft Engine

Aircraft engines are complex and require regular main-
tenance, making up 35%-40% of the total aircraft mainte-
nance expenses from an operator [43]. Turbofan engines
can contain large suites of sensors that record values such
as fan inlet temperature and pressure, and physical fan
speed [44]. C-MAPSS generated datasets have been found
to be used most frequently in publications, particularly
the datasets released for the PHM 2008 data challenge [20]

which has cemented itself as an established benchmark for
new approaches.

State-of-the-art reviews have already been conducted in-
vestigating aircraft engines. Due to the time series na-
ture of most engine data, it was suggested that machine
learning models will be used more frequently, specifically
LSTMs [12]. However, this paper only highlights LSTM
examples which are hydraulics focussed. Another paper
also supports a move towards LSTMs, however, also high-
lights random forests as a powerful traditional model [45].
For this section, we have looked at the paper that both
fit within these trends, and those that defy them. Table
3 contains a list of the papers covering PdM for aircraft
engines that were investigated as part of this review.

Published papers in the scope of the proposed research
methodology support these identified trends. Long Short-
Term Memory Networks have been used frequently for
time series data. LSTMs have been used to identify fea-
tures in time series data despite no clear trends existing in
the dataset [42]. Three Bi-directional LSTMs (BLSTM)
have been applied to a C-MAPSS dataset to extract fea-
tures, learn higher features, and generate target outputs
respectively, outperforming other deep learning models
[46]. In a comparison between multiple traditional and
deep learning models against a C-MAPSS dataset, ran-
dom forest model attained the highest performance, and
an LSTM outperformed.

Some papers published in the last 5 years don’t fit these
trends as well. While still moving towards machine learn-
ing, CNNs have been used to success for performing PdM.
A novel Deep Convolutional Neural Networks (DCNN) uti-
lizing a time window approach to improve feature extrac-
tion had significant cross-paper performance and outper-
formed an LSTM network [40]. Hybrid models are only
briefly touched upon in previous reviews, and in the last
couple of years have been used successfully against C-
MAPSS generated datasets. A hybrid Maintenance De-
cision Support System for prognostics using unsupervised
and supervised techniques[47] coupling Cox Proportional
Hazards Model and K-means clustering to labels unla-
belled data. Supervised multi-class classification is then
applied to optimize the PdM predictions using several
different supervised models, with SVMS, KNN and Ran-
dom Forest consistently achieving accuracies of over 95%.
LSTMS have been used in hybrid models [28], and when
coupled with DCNN for handling fine-grain data and ex-
ploring different, LSTM cells and optimization functions
can fine-tune the performance as suggested by [42].

3.2. Aircraft Bearings

Bearings are components that reduce friction between
moving parts moving relative to one desired axis. In air-
craft they are commonly found in engines, landing gear,
hydraulic fuel pumps, doors, and cockpit controls. The
reliability of a bearing is paramount, as a single bearing
failure can potentially jeopardize hundreds of lives [48].
Measuring the quality of bearing directly with sensors can
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Figure 4: Treeline diagram of all the papers highlighted by this review, by year.

be difficult with no direct measurements possible, there-
fore measurements for temperature, vibration, and acous-
tics are used to assess their health.

There are no publications that propose PdM methods
for bearings tested against data sourced from aircraft or
respective simulations that could be found for this review.
There have been many papers that have used the motor
bearing dataset for the 2012 PHM data challenge, which
contains temperature and vibration signals that could be
translated to aircraft systems. Since its original release,
the employed models have shifted from traditional ML
methods such as RBM [17] and particle filtering [33] and
standard RNN [49], to more commonly use deep learn-
ing. Most notably a proposed LSTM method that out-
performed a CNN and sparse auto-encoder [50]. However
this was not compared against non-ML methods, or even
proposed models from other publications against the same
dataset. Despite this, DL models are being more com-
monly used in recent years, with LSTMs [51][50] and CNNs
[52] at the forefront. Table 4 contains a list of the papers
covering PdM for bearings that were investigated as part
of this review.

