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Abstract 

Recently, the partially prestressed concrete (PPC) has been widely used as an effective construction technique 

for structures to reduce yielding and damages. However, there is no proper analytical model for PPC frame 

elements (beam-column members) to perform the finite element analysis. Besides, an extensive review of the 

literature uncovered little available information about the possibility of identifying damage to PPC members 

during applied vibration loads such as earthquake excitation. Hence, this paper presents the development of a 

new 3D analytical model for PPC beam-column element subjected to static and dynamic loads. In addition, a 

theory of plasticity and yielding surfaces for PPC frame elements are formulated in order to detect damage and 

determine the location of plastic hinges in the structural components under dynamic load. The developed 

analytical and plasticity models were codified and implemented in a finite element program in order to perform 

inelastic static and dynamic analysis for PPC structures. Then, sample PPC beam and frame members were cast 

and tested experimentally for flexural and incremental loading, respectively, to verify the developed analytical 

and plasticity model for PPC. The results show a good agreement between the analytical model and numerical 

analysis and the experimental test results. In addition, a comparison of the seismic response of reinforced 

concrete (RC) and PPC structures indicated that the stiffness and energy dissipation capacity of the structure 

with PPC members improved noticeably and the total number of plastic hinge formations in the structural 

members decreased. 

Keywords: Prestressed concrete, damage plasticity, analytical model, plasticity model, finite element, stiffness, 

energy dissipation 
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1. INTRODUCTION 

Prestressing concrete was introduced in the early 1940s to overcome the natural weakness of concrete in 

tension. The term “partially prestressed element” normally implies combining the conventional reinforcing 

steels and prestressing steel strands to strengthen a flexural concrete member.  

Naaman (1983) proposed an approximate nonlinear analysis technique to simulate the ultimate behavior of 

fully prestressed concrete (FPC) and PPC beams. Using a nonlinear programming approach, Cohn and MacRae 

(1984) compared the optimization results for 240 RC, FPC and PPC beams. Naaman et al. (1986) compared 

experimental data with a proposed nonlinear analytical model to evaluate the flexural ductility of PPC elements 

under static loading. Skogman et al. (1988) developed a computer program based on an iterative strain 

compatibility method to analyze the flexural strength of PPC members. Shushkewich (1990) presented a simple 

mathematical model to determine the stresses of uncracked or cracked PPC structural elements. Chern et al. 

(1992) used bending theory to analyze the behavior of PPC members. Alkhairi and Naaman (1993) developed 

a nonlinear analytic model to investigate the moment-deformation response of bonded and unbonded PPC 

members. Gupta et al. (1994) proposed an object-oriented approach (Yu and Adeli, 1993; Hung and Adeli, 

1994) for detecting damages in prestressed concrete bridges. Sarma and Adeli (1998) presented a review of 

methods for cost optimization of concrete structures. Tanchan (2001) conducted an experimental study to 

investigate the behavior of nine FPC high-strength concrete (HSC) beams that had been prestressed with 

unbonded tendons up to failure. Ariyawardena and Ghali (2002) presented a numerical method to predict the 

behavior of concrete structures prestressed with internal or external tendons throughout their loading history. 

Au and Du, (2004) reviewed the methods to evaluate the performance of PPC members with bonded and 

unbonded steel tendons and fiber‐reinforced polymer. 

Recupero et al. (2005) proposed an analytical model to investigate the performance of FPC beams subjected to 

the interactions of bending moments and shear force; the interaction of axial forces, biaxial bending moments, 

or shear forces was not taken into account to develop a comprehensive damage theory. The developed damage 

theory was not able to identify the plastic hinge formations. Sirca and Adeli (2005) presented a model for cost 

optimization of prestressed concrete bridges. 
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Franchetti et al. (2009) experimentally investigated the static and dynamic responses of three precast prestressed 

concrete beams and proposed a damage detection method based on free vibration tests and nonlinear damping 

identification. Lou et al. (2013) described a numerically-based finite element model to estimate the total 

nonlinear response of continuous concrete beams prestressed with internal unbonded tendons. Karayannis and 

Chalioris, (2013) proposed a design process for PPC beams based on the cracking control provisions by 

adopting a design maximum allowable crack width.Serviceability and ductility of partially prestressed concrete 

beams under limited cycles of repeated loading were investigated by Oukaili and Khattab (2019). Application 

of partial prestressing for crack control in reinforced concrete structures was investigated by Choudhary and 

Akhtar (2019) and Xue et al. (2020). 

A number of researchers have presented new approaches for damage detection and health monitoring of both 

concrete and steel structures (Sirca and Adeli, 2012; Amezquita-Sanchez and Adeli, 2016). Qarib and Adeli, 

(2014) and Lei et al., (2015) developed algorithms for the identification and damage detection in structures 

under severe loading using the stiffness degradation of structural members. Zhang et al. (2019) presented a 

novel computer‐vision and deep‐learning techniques to effectively detect cracks in structural infrastructure 

under various conditions. Li et al. (2019) proposed a fully convolutional network (FCN)‐based multiple 

damages detection method for concrete structure.  

Several researchers (Ayoub and Filippou, 2009; Laskar et al., 2010) have implemented the nonlinear models to 

evaluate the performance of PPC structure using commercial FE packages. Navarro et al. (2007) proposed a 

general 3D model to analyze RC and FPC frame elements without identifying the damaged areas. Ozkul (2007) 

presented a general approach for the analysis of concrete beams prestressed with unbonded tendons, using the 

commercial, general purpose finite element commercial software. Huang (2012) investigated possible 

approaches for modeling of FPC structures and the interface between the concrete and prestressing tendons, 

using the finite element commercial software. Preciado et al. (2016) investigated the effect of external 

prestressing medieval and masonry bell towers subjected to strong earthquakes using the commercial software.  

However, modeling a simple prestressed element using FEM commercial software requires extensive 

experience and high computation time, which increase the cost of design and analysis (Al-Jurmaa and Abdul-

Razzak, 2009). Also, a review of the literature reveals insufficient available experimental tests data to verify 



 

4 

 

and validate the structural performance of PPC beams and frame buildings under static and dynamic loads 

considering the plastic hinge formation mechanism (Kien, 2008).  

Thanoon et al. (2004) identified the major difficulties encountered in inelastic analysis of a RC frame as 

distribution of inelastic stiffness along the member length and inelastic stiffness of the member changing 

continuously with stress history. They developed an analytical model for a two-node RC beam-column element 

consisting of two plastic hinges at the ends of the element was developed. Spinella (2013) proposed analytical 

moment-curvature interaction diagrams by considering nonlinear constitutive laws to evaluate the failure 

mechanism of arbitrarily shaped RC sections under biaxial bending moments and axial force. Talaeitaba and 

Torki (2014) developed a nonlinear finite element model to assess the effect of transverse reinforcement on the 

shape of the shear-torsion interaction curve of RC beams and presented a plasticity theory to detect damage in 

RC members due to shear and torsion. Hejazi et al. (2013, 2014, and 2016) developed new analytical model for 

inelastic dynamic analysis of RC framed structures and detected the plastic hinges during applied seismic 

excitation. Tang and Chen (2019) carried out experimental and numerical investigations on the plain concrete 

in beams subjected to three-point bending. ESPI technique was used to observe crack evolution and measure 

the full-field deformation of the beams. 

As presented in this brief review, considerable effort has been expended to develop analytical and numerical 

methods to study the nonlinear behavior of RC building structures. However, the analysis of PPC members is 

more complicated compared to the analysis of conventional RC members, due to the presence of bonded and 

unbonded prestressing strands and corresponding forces. Hence, a comprehensive three-dimensional (3D) 

analytical model associated with a failure criteria theory (yielding mechanism) to determine the damaged areas 

in PPC structures under dynamic loads is required to evaluate the seismic performance of structures with PPC 

members. Since, available commercial software packages do not provide a special PPC frame element with 

possibility of yielding and crack detection in member, modeling and analysis of complicated PPC structures 

under seismic excitations remains challenging.  

This paper presents the development of an analytical and plasticity model for 3D nonlinear PPC frame elements. 

The model was implemented in a FEM computer program (Fortran programming language) to perform inelastic 

static and dynamic analyses for PPC structures.  
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Validation of the analytical and plasticity models was accomplished by conducting experimental test on PPC 

beams and frame and compare the results of the numerical analysis and experimental testing. Furthermore, the 

experimental results of a four story PPC building under earthquake excitation tested by Wei et al. (2012) is 

used to compare and validate the developed analytical model. 

 

2. ANALYTICAL MODEL FOR PPC FRAME ELEMENT 

2.1 Schematic Design of the Member and Constitutive Relationship 

The PPC technique enhances the capacity of concrete members and decreases the yielding and damage (crack) 

in structures, thus providing an alternative to the conventional RC and FPC techniques. However, predicting 

the response of structures with PPC members subjected to the static and dynamic loading involves many 

complexities, which arise from the presence of bonded and unbonded prestressing strands and corresponding 

forces, as well as the interaction between the concrete and the strands. Hence, a particular 3D FE-based 

analytical model for the PPC frame element is presented in this paper. 

The schematic design and the associated degrees of freedom (DOFs) for PPC member considered in this study 

are shown in Figure 1. The PPC frame element is represented by two rigid block zones which represent the 

joint at ends of element; two 3D plastic hinges (assumed to have zero length) reflect the member’s inelastic 

behavior; and an elastic part located between two plastic hinges which reflects elastic behavior (Hejazi et al., 

2016). To simplify the analytical expressions, the perfect bond assumption is considered for the present model. 

Appropriate stress-strain relations for the materials are needed to be considered in order to formulate the 

constitutive law and develop the plasticity and yielding surface model for PPC frame elements. Different 

mathematical expressions have been suggested in the literature to reflect the physical properties of concrete, 

reinforcing steel, and prestressing strands. 
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Fig. 1. Three-dimensional analytical model of PPC frame element  

The stress-strain relation for concrete in compression initially proposed by Medland and Taylor (1971) has been 

used by many researchers recently (Thanoon et al., 2004; Hejazi et al. 2013). The relationship between stress 

(𝑓𝑐) and strain (𝜀𝑐) in concrete is expressed by a unique continuous fourth degree polynomial, applied for both 

the hardening and softening condition as follows (Medland and Taylor 1971) (Figure2a): 

𝑓𝑐 = 0.85𝑓𝑐
′(𝐴𝜀𝑐

4 + 𝐵𝜀𝑐
3 + 𝐶𝜀𝑐

2 + 𝐷𝜀𝑐)                  (1) 

where A,B, C, and D are the constants of the polynomial and 𝑓𝑐
′ represents the ultimate compressive strength of 

concrete. Figures 2b and 2c represent the common idealized constitutive models (elasto-plastic curves) for 

ordinary reinforcing bars and prestressing strands, respectively (Agrawal and Bhattacharya, 2010). Hence, the 

relation between stress and strain for non-prestressed steel (𝑓𝑠𝑡 , 𝜀𝑠𝑡 ) and prestressed strands (𝑓𝑝, 𝜀𝑝
𝑡𝑜𝑡𝑎𝑙) can be 

presented as follows: 

Elastic state; 

𝑓𝑠𝑡 = 𝐸𝑠𝜀𝑠𝑡 ;                      𝑖𝑓       𝜀𝑠𝑡 ≤ 𝜀𝑦𝑠𝑡        (2) 

𝑓𝑝 = 𝐸𝑝𝜀𝑝
𝑡𝑜𝑡𝑎𝑙  ;                 𝑖𝑓       𝜀𝑝

𝑡𝑜𝑡𝑎𝑙 ≤ 𝜀𝑦𝑝        (3) 

Elasto-plastic state; 

𝑓𝑠𝑡 = 𝑓𝑦𝑠𝑡 + 𝐸𝑠𝑡(𝜀𝑠𝑡 − 𝜀𝑦𝑠𝑡) ;          𝑖𝑓        𝜀𝑠𝑡 > 𝜀𝑦𝑠𝑡       (4) 

𝑓𝑝 = 𝑓𝑦𝑝 + 𝐸𝑝𝑡(𝜀𝑝
𝑡𝑜𝑡𝑎𝑙 − 𝜀𝑦𝑝) ;       𝑖𝑓      𝜀𝑝

𝑡𝑜𝑡𝑎𝑙 > 𝜀𝑦𝑝                     (5) 
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where the subscripts ‘st’ and ‘p’ denote the contributions due to reinforcing steel and prestressing steel rows, 

respectively. The terms 𝐸 and 𝐸𝑡 are the modulus of elasticity and the slope of the strain-hardening portion of 

the stress-strain curves, respectively; 𝑓𝑦 and 𝜀𝑦 denote the yield stress and yield strain of steel materials, and 

 𝜀𝑦𝑠𝑡 and  𝜀𝑦𝑝 are equal to 𝑓𝑦𝑠𝑡 𝐸𝑠⁄  and 𝑓𝑦𝑝 𝐸𝑝⁄ , respectively. 

 

2.2. Formulation of the PPC frame element considering combined action of axial force 

and bending moments 

In order to detect damages (yielding points) and determine the location of plastic hinges in inelastic analysis of 

the PPC elements, a computational scheme based on lumped plasticity model is formulated to present two and 

three dimensional yield surfaces. 

 

Fig. 2. Stress-strain curves for materials in a PPC member 

A plastic hinge is formed at a section when the axial force and bending moment state (pu,mu) in the section lie 

either outside or on the yield surface resulting from the plasticity model. To develop a comprehensive plasticity 

model, it is necessary to consider the equilibrium of forces and the compatibility of the strains. Figure 3 presents 

the sectional geometry and possible strain distributions of a PPC member subjected to an applied axial load (P) 

(a) Concrete (Medland and Taylor, 1971) 
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and bending moment (M). Subscripts ‘i’ and ‘j’ vary from 1 to n, and 1 to m, respectively, where n, and m 

denote the total number of reinforcing steel and prestressing strand rows in the PPC section, respectively, 

starting from the bottom to the top of the compression zone (Figure 3a). The total cross-sectional area of non-

prestressed steel in the ith layer is Ast(i) and the total cross-sectional area of prestressing strands in the jth layer is 

Ap(j). As seen in Figure 3b and c, the terms 𝜀𝑡 and 𝜀𝑏 denote the strains at the outermost top (compression) and 

bottom (tensile or least compression) edges, respectively. In Figures 3a and 3b, the curvature χ is formulated 

as: 

𝜒 =
𝜀𝑡 + 𝜀𝑏

𝑑
=

𝜀𝑡

𝑘𝑑
=

𝜀𝑐

𝑦
=

𝜀𝑠𝑡(𝑖)

(𝑘 − 𝛼𝑖)𝑑
=

𝜀𝑝(𝑗)

(𝑘 − 𝛽𝑗)𝑑
                                                                                                   (6) 

where d is the section depth; εc is the strain in concrete at y distance from the neutral axis; εst (i) is the strain in 

the it layer of steel; εp (j)
 is the strain in the jth layer of the tendon; kd is the neutral axis depth; αid is distance of 

the ith steel layer from the top fiber; and βjd is the distance of jth tendon layer from the top fiber. Defining non-

dimensional axial load, bending moment, and curvature as 𝑝 =
𝑃

𝑏𝑑𝑓𝑐
′ , 𝑚 =

𝑀

𝑏𝑑2𝑓𝑐
′ and 𝜙 = 𝜒𝑑, the equilibrium 

equations for the PPC section (Figure 3a) are derived: 

𝑝 = 𝑝𝑐𝑛 + 𝑝𝑠𝑡 + 𝑝𝑝                                                                                                                                                              (7) 

𝑚 = 𝑚𝑐𝑛 + 𝑚𝑠𝑡 + 𝑚𝑝 − (𝑝 × (
𝜀𝑡

 𝜙
− 0.5 ))

        𝜙 = 𝜙𝑠𝑡     𝑖𝑓   βm ≤ αn

         𝜙 = 𝜙𝑝    𝑖𝑓     βm > αn
                                                           (8) 

where the subscripts ‘cn’, ‘st’ and ‘p’ denote the contribution made by the concrete in compression, rows of the 

reinforcing steels, and bonded prestressing strands, respectively. A perfect bonding between the interfaces of 

steel, tendon, and concrete is considered in this research. Tensile strength of concrete is neglected in this study 

and tensile forces due to the external forces in the concrete sections are transferred to the tensile steels and 

strands. In a 2D analysis, the yield surface is mostly presented by ultimate axial force-moment curve (Hejazi et 

al., 2013). Figure 4 shows the axial force-bending moment interaction curve (mu,pu) and its key points for the 