3.3. Hydraulics and Pneumatics

Hydraulics are a mechanical function that operates
through the force of liquid pressure. In hydraulics-based
systems, mechanical movement is produced by a contained

pumped liquid, typically through cylinders moving pis-
tons. They are commonly found in construction, automo-
tive engineering and in aircraft, which exploit the larger
amount of power that can be generated compared to pneu-
matics. Hydraulic systems are used in many different areas
of an aircraft such as in landing gear, fuels lines and for
engine driven pumps. Despite this importance, there are
no publicly available aircraft hydraulics data sets or pub-
lications that could be found for this review.

A comparison of many state-of-the-art machine learn-
ing algorithms was performed by testing against hydraulic
system sensor data [27]. They found that the tradi-
tional methods with feature engineering outperformed
deep learning models likely due to the small dataset size
which deep models struggle more with. Table 5 contains a
list of the papers covering PdM for hydraulics and pneu-
matic’s that were investigated as part of this review.

3.4. Body

The fuselage and frame of an aircraft is just as vital
a component as the engine and is liable to damage from
bird strikes, lightning strikes, and degradation over time.
In recent years particle filters[31], and Kalman filters [32]
have been used to estimate and predict the size of flaws
and cracks in the aircrafts frame and wing leading to sig-
nificant cost reduction. For a more thorough monitoring
structural health monitoring has been used to assess the
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condition of engineered systems. It is conducted by ob-
serving and analysing the sensor measurements of a sys-
tem to assess the health of the structure. An overview of
piezoelectric transducer-based SHM system technology for
aircraft addresses some of the challenges of applying SHM
to aircraft, but suggests that the field is expanding from
diagnostics, to prognostics, using data-driven methods yo
predict the life and performance of the aircraft structure
[54]. It has been suggested that the aviation industry is
unable to exploit SHM-based inspections as it is not cost
effective, and the weight of sensors systems must first be
reduced [55]. SHM has been used in other industries al-
ready, some elements of which could be reapplied to fu-
ture SHM for aircraft when these challenges have been
addressed. In recent years it has been used to identify
defects in wind turbine blades [56] and detecting defects
in railway tunnel structure and [57]. Table 6 contains a
list of the papers covering PdM for the aircraft body, and
transferable papers covering SHM that were investigated
as part of this review.

3.5. Methodologies

The applications of PdM in aircraft are not the only in-
novations in recent years, as several publications have fo-
cused on the methodologies implemented alongside them.
A methodology to estimate overall systems-level RUL,
with the goal of interpreting component level RUL to make
replacements that will benefit the system RUL was pro-
posed [58]. Despite some existing state-of-the-art method-
ologies, one major drawback is the lack of a rigorous pro-
cess for defining requirements and proposed a systematic
derivation for system requirements for the further devel-
opment of PHM systems [59]. Table 7 contains a list of
the papers covering maintenance methodologies that were
investigated as part of this review.

3.6. Additional Aircraft Systems

There are other specific aircraft systems that have been
optimised using PdM. The Auxiliary power unit is an es-
sential piece of equipment for an aircraft; however, it has
a non-linear degradation process. Data-driven and physics
models alone make poor predictions on these, so a hybrid
of the two was proposed, feeding exhaust gas temperature
data into an LSTM to generate the RUL [16]. Random for-
est has been used to assess the performance and predict
the RUL of an aircraft auxiliary power unit [29]. Using
random forest and Bayesian dynamic models to quantify
degradation, achieving a prediction error rate of less than
4%. It was tested against a multivariate ACMS report
from a commercial aircraft fleet covering values such as
pressures and temperatures for air, bleed, and oil. Low-
pressure environments are more prone to corona and arc
tracking, and three methods were proposed to monitor
them [61]. This includes an example of graphical data
used by UV imaging sensors to detect arcs. These meth-
ods allow for on-line monitoring of this activity and are

compatible with predictive maintenance approaches. Ta-
ble 8 contains a list of the papers covering PdM for the
additional aircraft systems that were investigated as part
of this review.

4. Predictive Maintenance Projects

Predictive maintenance needs are growing in this indus-
try as data collection and greater development of data-
driven prognosis tools enable greater exploitation of it.
In parallel, greater funding and awareness is required to
ensure tools are developed and new researchers are ed-
ucated and inspired. This section provides insight into
what projects and services the industry is investing in, to
help guide research towards methods and tools that are
beneficial and in demand by airlines and manufacturers.

Table 9 outlines the PdM projects that have been
received in recent years, both by governments and within
the industry. Although only one project was identified
outside of the scope of the last 5 years, DAMEs goal
to aid diagnostics differs from the joint goals of the
remaining projects to advance PdM and problem fore-
casting technologies. Prognostics to forecast problems is
a primary focus of PdM research, which is supported by
the number of RUL estimation techniques proposed in
recent years. Funded research will likely continue to focus
on prognostics, real-time diagnostics or other uses of PdM .

As well as the grants afforded to academic research and
universities, companies are developing services to handle
and process the growing available data to enable more op-
timized maintenance. The largest of these services are
shown in Table 10. All the tools provide the benefit of
reducing aircraft downtime, return to service time, opera-
tional which highlight these as the key needs for airlines.
Collecting and consolidating data is another key goal of
these systems, due to the increase in available data har-
vested from aircraft in more recent years.

This research field is fast-growing, with more PhD op-
portunities listed by universities and laboratories around
the world in recent years. The CRAN research labora-
tory focusing on novel methods for data-driven PdM, at
the Delft University of Technology researching optimisa-
tion approaches for PdM maintenance planning [74] and at
Cranfield University researching the optimisation of UAV
maintenance paradigms using artificial intelligence [75].
Universities have received greater support from the indus-
try, with sponsored PhD’s in this field, such as the Uni-
versity of Southampton, working alongside GE to advance
optical fibre sensor technology for PdM application in air-
craft [76]. The last of these also highlights the future of
research in this industry, implementing greater use of au-
tomation and AI for greater optimisation and accessibility.
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Figure 5: Challenges for Predictive Maintenance(PdM) research for
aircraft.

5. Discussion: Challenges and Opportunities

There are a number of challenges that researchers will
face, summarised in Figure 5. This section outlines the
challenges that researchers in this field will need to over-
come to enable widespread and effective use of PdM for
aircraft. New technologies that can be exploited to pro-
vide valuable opportunities to expand research in this field
are also highlighted.

5.1. Challenges

PdM tools utilizing ML architectures must navigate the
same challenges and pitfalls that all ML tools for predictive
analytics face. This section discusses the larger challenges
and potential solutions for the implementation and distri-
bution of these techniques within the aircraft industry.

5.1.1. Common Machine Learning Challenges

Machine learning, particularly deep learning, is being
used more often in recent years for PdM for aircraft prob-
lems. The same challenges that appear in many other
industries are just as rel event to aircraft. A systematic
review of AI-based prognostics was performed by [77], who
highlighted several notable diagnostic challenges, such as
noisy sensor readings, difficulties in accurately modelling
the physical process of systems [78] and health degrada-
tion trends [79]. The datasets used to train ML models are
commonly imbalanced, as faults are generally uncommon
in aircraft, and data is skewed towards normal operation.
This leads to the model struggling to learn the minority
class of failed systems, and requires methods such as those
summarized by [80] to counteract the imbalance. In many
cases, there is no failure data at all, as preventive main-
tenance schedules encourage replacing faulty components
before they reach failure. Finally, with huge numbers of
embedded sensors available in aircraft, there can be a high
dimensionality in the data collected, risking the curse of
dimensionality, where the higher the dimension space, the
denser the data samples are required [17]. The reliability
of maintenance predictions may vary between aircraft sys-
tems which these problems, making aircraft wide health
diagnosis difficult to ascertain.

5.1.2. Common Industrial Challenges

Starting a new PdM scheme requires the purchase of new
sensors, software, and tools. Companies that lack these
resources and the required data for training will have to
invest money to build up their resources, as well as time
to collect data and train technicians to use the new tools.
These costs increase when applied to large and complex
engineered objects such as aircraft, which require more
intensive sensor networks and specialised knowledge to in-
stall and utilise. PdM can be the most optimised mainte-
nance strategy, but not for every problem or system and
these high start-up costs can discourage companies look-
ing to invest in PdM solutions These tools have a learning
barrier for inexperienced programmers, whereas Domain
specialists and technicians who are less likely to possess
this experience may have the most to contribute to its
tuning. New technologies such as AI-driven automation
could be implemented to select parameters, and analytic
models and interpret results with limited coding experi-
ence required. This could help to de-skill the process and
allow greater use within manufacturers and airlines in the
future.