PPC section. Line OB in this figure separates the compression and tension regions of the PPC beam-column 

section. Points ‘A’ and ‘D’ represent the ultimate axial compressive 𝑝0 and tensile 𝑝𝑡  loads, respectively, 

defined using theory of strains compatibility and forces equilibrium acting on the PPC cross-section as: 
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𝑝0 = 1 +
𝜌𝑠𝑡(𝑓𝑦𝑠𝑡 − 𝑓𝑐

′)

𝑓𝑐
′

+
𝜌𝑝(𝑓𝑦𝑝 − 𝑓𝑐

′)

𝑓𝑐
′

−
𝑃𝑒𝑓𝑓𝑐𝑡

𝑏𝑑𝑓𝐶
′                                                                                                      (9) 

𝑝𝑡 =
𝑓𝑦𝑠𝑡𝜌𝑠𝑡

𝑓𝐶
′ +

𝑓𝑦𝑝𝜌𝑝

𝑓𝐶
′                                                                                                                                                        (10) 

where 𝜌𝑠𝑡, 𝜌𝑝, and 𝑃𝑒𝑓𝑓𝑐𝑡  are the total reinforcing steel ratio, prestressing strand ratio, and the total effective 

prestress force, respectively, defined as follows: 

𝜌𝑠𝑡 = ∑
𝐴𝑠𝑡(𝑖)

𝑏𝑑

𝑛

𝑖=1

=
𝐴𝑠𝑡

𝑏𝑑
                                                                                                                                                     (11) 

𝜌𝑝 = ∑
𝐴𝑝(𝑗)

𝑏𝑑

𝑚

𝑗=1

=
𝐴𝑝

𝑏𝑑
                                                                                                                                                        (12) 

𝑃𝑒𝑓𝑓𝑐𝑡 = ∑𝑃𝑒𝑓𝑓𝑐𝑡(𝑗)

𝑚

𝑗=1

                                                                                                                                                      (13) 

where 𝑃𝑒𝑓𝑓𝑐𝑡(𝑗) is the effective prestress force in the jth row of the prestressing strand layer.  

 

Fig. 3. Sectional geometry and possible strain distributions of PPC member 
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Point B represents the balanced condition, and the balanced axial load (𝑝𝑢𝑏) is the applied force when the 

outermost fiber strain of concrete attains its ultimate compression strain (𝜀𝑡 = 𝜀𝑐𝑢) and the last layer of tensile 

non-prestressed or prestressed steel yields. 

 

Fig. 4. Axial force-bending moment curve (mu,pu) 

It should be highlighted that in the balanced condition, the outermost bottom fiber is always in the tension (𝜀𝑏 <

0), as seen in Figure 3b. The computation procedure for finding the balanced axial load (𝑝𝑢𝑏) and the 

corresponding moment (𝑚𝑢𝑏) in a PPC section can be written as (Thanoon et al., 2004): 

pub = (𝑝𝑐𝑛)𝑏 + (𝑝𝑠𝑡)𝑏 + (𝑝𝑝)𝑏                            (14) 

mub = (𝑚𝑐𝑛)𝑏 + (𝑚𝑠𝑡)𝑏 + (𝑚𝑝)𝑏 − (pub × (
𝜀𝑡

∅𝑏

− 0.5))                                                                                  (15) 

Derivation of the balanced condition is obtained by substituting the contributions of concrete in compression, 

reinforcing steel, and prestressed steel strands (tendons) as follows: 
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Accordingly, by integration of the equations (16) and (17) over the compressive area of the PPC section, the 

balanced axial load and the corresponding moment are obtained as follows: 

pub =
1

∅𝑏

(𝐴 
 𝜀𝑡
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5
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4

4
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2

2
) + ∑ 𝜌𝑠𝑡(𝑖)

𝑓𝑠𝑡(𝑖)

𝑓𝑐
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𝑖=1

+ ∑𝜌𝑝(𝑗)

𝑓𝑝(𝑗)

𝑓𝑐
′

𝑚

𝑗=1

             (18) 

mub =
1

(∅𝑏)
2
(𝐴 

 𝜀𝑡
6

6
+ 𝐵 

 𝜀𝑡
5

5
+ 𝐶 

 𝜀𝑡
4

4
+ 𝐷 

 𝜀𝑡
3

3
) +

1

(∅𝑠𝑡)𝑏

∑𝜌𝑠𝑡(𝑖)

𝜀𝑠𝑡(𝑖)𝑓𝑠𝑡(𝑖)

𝑓𝑐
′

𝑛

𝑖=1

+
1

(∅𝑝)𝑏

∑𝜌𝑝(𝑗)

𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙𝑓𝑝(𝑗)

𝑓𝑐
′

  

𝑚

𝑗=1

 

 

−[
1

∅𝑏

(𝐴 
 𝜀𝑡

5

5
+ 𝐵 

 𝜀𝑡
4

4
+ 𝐶 

 𝜀𝑡
3

3
+ 𝐷 

 𝜀𝑡
2

2
) + ∑𝜌𝑠𝑡(𝑖)

𝑓𝑠𝑡(𝑖)

𝑓𝑐
′

𝑛

𝑖=1

+ ∑ 𝜌𝑝(𝑗)

𝑓𝑝(𝑗)

𝑓𝑐
′

𝑚

𝑗=1

] × (
𝜀𝑡

∅𝑏

− 0.5)                         (19) 

 

where (∅𝑠𝑡)𝑏 and (∅𝑝)𝑏 are non-dimensional balanced curvatures (length of ARC over radius of curvature 

when the outermost fiber strain of concrete attains its ultimate compression strain and the last layer of tensile 

steel yields simultaneously, as shown in Figure 3) due to the nth and mth layers of reinforcing steel and 

prestressing strands, respectively, which calculated as: 

∅𝑏 = (∅𝑠𝑡)𝑏 =
𝜀𝑡 + |𝜀𝑦𝑠𝑡|

𝛼𝑛

 ;    𝑖𝑓        βm < αn

∅𝑏 = (∅𝑝)𝑏 =
𝜀𝑡 + |𝜀𝑦𝑝|

𝛽𝑚

 ;    𝑖𝑓βm > αn

                                                                                                             (20) 

In this research, εst(i) and εp(j)
totalare the ultimate strains in the nth and mth layers of reinforced steel and prestressed 

strands, respectively. These values are obtained using the following equations: 

𝜀𝑠𝑡(𝑖) = 𝜀𝑡 − 𝛼𝑖(∅𝑠𝑡)𝑏                                                                                                                                                      (21) 

𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑝(𝑗) + 𝜀𝑝𝑒(𝑗) + 𝜀𝑐𝑒(𝑗)                                     (22) 

where 𝜀𝑝(𝑗), 𝜀𝑝𝑒(𝑗), and 𝜀𝑐𝑒(𝑗) are the strains in tendons due to flexure, effective pre-strain in tendons, and 

effective pre-strain in concrete at the jth layer of prestressing tendon, respectively, as shown in Figure 5. The 

relatively small value of 𝜀𝑐𝑒(𝑗) is neglected in the current study. Therefore, 𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙 can be written as: 

𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙 = (𝜀𝑡 − 𝛽𝑗(∅𝑝)𝑏) +

𝑃𝑒𝑓𝑓𝑐𝑡(𝑗)

𝐴𝑝(𝑗)𝐸𝑝

                                                                                                                            (23) 
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As observed in Figure 4, point C represents the ultimate moment capacity (𝑚0) of the PPC frame element when 

axial force is equal to zero. Since the value of ∅𝑠𝑡 for the ultimate capacity condition is unknown, a trial value 

of ∅𝑠𝑡 = 𝜀𝑡 is assumed, and the axial load, (𝑝𝑐) is calculated using following equations: 

 

(a) PPC cross-section (b) Strain distribution diagram 

Fig. 5. Components of strains in prestressing strand 

𝑝𝑐 =
1

∅st

(𝐴 
 𝜀𝑡

5

5
+ 𝐵 

 𝜀𝑡
4

4
+ 𝐶 

 𝜀𝑡
3

3
+ 𝐷 

 𝜀𝑡
2

2
) + ∑𝜌𝑠𝑡(𝑖)

𝑓𝑠𝑡(𝑖)

𝑓𝑐
′

𝑛

𝑖=1

+ ∑ 𝜌𝑝(𝑗)

𝑓𝑝(𝑗)

𝑓𝑐
′

;

𝑚

𝑗=1

         𝑖𝑓     𝜀𝑏 ≤ 0                    (24) 

𝑝𝑐 =
1

∅st

[
𝐴

5
( 𝜀𝑡

5 −  𝜀𝑏
5) +

𝐵

4
( 𝜀𝑡

4 −  𝜀𝑏
4) +

𝐶

3
( 𝜀𝑡

3 −  𝜀𝑏
3) +

𝐷

2
( 𝜀𝑡

2 −  𝜀𝑏
2)]                                                   

+ ∑𝜌𝑠𝑡(𝑖)

𝑓𝑠𝑡(𝑖)

𝑓𝑐
′

𝑛

𝑖=1

   +  ∑𝜌𝑝(𝑗)

𝑓𝑝(𝑗)

𝑓𝑐
′

𝑚

𝑗=1

 ;                                                       𝑖𝑓  𝜀𝑏 > 0                 (25) 

where 𝜀𝑏 is the strain at bottom outermost fiber of the PPC section and can be calculated as follows: 

𝜀𝑏 = 𝜀𝑡 − ∅st                                         (26) 

The value of 𝑝𝑐 is checked to be less than a specified tolerance (such as 0.005). If the convergence does not 

meet that criterion, a new curvature, (∅𝑠𝑡)𝑛𝑒𝑤 is estimated using Newton-Raphson's method using the following 

equation, and the above-described process is repeated until convergence is achieved.  