5.1.3. Data Availability

While the availability of data. There are several datasets
available for performing PdM, many supplied by the PHM
society. However, over the course of this review, no pub-
lic datasets beyond those generated using C-MAPSS, or
specifically the PHM were identified. Natural language
and graphical datasets in particular are rare and under-
used in PdM research. This is a major problem, as there
is an obvious bias in the aircraft systems that PdM so-
lutions are being researched for as demonstrated by the
skew in engine-focused papers. The aircraft manufactur-
ers who benefit from this research are unable to publish
the proprietary aircraft data that belongs to the airlines,
limiting the scope of potential research outside of the in-
dustry. Research covering other engineered systems, such
as bearings and hydraulics, may be possible to translate
to some aircraft problems as they share the same physical
properties, and collected data types. For more aircraft spe-
cific research however the simulation or acquisition of more
aircraft maintenance data is vital to broaden the breadth
of future research in this field.

5.2. Opportunities

New technologies could enhance and automate the PdM
process, allowing for greater optimisation of industrial sys-
tems. While some of these technologies are still in their
infancy, some are well developed and merely have yet to
be reapplied to the field. The following is a list of tech-
nologies that could provide opportunities to enhance PdM
for aircraft in the future.

5.2.1. Internet Of Things

The Internet of things (IoT) defined as a world where
physical objects are seemingly integrated into the informa-
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tion network [81], has widespread industrial applications
for physical systems containing sensors. There are propos-
als for coupling this technology with aircraft systems for
making aircraft maintenance more autonomous [82][83][84]
to apply this to commercial aircraft components. They
are a prime candidate with a greater number of embedded
sensors in recent years for overseeing the performance of
equipment.

5.2.2. Digital Twin

A Digital twin is the virtual representation that serves
as the real-time digital counterpart of a physical object
or process. Infosys services build digital twins of critical
aircraft systems, such as engines and landing gear, and ap-
ply analytical solutions to the various aircraft system and
sources [85]. Unlike many other tools, there is a keen fo-
cus on text analysis over raw sensor data, analysing main-
tenance logs and visualising analytics on a smart dash-
board alongside other analytics. Recently a paradigm hy-
brid system of combining multi physical modelling with
data-driven analytics was proposed [84]. Using a digital
twin, the system would continually adapt to operational
changes using collected sensor data of industrial equipment
in real-time to increase autonomy. It has the potential to
revolutionise the relationship between engineers and air-
craft systems in terms of speed, autonomy and required
programming experience to operate.

5.2.3. Robotics

Acquiring data is vital for performing accurate PdM,
and automation provided by robotics systems allows for
more automated data acquisition. Aerial drones are al-
ready being deployed for performing near-autonomous in-
spections to assist technicians, further automating the
data collection process for conducting maintenance. In
2018, Rolls Royce revealed they are working with the Uni-
versity of Nottingham and Harvard University to develop
cockroach inspired robots, with the intention to mount
them with cameras for performing inspections inside air-
craft engines [86]. Collecting more data improves the per-
formance of data-driven methods and deep learning, so
every opportunity to automate the data collection pro-
cess will improve the efficiency and accuracy. Network
of robots working in unison could greatly optimise data
collection and fault identification, such as the network of
drones and climbing robots for wind turbine global inspec-
tions [87]. Like aircraft maintenance, wind turbine main-
tenance is manual and operates across a large structure.
Climbing robots could be applied for aircraft fuselage in-
spection, especially during weather conditions that disable
drone inspection.

5.2.4. Artificial Intelligence

Artificial intelligence (AI) is the attempt of machines to
learn independently and emulate natural intelligence and
forms the field in which both machine and deep learning
belong to. An intelligent PdM framework was proposed

that utilises multiple features of the 4th revolution, with
data generated by cyber-physical systems, transmitted and
processed using the IoT, and providing early alerts by In-
ternet of Service [88]. This all centres around autonomous
systems working together with a strong focus on AI. They
recognise that elements such as feature selection are cur-
rently performed manually by experienced engineers. This
is labour intensive and costlier but could be replaced by
proposed deep learning methods to automatically extract
features. A systematic review of AI prognostics theories
and architectures has been conducted, which is primarily
situated in the field of deep learning [77]. The focus of
their research is to lead to the development of an “overall
solution with several interacting components” but ques-
tions both the costs of the development of deep learning
tools against the benefits they propose and the lack of
consistent high-quality data in the field. As computational
power and data collection capacity increase these concerns
will be mitigated, and the use of a single automated sys-
tem appears to be a common goal for those in the industry.
Automated machine learning (Auto-ML) could also be ap-
plied to build complex DL systems with minimal human
assistance required. Tools like Auto-Keras can be used
to build DL models for regression, classification, and time
forecasting problems, which has applications for predicting
aircraft system deterioration.

5.2.5. Data Fusion

While system deterioration can be predicted from single
data sources, data fusion can integrate data from multi-
ple sources. This improves the accuracy of the predic-
tion of deterioration, and better utilises the abundance of
recorded data. A data-level data fusion method for early
detection of incipient faults and achieved a lower variance
before the occurrence of incipient faults when tested of a
C-MAPSS generated dataset [89]. It can also be used at a
decision-level, such as for predicting the RUL of an aircraft
engineering by interpreting as a convex optimisation prob-
lem instead of the traditional linear regression problem and
outperforming preliminary decisions using individual sen-
sors. Datasets generated using C-MAPSS have been used
as they provide up to 21 parameters. There is room to
improve on this work, either by integrating a greater num-
ber of parameters and applying the method to real-time
prognostics.

6. Conclusion

State-of-the-art Predictive maintenance techniques can
be applied to a wide range of aircraft maintenance appli-
cations for optimising maintenance. This paper serves as a
state-of-the-art review to identify the novel solutions that
are being applied to PdM problems and plot the current
landscape of the field. PdM can be more optimised than al-
ternative maintenance strategies for maximising the RUL
of aircraft components. By applying prognostic methods
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to the growing number of available benchmark datasets, it
is more possible than ever to develop novel PdM methods.
Further development of PdM is inevitable, given the ris-
ing number of novel methods and potential applications in
the field. The enhancements afforded by new technologies
such as robotics and AI will further optimise and auto-
mate these procedures. Greater use of it has the potential
to greatly reduce maintenance costs for aircraft manufac-
turers and operators.

In the current landscape, PdM is performed by data en-
gineers and researchers in academia but is inaccessible to
in-experienced users who could benefit from it most. Even
easily accessible tools such as Microsoft AZURE, which
possess predictive maintenance guides using C-MAPSS
data [90], requires some level of domain knowledge and
programming experience to understand and use effectively.
Dedicated predictive maintenance tools that utilise new
technologies such as AI and Auto-ML to provide greater
automation would enable a wider user base. Automated
tools will enable a greater number of people to build pre-
dictive maintenance models on aircraft data. Greater re-
search into automated tools in this field will encourage
both more development and use in the industry, leading
to greater savings and safety afforded to in-service aircraft.
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Data Type Source
Time Series Turbofan Engines [16]), landing gear hydraulics and bearings [17]
Natural Lan-
guage

Pilot complaints, equipment failure logs [18] and post flight reports

Graphical
Data

Imaging of Aircraft fuselage and wing

Table 1: Most common data types for aircraft maintenance data.

Architecture Operation Strengths Limitations
Applications and
References

SVM

Generates an optimal line/
hyperplane to separates data
into different classes for clas-
sification or regression prob-
lems.

Very effective in high dimen-
sional spaces where number
of dimensions exceed number
features and samples.

Unsuitable for large datasets.
Sensitive to noisy data, miss-
ing values, and outliers and
under performs where number
of features exceeds dimensions

RUL Estimation [28]

K-Nearest
Neighbour

Classifies new data based on
a similarity measure between
the new data point and several
of the nearest existing data
points.

Faster as there is no training
period. Easy to add new data
to the datasets without im-
pacting accuracy. Simple and
easy to implement.

Unsuitable for large datasets.
sensitive to noisy data, miss-
ing values, and outliers and
cannot handle high dimen-
sional well. Requires feature
scaling.

RUL Estimation [28]

Random For-
est

An algorithm consisting of
multiple uncorrelated decision
trees, to more accurately pre-
dict by committee than an in-
dividual tree

Reduces overfitting in deci-
sion trees while improving ac-
curacy. Works well with
both categorical and continu-
ous data.

Computationally inten-
sive. Long training times.
Struggles to determine the
significance of parameters.