(∅𝑠𝑡)𝑛𝑒𝑤 = (∅𝑠𝑡)𝑜𝑙𝑑 −
𝑝𝑐

𝑑𝑝𝑐 𝑑(∅𝑠𝑡)𝑜𝑙𝑑⁄
                                                                                                                       (27) 

where the derivative 𝑑𝑝𝑐 𝑑(∅𝑠𝑡)𝑜𝑙𝑑⁄  is calculated using following equations: 

𝜺𝒔𝒕(𝒊) 

𝜺𝒑(𝒋)
𝒕𝒐𝒕𝒂𝒍 = 𝜺𝒑(𝒋) + 𝜺𝒑𝒆(𝒋) + 𝜺𝒄𝒆(𝒋) 

𝑨𝒑(𝒋) 

𝑨𝒔𝒕(𝒊) 

𝑨𝒔𝒕(𝟏) 

𝜺𝒑 𝜺𝒑𝒆 

𝜺𝒄𝒆 

b 

N.A 

𝜺𝒄𝒖 

d
  

𝑨𝒑(𝟏) 
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𝑑𝑝𝑐

𝑑(∅𝑠𝑡)𝑜𝑙𝑑

= −
1

(∅𝑠𝑡)𝑜𝑙𝑑
2 (𝐴 

 𝜀𝑡
5

5
+ 𝐵 

 𝜀𝑡
4

4
+ 𝐶 

 𝜀𝑡
3

3
+ 𝐷 

 𝜀𝑡
2

2
) + ∑

𝑑𝑝𝑠𝑡(𝑖)

(∅𝑠𝑡)𝑜𝑙𝑑

𝑛

𝑖=0

+ ∑
𝑑𝑝𝑝(𝑗)

𝑑(∅𝑝)𝑏

𝑚

𝑗=0

 ;                                                                                         𝑖𝑓  𝜀𝑏 ≤ 0                      (28) 

𝑑𝑝𝑐

𝑑(∅𝑠𝑡)𝑜𝑙𝑑

= −
1

(∅𝑠𝑡)𝑜𝑙𝑑
2 [

𝐴

5
( 𝜀𝑡

5 −  𝜀𝑏
5) +

𝐵

4
( 𝜀𝑡

4 −  𝜀𝑏
4) +

𝐶

3
( 𝜀𝑡

3 −  𝜀𝑏
3) +

𝐷

2
( 𝜀𝑡

2 −  𝜀𝑏
2)] + ∑

𝑑𝑝𝑠𝑡(𝑖)

𝑑(∅𝑠𝑡)𝑜𝑙𝑑

𝑛

𝑖=0

+ ∑
𝑑𝑝𝑝(𝑗)

𝑑(∅𝑝)𝑏

𝑚

𝑗=0

;                                                                                        𝑖𝑓  𝜀𝑏 > 0                        (29) 

 

while,𝑑𝑝𝑠𝑡(𝑖) 𝑑(∅𝑠𝑡)𝑜𝑙𝑑⁄  and 𝑑𝑝𝑝(𝑗) 𝑑(∅𝑝)𝑏
⁄ are obtained from the following equations: 

𝑑𝑝𝑠𝑡(𝑖)

𝑑(∅𝑠𝑡)𝑜𝑙𝑑

= −𝛼𝑖

𝜌𝑠𝑡(𝑖)𝐸𝑠

𝑓𝑐
′

 ;     𝑖𝑓 |𝜀𝑠𝑡(𝑖)| ≤ 𝜀𝑦𝑠𝑡                                                                                                          (30) 

Elastic state; 

𝑑𝑝𝑝(𝑗)

𝑑(∅𝑝)
𝑏

= −𝛽𝑗

𝜌𝑝(𝑗)𝐸𝑝

𝑓𝑐
′

 ;         𝑖𝑓 |𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙| ≤ 𝜀𝑦𝑝                                                                                                          (31) 

 

𝑑𝑝𝑠𝑡(𝑖)

𝑑(∅𝑠𝑡)𝑜𝑙𝑑

= 0 ;     𝑖𝑓 |𝜀𝑠𝑡(𝑖)| > 𝜀𝑦𝑠𝑡                                                                                                                              (32)  

 Elasto-Plastic state; 

𝑑𝑝𝑝(𝑗)

𝑑(∅𝑝)
𝑏

= 0 ;       𝑖𝑓 |𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙| > 𝜀𝑦𝑝                                                                                                                                (33) 

 

where 𝛼𝑖 is the distance between the ith steel layer and the top edge of the section and 𝛽𝑗is the distance between 

the jth prestressing strand layer and the top edge of the section. 

Eventually, the ultimate moment capacity (𝑚0) of the PPC section in the absence of axial force is obtained from 

the following equations: 

𝑚0 =
1

(∅𝑠𝑡)𝑛𝑒𝑤
2 (𝐴 

 𝜀𝑡
6

6
+ 𝐵 

 𝜀𝑡
5

5
+ 𝐶 

 𝜀𝑡
4

4
+ 𝐷 

 𝜀𝑡
3

3
)              +

1

(∅𝑠𝑡)𝑛𝑒𝑤

∑ 𝜌𝑠𝑡(𝑖)

𝑓𝑠𝑡(𝑖)

𝑓𝑐
′

𝑛

𝑖=1

+
1

(∅𝑝)𝑏

∑𝜌𝑝(𝑗)

𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙𝑓𝑝(𝑗)

𝑓𝑐
′

𝑚

𝑗=1

;                                                                 𝑖𝑓   𝜀𝑏 ≤ 0                    (34) 
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𝑚0 =
1

(∅𝑠𝑡)𝑛𝑒𝑤
2 [

𝐴

6
( 𝜀𝑡

6 −  𝜀𝑏
6) +

𝐵

5
( 𝜀𝑡

5 −  𝜀𝑏
5) +

𝐶

4
( 𝜀𝑡

4 −  𝜀𝑏
4) +

𝐷

3
( 𝜀𝑡

3 −  𝜀𝑏
3)] 

              +
1

(∅𝑠𝑡)𝑛𝑒𝑤

∑𝜌𝑠𝑡(𝑖)

𝑓𝑠𝑡(𝑖)

𝑓𝑐
′

𝑛

𝑖=1

+
1

(∅𝑝)𝑏

∑ 𝜌𝑝(𝑗)

𝜀𝑝(𝑗)
𝑡𝑜𝑡𝑎𝑙𝑓𝑝(𝑗)

𝑓𝑐
′

𝑚

𝑗=1

;                                 𝑖𝑓   𝜀𝑏 > 0                      (35) 

 

In addition to the key points, a set of points in compression and tension failure regions are presented in Figure 

4. The values of ∅𝑠𝑡 and ∅𝑝 are decreased by the specified amounts 0.95(∅𝑠𝑡)𝑏 and 0.95(∅𝑝)𝑏 respectively, to 

get a set of points in the compression failure region; getting a set of points in tension failure region involves 

increasing ∅𝑠𝑡 and ∅𝑝 by the specifiedamounts 1.05(∅𝑠𝑡)𝑏and 1.05(∅𝑝)𝑏, respectively. Subsequently, a third 

degree polynomial that includes four constants is fitted to the points (mu,pu) using the least square method to 

generate the 2D yield surfaces around the major and minor axes of the PPC section, as follows (Thanoon et al., 