RUL Estimation
[28][29]

Particle Fil-
ter

Solve filtering problems for a
Markov process by calculat-
ing the posterior distributions
of the states and applying a
Monte Carlo algorithm.

Simple to implement for many
different problems, can work
with high dimensional data
and scales well.

Computationally expensive,
difficult to measure perfor-
mance and non-deterministic.

Fatigue estimation
[30][31][32] Bearing
RUL estimation [33]

Autoencoders
(AE)

ANN that replicates data at
output from input through
a smaller encoder layer, re-
ducing the dimensionality but
keeping maximum input data
variance.

Can identify features from
the data and doesn’t require
labelled data (Unsupervised
learning).

Extracted resources not nec-
essarily specific to problem.
Loses temporal relation in-
put data are raw sensor data.
Leads to overfitting.

Calculating RUL
of Aircraft Engine
[34][35]

Restricted
Boltzmann
Machine
(RBM)

Similar operation to autoen-
coder, consisting of simplified
Boltzmann machines. Learns
the probability distributions
of data.

Extract meaningful features
from input data, maintain
spatial representation in the
new space

Fails to maintain data vari-
ance in new space and diffi-
cult to model complex systems
with only one layer in model.

RUL prediction for
ball bearings [17],
Aircraft health predic-
tion from time series
sensor data [36]

Deep Belief
Networks
(DBN)

Deep ANN, successive stack
of RBMs that learn to prob-
abilistically reproduce the in-
put at the output with the
RBN layers.

Same as RBM and can clas-
sify faults from frequency dis-
tributions

Requires pre-processing,
tends to overfit and cannot
model temporal relaxations.

Health diagnosis of
aircraft engine [37],
RUL prediction of C-
MAPSS degradation
datasets [38]

Convolutional
Neural Net-
works (CNN)

Deep ANN consisting of lay-
ers of receptive fields here fea-
tures are convolved by apply-
ing kernels.

Exploits neighbourhoods, can
reduce training time and data
required by weight sharing,
prevent overfitting using
dropout.

Slower training than other
deep ANNs and can’t model
long-term dependencies.

RUL prediction from
raw time series sen-
sor signal [39] and [40],
Internal pump leak-
age prediction of Hy-
draulic system [27]

Recurrent
Neural Net-
works (RNN)

ANN that reuses information
from the past network using a
feedback connection from the
hidden or output layers back
to the preceding layers

Can model the temporal re-
lationship of time series data
and capable of self-learning.

Suffers the vanishing gradient
problem, cannot model long-
term dependencies, and re-
quires more resources than AE
and CNN for training.

Prediction of bearing
defect propagation
[41](

Long Short-
Term Mem-
ory Network
(LSTM)

Deep ANN variant of RNN,
similar structure but with ad-
ditional gates to model longer
term dependencies.

Same as RNN but can model
longer term dependencies.

Long training time and high
computational requirements.

RUL prediction from
raw time series sensor
data [42] and [27],
Hoogendoorn and
Koole, 2019)

Table 2: List of predictive models that have been used in the highlighted papers in this review.
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References Method Features Future Work
Zheng S, Ristovski K,
Farahat A, Gupta C
[42]

LSTM
RUL estimation. Identifies hidden patterns.
Outperformed traditional model and CNN.

Implement detection degradation point. In-
vestigate alternate LSTM structures. Add a
CNN layer to reduce frequency and noise.

Li X, Ding Q, Sun JQ
[40]

Deep CNN (DCNN)
RUL estimation. Uses time window approach
to improve feature extraction.

Include the scoring function in the loss func-
tion of the neural network.

Huang CG, Huang HZ,
Li YF [46]

Bidirectional LSTM
(BLSTM)

RUL estimation. Integrates multiple sensors
data with operational conditions data.

Address the issue of limited training data and
combining the proposed method with model-
based prognostic approaches to expand the
potential prognostic application scenarios.

Azar K, Naderkhani F
[47]

Hybrid Maintenance
Decision Support
System

Fault diagnostic and prognostics. Infers
and fuses high-dimensional/multi-modal data
sources. Recommends optimal maintenance
decisions without human intervention

None Stated

Chen C, Lu N, Jiang
B, Wang C [28]

Hybrid LSTM-SVR
RUL estimation. Employs degradation fea-
ture selection. Obtain crucial features reflect-
ing the system degradation.