2004): 

𝑚𝑧𝑢

𝑚𝑧0

= 𝑎1 + 𝑎2 (
𝑝𝑢

𝑝0

) + 𝑎3 (
𝑝𝑢

𝑝0

)
2

+ 𝑎4 (
𝑝𝑢

𝑝0

)
3

                                                                                                           (36) 

𝑚𝑦𝑢

𝑚𝑦0

= 𝑏1 + 𝑏2 (
𝑝𝑢

𝑝0

) + 𝑏3 (
𝑝𝑢

𝑝0

)
2

+ 𝑏4 (
𝑝𝑢

𝑝0

)
3

                                                                                                            (37) 

where subscripts ‘z’ and ‘y’ denote the major and minor axes of the PPC section, respectively; 𝑚𝑢 is the moment 

corresponding to the axial force ( 𝑝𝑢). 𝑎1, 𝑎2, 𝑎3 ,𝑎4; and 𝑏1, 𝑏2, 𝑏3, 𝑏4 are the polynomial constants about the 

z and y axes, respectively, which are determined by the least square method; 𝑚𝑧𝑜 and 𝑚𝑦0 are the dimensionless 

ultimate moment capacity of the PPC section about major and minor axes, respectively, when the axial force is 

zero. Finally, the approximate 3D yield surface of the PPC section is depicted in Figure 6. The developed 3D 

yield surface is essential to perform 3D nonlinear analysis of PPC structures under static and dynamic loads. In 

this study, 3D yield surface curves have been used to determine the formation of plastic hinges in the PPC 

sections. Therefore, a plastic hinge is formed when the force state in the PPC element exceeds the yield surface 

domain, which is the ratio of the applied force to the ultimate capacity. The force/stress state is considered to 

evaluate the plasticity condition in the element during loading. This force/stress state can be in tension, 

compression, or shear which affect the section’s failure mode.  
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2.2. Development of the constitutive law and the FE model for PPC elements 

The developed stiffness and constitutive law for PPC frame element can be derived as a combination of a two-

noded, 3D inelastic RC frame element and prestressing tendon element, as shown in equation (38). The inelastic 

stiffness matrix for the RC frame element, derived by Thanoon et al. (2004) using bending theory for small 

transverse displacements. The elastic stiffness matrix of the prestressing tendon (KT) is derived by using a two-

noded 3D truss element limited to small strain and rotations, as presented in equation (39). 

 

 

Fig. 6. Three-dimensional yield surface for PPC frame section 

 

Where ET is the elastic modulus (or reduced elastic modulus if material goes into inelastic range) obtained at 

the local constitutive relation; l and AT are the element length and cross sectional area of the prestressed tendon, 

respectively. Eventually, the final elastic stiffness matrix (𝐾𝑃𝑃𝐶)𝑒 of the PPC frame element in the local 

coordinate system is given in the form of symmetric matrix equation (40).  

By considering the lumped plasticity model concepts (Saatcioglu, 1984; Al-Bermani and Kitipornchai, 1990), 

the elasto-plastic stiffness matrix (𝐾𝑃𝑃𝐶)𝑒𝑝 of the PPC beam-column element with plastic hinges at one or both 

ends can be written as: 

(KPPC)ep = (KPPC)e − (KPPC)p                                    (41)  

𝑚𝑧𝑢

𝑚𝑧0

= 𝑎1 + 𝑎2 (
𝑝𝑢

𝑝0

) + 𝑎3 (
𝑝𝑢

𝑝0

)
2

+ 𝑎4 (
𝑝𝑢

𝑝0

)
3

 

𝑚𝑦𝑢

𝑚𝑦0

= 𝑏1 + 𝑏2 (
𝑝𝑢

𝑝0

) + 𝑏3 (
𝑝𝑢

𝑝0

)
2

+ 𝑏4 (
𝑝𝑢

𝑝0

)
3

 

𝒎𝒛 𝒎𝒛𝟎⁄  

𝑚𝑦0 

𝑚𝑧0 

𝒎𝒚 𝒎𝒚𝟎⁄  

𝒑 𝒑𝟎⁄  
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where (𝐾𝑃𝑃𝐶)𝑝 is the plastic stiffness and represents the loss of the elastic stiffness due to the development of 

plastic hinge at one or both ends of beam-column element as presented in equation (42).  

(KPPC)p = (KPPC)e. G. [𝐺𝑇 . (KPPC)e. G]−1𝐺𝑇 . (KPPC)e                               (42) 

where G = [
𝑔𝑖 0
0 𝑔𝑗

], and 𝑔𝑖 and 𝑔𝑗 are the gradient vectors of the yield surface at the both ends of the beam-

column element which are dependent on the number of independent stress resultants (Thanoon et al., 2004). 

The elasto-plastic stiffness matrix of the PPC element is modified after each new occurrence of a plastic hinge. 

A plastic hinge is assumed to have developed when the position of the nodal force vector (force state) in the 

PPC element lies on or outside the yield surface domain (Figure 6), which is the ratio of the applied force to 

the ultimate capacity. In fact, after development of plastic hinges in a PPC structure, the amount of redistributed 

load on the rest of the elements is increased. Consequently, further plastic hinges occurred in the other structural 

members by exceeding the force states (pu, mu) from the yield surface domains of the sections. The above 

process is repeated until formation of a failure mechanism in the structure which leads to termination of the 

analysis (Adeli and Chyou, 1986, 1987; and Adeli and Mabrouk, 1987). Finally, the computational procedure 

for the developed plasticity theory and constitutive law for the PPC beam-column element were codified and 

implemented into a finite element program called ARCS3D in the Fortran language (Hejazi et al., 2014, 2016). 

However, the developed FE algorithm code can be used in any FE structural software for analysis of PPC 

structures. Figure 7 demonstrates the computation procedure for analysis of PPC structures through the 

developed FE computer program. This program is validated in this study, as presented below. 

 

3. VALIDATION, VERIFICATION AND RESULTS DISCUSSION 

In this paper, the aim of conducting experimental tests is to validate the developed analytical model and 

plasticity formulation. For this purpose, three full-scale RC and PCC beams and one PPC frame were tested 

under monotonic bending and lateral pushover loads, respectively, in the structural engineering laboratory of 

the Putra Malaysia University. Moreover, the results of experimental `test for four story frame building tested 

by Wei et al. (2012) implemented for comparison with nonlinear dynamic analysis result using developed finite 

element program in this study as explained in the following sections. 
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Fig. 7. Computation procedure for analysis of PPC structures in FE program, ARCS3D 

 

Define the yield surfaces for PPC sections include: 

 

 

- Find key points  

 

 

 

- Get a set of points (mu,pu) in compression and tension 

regions by varying curvature, Ø.  

- Fit a third degree polynomial to the above points using 

Equations (36) & (37) and find yield function constants. 
 

Modeling includes: 

- Geometry 

- Section properties (concrete, 

reinforcing steel, tendons, and 

effective prestressing force) 

- Support conditions 
 

Input load data and saving equivalent forces: 

- Assign dead/live loads and prestressing forces. 

- Calculate equivalent nodal forces statistically 

using the developed elastic stiffness matrix of 

Equation (39).  

- Store the equivalent nodal forces as initial 

forces for any later loading. 

- Apply earthquake load. 
 

Nonlinear 

equation 

solution 
 

A: Equation (9) 

 B: Equations (18) & (19) 
 C: Equations (34) & (35) 

 D: Equation (10) 

 

Do loop 

for load 
step 

 

Modify stiffness matrix: 

- Calculate plastic stiffness matrix. 

- Calculate elasto-plastic stiffness 

matrix using Equation (40).  
 

Do loop for 

iteration 

Inelastic analysis: 

- For static analysis: solve displacements. 

- For dynamic analysis: find effective 

load vector. 
 

Calculate resisting force 

vector 
 

Generate total residual 

force vector and solve for 

incremental displacements. 

Yes 

 

No 

 

Print the 

required output 
 

No 

 

Next loading step 
 

Check formation of 

plastic hinge 
 

Check 

convergence 
 

Yes 
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3.1. Beam specimens under monotonic bending test 

The experimental study of the three simply supported full-scale RC and PPC beams (B1, B2, and B3) was 

carried out under four-point bending test as shown in Figure 8. The beam specimens were 3 meters long. The 

first beam (B1) was a conventional RC beam (as a control specimen) shown in Figure 9a. Figures 9b and 9c 

depict the PPC specimens (B2) and (B3), which include shear stirrups, longitudinal reinforcing steel, and 

bonded/unbonded prestressed tendons with straight profiles. 