Apply the proposed method to other engi-
neering systems and investigating systems
with multiple failure modes.

Table 3: Publications employing state-of-the-art PdM for Aircraft Engines

References Method Features Future Work

Liao L, Jin W, Pavel R
[17]

RBM
RUL estimation. Employed a novel regular-
ization term to maximise trendability. Auto-
matically generate features suitable

Employ a deep structure of RBMs.

Lei Y, Li N, Lin J [33]
Stochastic process
model/Kalman Parti-
cle Filtering

RUL Estimation. Validated against PHM
2012 dataset. Compared with and outper-
formed 4 methods.

Investigate how to acquire the initial model
parameters for this model.

Guo L, Li N, Jia F, Lei
Y, Lin J [49]

RNN
RUL estimation. Overcome common draw-
backs of health indicators.

Investigate new RUL models: Conditional
three-parameter capacity degradation model
and stochastic degradation model.

Yoo Y, Baek J-G [52]
Continuous Wavelet
Transforms and CNN

Compress feature extraction, selection, and
fusion into a single algorithm. Validated
against PRONOSTIA dataset.

Overcome limitations of proposed method.
Larger training data. Improve reliability for
health indication

Ahmad W, Khan SA,
Islam MMM, Kim JM
[53]

Regression
RUL estimation. Infer RUL from a dimen-
sionless health indicator.

Extensive studies with greater number of dif-
ferent applications and datasets for valida-
tion.

Zhang B, Zhang S, Li
W [50]

LSTM

Assess the degradation of bearings. Utilize
the fault propagation information. Validated
on simulation model based on vibration re-
sponse mechanism.

Investigate two problems: 1) The difficulties
simulating random mutation of degradation
process. 2) How the degradation process is
split into stages by time.

Wu H, Huang A,
Sutherland JW [51]

LSTM
Predict health of a manufacturing system.
Superior classification of critical states than
SVM

Increase the accuracy on early stages by em-
ploying parameter tuning within the architec-
ture of the RNN.

Table 4: Publications employing state-of-the-art PdM for bearings

References Method Features Future Work

Silvestrin LP, Hoogen-
doorn M, Koole G [27]

Temporal CNN
(TCNN)

RUL Estimation. Comparison of different
traditional ML and DL models. Validated
against a hydraulics dataset

Apply the algorithm to more PdM datasets.
Increase the dataset size to confirm the pro-
posed method outperform traditional meth-
ods utilising feature engineering.

Table 5: Publications employing state-of-the-art PdM for hydraulics and pneumatics

References Method Features Future Work
Haile MA, Riddick JC,
Assefa AH [30]

Particle Filter
Integrated diagnostic framework. Fatigue life
estimation of critical rotorcraft structures”

None Stated

Yousuf W Bin, Khan
T, Ali T [31]

Particle Filter
Predict posterior probability density . Esti-
mate flaw size for aircraft wings. Applied to
Airbus A310 data.

Incorporating alternative life distributions or
mechanical fatigue models.

Dong T, Kim NH [55] N/A
Reviews sensor types for aircraft SHM. High-
light costs saved by SHM outweighed by
added sensors weight.

Repeat study with considerations to sensor
reliability.

Wang Y Et al. [32]
Extended Kalman Fil-
ter

Estimate fatigue crack size in airframe. Pre-
dict future crack size/ distribution. Signifi-
cant cost reduction

None Stated

Qing X Et al. [54] N/A
Overview of piezoelectric transducer-based
for aircraft SHM. Identifies challenges for
SHM of aircraft.

Extensive study in individual highlighted
challenges.

Gómez Muñoz CQ Et
al. [56]

N/A
Identify defects in wind turbine blades.
Utilise ultrasonic sensors

None Stated

Farahani B V. Et al.
[57]

None (Employs com-
puter vision)

Detect defects in railway tunnel structure.
Utilise monitoring of railway tunnel’s 3D ge-
ometry

None Stated

Table 6: Publications employing state-of-the-art PdM for aircraft bodies and transferable engineered systems.
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References Features Future Work

Rodrigues LR Et al. [58]

Estimate overall systems-level RUL of aircraft.
Combine systems architecture information and
the RUL estimations across all the aircraft sys-
tems available.