 

Fig. 8. Test setup of beam specimens under four-point bending test 

 

 

Fig. 9. Dimensional and reinforcement details (units: mm) 
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For specimen B2, seven-by-seven wire strands (anchorage size: 7K15) of grade 270 ksi (tensile strength, fpu= 

1860 MPa) with an area of 980 mm2 were placed and bonded at a 100 mm eccentricity from the center of 

specimen B2. For specimen B3, four-by-seven wire strands of grade 270 (anchorage size: 4K15) with an area 

of 560 mm2 were placed and bonded at a 125 mm eccentricity from the center of the beam section. In addition, 

four unbonded grade 270 seven-wire strands were placed at the center of specimen B3.  

British code (BS5328, 1997) was used to design the mix proportion of concrete grade 40. The actual quantities 

required for the mix per bag of cement were 0.4: 1: 1.14: 2.49 for water, cement, and fine and coarse aggregates, 

respectively. A set of three 150 x 150 x 150 mm3 control concrete cubes were cast for each beam to determine 

the concrete compression strength. The mean value of the compression strengths (𝑓𝑐
′) for the concrete cubes 

was determined as 39.2 MPa. Material and geometrical characteristics of the beam specimens are summarized 

in Table 1.   

Table 1: Material and geometrical characteristics of the beam specimens 

 

In Table 2, 𝑃𝑃𝑅  is partial prestressing ratio,  𝜔𝑝/𝜔𝑠𝑡 is proportion of prestressing steel to normal steel and 

𝜔𝑠𝑡 + 𝜔𝑝 is the combined reinforcement index (Karayannis and Chalioris, 2013). These parameters have been 

used to describe the extent of partial prestressing in a rectangular structural member, as presented in Table 2. 

Table 2: Partial prestressing indices for the beam specimens 

 

 

 

 

Model  

No. 

Reinforced concrete Prestressing steel 

𝐟𝐜
′  

(MPa) 

𝐟𝐲,𝐬𝐭 

(MPa) 

𝐝𝐬𝐭𝟏 

(mm) 

𝐝𝐬𝐭𝟐 

(mm) 

𝐀𝐬𝐭𝟏 

(mm2) 

𝐀𝐬𝐭𝟐 

(mm2) 

𝐟𝐩𝐮 

(MPa) 

𝐏𝐞𝐟𝐟𝐞𝐭 

(kN) 

𝐟𝐩𝐛 

(MPa) 

𝐝𝐩𝟏 

(mm) 

𝐝𝐩𝟐 

(mm) 

𝐀𝐩𝟏 

(mm2) 

𝐀𝐩𝟐 

(mm2) 

𝐟𝐩𝐞 𝐟𝐩𝐮⁄  

B1 39.2 460 437.5 62.5 1964 982 - - - - - - - - 

B2 39.2 460 437.5 62.5 1964 982 1860 1092 1450 350 - 980 - 0.6 

B3 39.2 460 437.5 62.5 1964 982 1860 1000 1325 375 250 560 560 0.5 

Model  

No. 

Span length 

(mm) 
𝑳 𝒅𝒑⁄  PPR 𝝎𝒑/𝝎𝒔𝒕 𝝎 + 𝝎𝒑 

B1 2800 - - - 0.22 

B2 2800 8 0.51 1.04 0.51 

B3 2800 7.47 0.52 1.08 0.56 
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3.1.1. Comparison of numerical results and test data 

The load is applied incrementally and experimental tests were terminated once the crack widths at midspan or 

near support zones exceeded the maximum allowable crack width (wk= 0.3mm). Later, the RC and PPC beams 

were modeled in the developed computer model, and a nonlinear static analysis was conducted to predict the 

flexural behavior of the beams up to failure. A comparison between results of experimental testing and results 

of analysis using the developed analytical model was carried out and shown in Figure 10 in terms of the load-

deflection curves. 

As seen in Table 3, the ultimate experimentally applied loads in specimens B1, B2, and B3 are close to the 

obtained load through numerical analysis. A maximum difference of about 13% was observed between the 

experimental results and the analytical model responses; this can occur due to differences between constitutive 

models of materials as well as support conditions since the support slightly displaced during applied pulling 

and pushing load for experimental testing. From Table 3, the mean value of FNum/FExp is equal to 0.93 showing 

a good accuracy between numerical and experimental results. It can be seen from Figure 10, the analytical 

model responses of specimens B1, B2, and B3 show significantly good agreement with the test data from the 

initial elastic stage up to peak load. Hence, the reliability of the developed analytical model and plasticity and 

yielding theory is validated through these results. 

 

Fig. 10. Load-deflection of experimental tests and numerical predictions for specimens B1, B2 and B3 
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As seen in Table 3, comparison of the maximum deflections at midspan and the energy capacities (the area 

under the load-deflection curve) of the simply supported beams shows that the results of the developed 

analytical model for PPC beam-column elements are quite consistent with the experimental test data.  From the 

details of test specimens in Figure 9, the total non-prestressed steel reinforcement ratios, 𝜌𝑠𝑡,𝑡𝑜𝑡𝑎𝑙, for all of the 

beam specimens were the same, and equal to 1.94 percent, and the total prestressed strand ratios, 𝜌𝑝,𝑡𝑜𝑡𝑎𝑙, were 

equal to 0, 0.8, and 0.86 percent for specimens B1, B2, and B3, respectively. However, from experimental tests, 

the ultimate load capacities of PPC specimens B2 and B3 improved by 35.7 and 70 percent compared to the 

RC beam (B1). Also, from experimental data, the degree of flexibility (ductility at mid span) of PPC beams B2 

and B3 increased by 47.3 and 93.1 percent. Similarly, as shown in Figure 10, significant improvements were 

observed in both the ultimate load capacity and degree of flexibility of the PPC beam models (B2 and B3) 

compared to the RC beam model (B1) from the developed numerical models. 

A comparison of the RC and PPC beam responses showed that PPC specimen B3 had larger ultimate deflection, 

higher capacity, and higher energy absorption (area under the load-deflection curves) in comparison with 

specimens B1 and B2 (Figure 10). This occurred due to the location of the prestressed strands and higher value 

of PPR, as well as the higher value of ωp/ωst (Table 2). 

 

Table 3: Comparison of test results and developed analytical model 

Experimental test results Analytical model results 

FNum/F

Exp 
Beams 

No. 

Maximum 

mid-span 

deflection 

 (mm) 

Ultimate 

applied load 

(Fexp) 

 (kN) 

Area under 

curve 

 (kN.m) 

Maximum 

mid-span 

deflection 

 (mm) 

Ultimate 

applied load 

(Fmodel) (kN) 

Area under 

curve 

 (kN.m) 

B1 11.34 

16.7 

21.9 

560.6 3.8 

8.6 

16.53 

13.6 

17.9 

27.7 

486 4.1 

7.24 

13.70 

- 

0.87 

B2 760.5 679.2 0.90 

B3 951.1 955.2 1.00 

Mean - - - - - 0.93 

 

3.1.2. Comparison of results from developed plasticity model with the experimental 

cracking mechanism 

The developed computer model performed the sectional analysis (equations (6)-(35)) for the major (X) and 

minor (Y) axes to produce a set of points based on the developed plasticity formulation. Subsequently, third 
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degree polynomials with four constants were fitted to these points, using the least square method to generate 

mathematical models for the yield surfaces of the section (equations (36) and (37)). The yield function constants 

and sectional properties of beam specimens B1, B2, and B3 are presented in Table 4. It should be noted that a 

plastic hinge is formed in a section when the force state (pu,mu) in the section either lies outside or on the yield 

surface.  

From the proposed plasticity model (equations (36) and (37)), the axial force-bending moment interaction 

curves of the RC and PPC frame elements (beam-column sections) in dimensional format are shown in Figure 

11. It can be seen in this figure that the PPC beams (B2 and B3) have a slightly lower axial compressive load 

capacities (key point A in Figure 4) than the RC beam (B1), which is due to the presence of prestressing force. 

However, as shown in Figures 11a and b, the axial tensile load capacity (point D), the balanced condition (point 

B), and the ultimate moment capacity (point C) of the PPC members (B2 and B3) have significantly improved 

compared with the conventional RC member (B1) due to the eccentricity of the tendons and effect of 

prestressing force. 

 

Table 4: Yield function constants and sectional properties from developed program 

Constant B1 B2 B3 

Coefficient in X-Direction 

a1 1.15764 1.01483 1.02381 

a2 6.84179 3.97924 3.28645 

a3 -4.5157 -0.1572 -1.0958 

a4 -3.3929 -3.9575 -2.3864 

Coefficient in Y-Direction 

b1 1.03068 0.86253 0.99075 

b2 4.32483 2.78763 2.40735 

b3 -6.0451 -1.0556 -2.1414 

b4 0.67164 -2.0120 -0.7542 

Section properties 

P0 (kN) 6830.3 5992.8 6457.5 

Mxo (kN.m) 226.8 317 445.8 

Myo (kN.m) 182.7 244.9 328 

T0 (kN.m) 197.4 197.4 197.4 
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(a) about X-axis         (b) about Y-axis 

Fig. 11. Axial force-bending moment interaction curves in dimensional format 

 

The 2D yield surface curves of beam-column models B1, B2, and B3 are shown in Figure 12. Figure 12a was 

obtained by fitting a third degree polynomial (Equation [36]) to a sample of points (pu,mxu) about the X axis. 

Similarly, Figure 12b was obtained by fitting a third degree polynomial (Equation [37]) to a sample of points 

(pu,myu) about the Y axis.  

 

 

(a) about X-axis                   (b) about Y-axis 

Fig. 12. 2D yield surfaces of the RC and PPC sections 

 

All of the interaction curves of the specimens from numerical analysis were compared with the experimental 

results to validate and verify the developed plasticity approach, as shown in Figure 13. 

From figures 13a-c, the ultimate moment capacities (key point C shown in Figure 4) for B1, B2, and B3 

determined via experimental test are close to the results obtained by the numerical model. A maximum 

difference of 13.3 percent was observed between the experimental result and the mathematical model 
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predictions for specimen B1. Hence, the developed yielding surface model for the RC and PPC beam-column 

elements produced results consistent with the experimental testing results. 

The cracks in the beam specimens during experimental testing are shown in Figures14a, c and e. The initial 

cracks were observed at the mid span and applied vertical load zones of the beams. As demonstrated in these 

figures, by increasing the load, secondary cracks (shear cracks) propagated diagonally near the supports and 

deep vertical cracks widened at the midspan and reached half way up the cross-section’s height due to the high 

bending value. Forces at initial, secondary and failure cracks of the beams are presented in Table 5. 

 

 

(a) B1       (b) B2 

 

(c) B3 

Fig. 13. Comparison of ultimate moment capacities (point C) from mathematical model and test results 

 

It should be noted that small hairy cracks were experimentally observed at the anchorage zones of beams B2 

and B3 due to applying effective prestressing forces (Peffe) of 1092 kN and 1000 kN, respectively (Table 1). 

Subsequently, from the developed plasticity model, first and second plastic hinges (preliminary hinges) were 
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prestressing stage (Figures 14d and f). However, the first plastic hinge occurred at the mid span of RC beam 

model (B1) due to high bending value as shown in Figure 14b. 

As seen in Figure 14and Table 5, for beam B2 which was partially prestressed by seven-by-seven wire strands, 

the initial cracks appeared in the zone of applied vertical loads and at mid-span during the applied force of 

370kN, however, the developed computer model determined the initial plastic hinge (damage) in the same zone 

with force of 396.2 kN, a 6.6% overestimation. Then, by increasing the applied force up to 500kN during 

experimental test, secondary cracks occurred at the location of applied load same as prediction of computer 

model but in the force of 461.3kN which indicates7.8% error. Then, the beam failed in force of 760.5kN in 

experimental test, however, computer model predicted the failure force as 679.2kN with 10% error probably 

due to considering big load step to reduce computation time. Also, the ultimate moment in the midspan was 

computed as 317kN.m with 10% variation in compared to the experimental results which is 354.9 kN. 

Comparison between test results and computer model predictions for the PPC specimen B3 is shown in Figures 

14e and F. Similar to B2, it can be seen that the initial cracks appeared in the zone of applied vertical loads and 

mid span of B3 once incremental force reached about 270 kN, however, the developed computer model 

determined the initial plastic hinge in the same zone with force of 318.6kN with 15.2% over estimation. Then, 

by increasing force up to 951.1 kN during experimental test, the PPC beam failed at the location of applied load 

same as computer model perditions but in the force of 955.2 kN which indicates less than 0.5% error. 

The photo of experimental testing and numerical results of specimen B1 which is conventional reinforced 

concrete beam and used as benchmark in this study are showed in Figure 14 (a) and (b). As it can be seen in 

the figure, the initial cracks in experimental test is appeared in middle of beam however by increase of load, 

the secondary cracks also formed along the beam and then testing is completed by occurring the diagonal failure 

cracks at end of beam and around the support. The same sequence of plastic hinges formation is predicted 

through numerical analysis as showed in Figure 14 (b). The applied forces in experimental testing during 

experience of initial and secondary cracks are measured as 200kN and 265kN respectively. However, these 

forces in the finite element analysis are predicted by 29% and 14% error as 283kN and 310kN respectively 

which the difference is due to implementing constitutive model for Concrete Grade 30 in the computer model, 

though, in this study concrete grade 40 has been used.  
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However, in this section, the main concern is verification of developed damage plasticity model for PPC 

concrete and the conventional concrete beam is used as benchmark to compare the behavior only. 

Eventually, comparison of the computer model and experimental results indicates that the location of plastic 

hinge formations and the corresponding load to each plastic hinge determined by proposed constitutive model 

and plasticity model for PPC element are in a good agreement with the results obtained through experimental 

tests.  

Table 5: Comparison of failure modes between experimental tests and computer model results 

 
Experimental test results Developed computer model Code 

Beams 

No. 

Force at 

first  

crack 

(kN) 

Force at 

secondary 

cracks 

(kN) 

Force at 

failure 

crack 

(kN) 

Ultimate 

moment at  

midspan 

(kN.m) 

Number 

of plastic 

hinges 

Force at 

first initial 

hinge 

(kN) 

Force at 

secondary 

hinges 

(kN) 

Force at 

last 

 hinge 

(kN) 

Ultimate 

moment at  

midspan 

(kN.m) 

B1 200 265 560.6 261.1 5 283.5 310 486 226.8 

B2 370 500 760.5 354.9 7 396.2 461.3 679.2 317 

B3 270 400 951.1 443.9 8 318.6 534.8 955.2 445.8 

 

3.2. Three dimensional PPC framed buildings 

3.2.1. Single-bay one-story PPC frame subjected to pushover load 

In order to verify the developed numerical model and computer model, a single-bay, one-story PPC frame was 

casted and tested experimentally under pushover load using dynamic actuator as the details of frame, sections 

geometry, reinforcements size and arrangements are shown in Figures 15a and b. Also, the finite element 

modeling of the PPC frame using the developed computer model (ARCS3D program) is demonstrated in Figure 

15c. Incremental load with rate of 5.0 mm/min was used in this study. In order to show the effect of PPC 

element clearly, a distributed load of 1.94 kN/m was applied on the top of the frame in both the experimental 

and computer models (FE models). Self-weight of the PPC beam was calculated as 0.96 kN/m. 
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Fig. 14. Comparison of crack propagation with the location and sequence of plastic hinges 
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(a) Crack pattern of beam specimen B1 from experimental test 

(b) Location and sequence of plastic hinge formations in B1from developed computer model 

(c) Crack pattern of beam specimen B2 from experimental test 

 

(d) Location and sequence of plastic hinge formations in B2 from developed computer model 

 

(e) Crack pattern of beam specimen B3 from experimental test 

(f) Location and sequence of plastic hinge formations in B3 from developed computer model 
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Fig. 15. Single-bay one-story PPC frame 

Figure 16 indicates the pushover curves obtained from the experimental test and numerical model. From this 

figure, a slight difference observed between Pushover curves at initial loading stage that would be occurred due 

to differences between constitutive models of materials as well as minor slip at supports during experimental 

testing of PPC frame (as mentioned before, there was a bit frame support sliding during experimental testing). 

From this figure, the maximum lateral load and corresponding displacement are experimentally measured as 

63.5 kN and 60.1 mm, respectively. However, it can be seen that the maximum lateral load and corresponding 

displacement from the numerical model are equal to 62 kN and 66.1 mm, respectively. Moreover, energy 

dissipation capacities (area under the pushover curves) of 3.9 kN.m and 4.3 kN.m were determined from 

experimental and numerical observations, respectively. Hence, the comparisons between numerical model 

predictions and test results demonstrate the reliability of the proposed plasticity model and computer model. 