Use a larger dataset for further experimentation
and testing

Li R, Verhagen WJC, Curran R [59]

Systematic derivation of system requirements for
prognostics and health management system de-
velopment. Defines detailed processes for re-
quirements definition.

None stated

Vianna WOL, Yoneyama T [60]
Methodology for predictive line maintenance.
Optimisation of redundant aeronautical systems

Incorporate troubleshooting tasks to the plan-
ning optimization process.

Table 7: Publications proposing state-of-the-art methodologies for PdM.

References Method Features Future Work
Liu X, Liu L, Liu D,
Wang L, Guo Q, Peng
X [16]

Hybrid LSTM
RUL estimation of Auxiliary power unit. Use
non-linear degradation data

Study optimisation method to determine the
dimension of generated data. Improve stabil-
ity/accuracy of RUL predictions.

Wang F, Sun J, Liu X,
Liu C [29]

Random Forrest

RUL estimation of Auxiliary power unit.
Uses four performance baseline models to im-
prove accuracy. Validated on 22 auxiliary
power units of a commercial aircraft fleet.

None Stated

Riba JR, Gomez-Pau
A, Moreno-Eguilaz M
[61]

N/A
Detect arc tracking in low-pressure environ-
ment. Evaluate three low-cost and small-size
sensing methods.

None Stated

Sun J, Wang F, Ning S
[62]

Dynamic Linear
Model

Novel Bayesian failure prognostics approach.
Uses Aircraft Condition Monitoring System
(ACMS) data.

Reapply method to medium and short-ranged
aircraft fleets.

Table 8: Publications employing state-of-the-art PdM for additional aircraft systems.

Project Recipients Goal Grant Amount

Distributed Aircraft
Maintenance Environ-
ment (DAME) [63]

Rolls Royce, Data Systems
and Solutions and Cybula,
and the universities of York,
Oxford, Leeds, and Sheffield

To build a Grid testbed for Dis-
tributed Diagnostics

£3,096,172 from the U.K. Engineering
and Physical Research Council

Overall Manage-
ment Architecture
for Health Analysis
(OMAHA) [64]

Lufthansa Industry solutions

Overall Management Architecture for
Health Analysis to develop forecast
models and standardized system of
monitoring airplane conditions

Unknown amount from German Fed-
eral Ministry for Economic Affairs
and Energy’s aviation research pro-
gram

UPTIME [65]
11 European-based contribu-
tors

To build a unified framework for PdM
strategy

€6,248,367.50 from the EU, Horizon
2020 programme

Unnamed [66]
University of South Carolina
(UofSC) college of Engineer-
ing and Computing

To further advances in the fields of
robotics, combustion and PdM

$5.7 million from NASA

Table 9: Grants awarded to projects focusing on PdM around the world

Tool name Company Features Benefits
Application and
Customers

Amazon Web Services
[6]

Amazon

Report maintenance problems in real-
time both to the pilot and mainte-
nance staff for detecting and prepar-
ing maintenance for problems

Detecting and preparing maintenance
for problems

Optimises predicting
and preempting fleet
maintenance (Korean
Air) [67]

Aircraft Health anal-
ysis and Diagnosis
(AHEAD) [68]

Embraer
An integrated tool consolidating air-
craft data to Optimize maintenance
activities

Advanced notification for unsched-
uled events, faster support and Re-
duce return to service time

Realtime Aircraft
fault alerts (JetBlue
and US Airways) [69]

Airbus Real Time
Health Monitoring
Service (AiRTHM)
[70]

Airbus

Provides real-time remote access to
aircraft data parameters, allowing for
optimised maintenance and real-time
troubleshooting actions

Reduces aircraft down time, mainte-
nance costs and enables anticipated
unscheduled maintenance

Provide components
for PdM Support
(Sichuan Airlines) [71]

AnalytX [72] Boeing

Predictive analytics service providing
Digital Solutions, Analytics Consult-
ing Services and Self-Service Analyt-
ics [72]

Apply predictive analytics to increase
time to evaluate, plan and manage so-
lutions

Real-time mainte-
nance and engineering
support (Air Peace
and EnterAir) and
accessing real-time
maintenance data
(Amber, Go2Sky,
Landry’s, and Metro-
jet) [73]

Table 10: Identified PdM services and tools provided by members of the industry.

14