Crack pattern in the beam, column and beam-column joints of the PPC frame is illustrated in Figures17. From 

Figure 17c, it can be seen that the first was observed at the right beam-column joint in a load of about 28 kN. 

(b) Test setup under pushover load 

(c) FEM modeling  
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Further, second crack appeared at the end of the PPC beam in a load of about 33 kN (Figure 17d). As illustrated 

in Figures 17e and f, further cracks occurred at the left and right columns near the fixed supports when pushover 

force reached 34 kN. Subsequently, the fifth and sixth cracks appeared at the left and right beam-column joints 

of the PPC frame in loads of about 35 kN and 36 kN, respectively. As Figure 17a shows, no crack observed at 

the midspan zone of the beam component due to presence of prestressing force. 

  

 

Fig.16.Pushover load-displacement curves of PPC frame 

The location and sequence of plastic hinge formations in PPC frame determined by computer model is 

demonstrated in Figure 17g. As shown in this figure, the lateral pushover load applied to the node 2 and was 

gradually increased (5 mm/min) until failure of PPC frame model. During FEM analysis, the inelastic seismic 

pushover analysis terminates when the yield points (plastic hinges) lead to instability of the structure. As it can 

be seen from Figure 17g and Table 6, the first and second plastic hinges were formed in the beam-column joints 

near the nodes 4 and 2 at loads about 30.6 kN and 33.2 (load steps 12 and 13), respectively. Later, the third and 

fourth plastic hinges were formed in both fixed supports at nodes 1 and 5 at loads about 35.7 kN and 38.3 kN 

(load steps 38 and 39). Table 6 compares the first fifth occurrences of cracks and plastic hinges in terms of 

forces and corresponding displacements at top of the frame. 

A comparison between experimental and computer model results of the PPC frame subjected to pushover load 

indicates an excellent agreement between crack pattern and location and force of plastic hinges. 
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Table 6: Comparison of failure modes between experiment and FE results for PPC frame  

Damage 

No. 

Experimental results FE results 

Force 

(kN) 

Displacement 

(mm) 

Force 

(kN) 

Displacement 

(mm) 

1st 28 16.1 30.6 14.4 

2nd 33 19.8 33.2 15.6 

3rd 34 20.3 35.7 16.7 

4th 34 20.3 38.3 17.9 

5th 

 
35 20.5 40.8 19.1 

 

  

Fig. 17. Comparison of crack propagation with location and sequence of plastic hinges (damage) in PPC frame 

 

(a) Deformed PPC frame from under pushover 

Pushover 

force 

 

(g) Location and sequence of plastic hinge formations in PPC frame from developed FE program 

(d) 2nd crack, F2= 33 kN and  

 5th crack, F5=35 kN 

 

(c) 1st crack, F1= 28 kN and    

        6th crack,  F6= 36 kN 

 

 

(e) 3rdcrack, F3= 34 kN and  

 

(f) 4thcrack, F4= 34 kN and  

 

(b) Anchorage head and 

it's failure zones 

 

No crack observed at mid 
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3.2.2 Four-story building subjected to earthquake excitation 

In order to verify the developed numerical model associated with the developed constitutive law for PPC frame 

element, a four story frame building which experimentally tested by Wei et al. (2012), as depicted in Figure 

18a, has been considered for conducting dynamic nonlinear analysis under the El-Centro earthquake excitation. 

Figure 18b demonstrates the FE model of the four story frame building (Wei et al., 2012) using the developed 

PPC frame elements in ARCS3D software. The time history analysis was conducted and comparison of 

experimental and FE analysis results in terms of crack patterns and sequence of hinge formations was 

performed. Figure 19a presents the experimental results of crack patterns obtained by Wei et al. (2012) and 

Figure 19b shows the sequence of plastic hinge formations determined by the developed computer model. 

 

Fig. 18. 3D PPC frame building under El-Centro earthquake (Wei et al., 2012) 

 

 

Comparison of the Figures 19a and 19b depict that the result of the analytical model developed in the present 

research is quite consistent with the results of experimental test by Wei et al. (2012). Therefore, the developed 

analytical model and computer model program code are verified and proven reliable. 
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Fig. 19. Comparison of experimental and FE analysis results in terms of crack patterns and sequence of hinge 

formations 

 

4 SEISMIC BEHAVIOR OF 3D PPC BUILDING USING DEVELOPED 

ANALYTICAL MODEL  
 

The developed finite element model is implemented to evaluate seismic response of a multistory RC structure 

with PPC members and assess the functionality and effects of the PPC frame elements on seismic response of 

frame. As Figure 20 illustrates, 3D conventional RC and PPC four-story buildings subjected to nonlinear static 

pushover and dynamic time history analysis were modeled using the developed computer model. The buildings 

comprised 116 structural elements and 60 nodes distributed in a two-by-three bay-framed model. The bay 

(b) Development of plastic hinges in the developed FE computer program (ARCS3D, 2015) 

(a) Development of cracks in experimental test (Wei et al., 2012) 
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widths in the X direction were five, three, and five meters, while the bay widths were three meters long in the 

Z direction. Each story was considered as three meters high. The buildings were analyzed for extreme amounts 

of superimposed dead and live loads of 40 kN/m which were assumed to have a uniform distribution load on 

the beams. The detailed RC column, RC beam, and PPC beam sections are illustrated in Figures 20c to e. 

 

Fig. 20. 3D building models and sectional properties of the RC and PPC beams and columns 

The yield strength and Young’s modulus of normal reinforcing steel were considered as 400 MPa and 200,000 

MPa, respectively. Four-by-seven wire strands of grade 1860 MPa (anchorage size: 4K15 with a diameter of 

50 mm) with Ap of 560 mm2 were placed and bonded at e= 30 mm of the PPC beams, as shown in Figure 20e. 

The yield strength, Young’s modulus, and the equivalent effective prestressing force of tendons were 1860 

MPa, 196,500 MPa, and 400 kN, respectively. Fixed support conditions were considered for the columns in 

contact with the base.  Figures 21a and 21b present the axial force-bending moment and 2D yield surface curves 

of the RC beam and column sections, respectively.  

It should be mentioned that the RC sections had the same yield surface curves in the X and Y directions, due 

to the cross-sections’ square geometry and the symmetrical arrangement of the steel bars. However, the yield 

surface curve in the X direction of the PPC beam section differed from the yield surface curve in the Y direction.  
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The axial force-bending moment interaction curve and the 2D yield surfaces obtained from the developed 

plasticity model for the PPC beam section are presented in Figure 22. 

 

  

(a) Axial force-bending moment interaction curves    (b) 2D yield surfaces 

Fig. 21. Interaction curves and 2D yield surfaces of the RC columns and beams 

 

 

(a) Axial force-bending moment interaction curves   (b) 2D yield surfaces 

Fig. 22. Interaction curve and 2D yield surface in X and Y directions of the PPC beam 

 

4.1 Nonlinear static pushover analysis 

In order to evaluate the effect of PPC element on behavior of frame subjected to the lateral load, two frame are 

modeled using developed computer model program include of conventional RC frame and RC frame with PPC 

member, as shown in Figure 20a and 20b respectively.  
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The pushover monotonic load is applied at nodes ‘B’, ‘C’, and ‘D’ at fourth level of the buildings and after 

conducting pushover analysis, the load-lateral displacement curves of the four-story RC and PPC buildings 

which calculated by the developed computer model for node ‘A’ (Figures 20a and b) are shown in Figure 23. 

As shown in Figure 23, the PPC building exhibited greater stiffness and energy absorption (the area under the 

curves) due to application of PPC elements which consist of bonded tendons and corresponding prestressing 

forces. The energy dissipation capacities of the RC and PPC structures were 134.9 kN.m and 197.2 kN.m, 

respectively which indicating improving the response of the PPC structure by 46.1 percent in comparison to the 

conventional four-story RC building. 

 

Fig. 23. Comparison of pushover curves of the four-story RC and PPC buildings 

 

4.2 Nonlinear dynamic time history analysis 

The seismic analysis of the considered four-storey buildings was conducted by subjecting both model to north-

south (X-direction), up and down (Y-direction) and east-west (Z-direction) components of El-Centro 

earthquake (1940). The time history response of frames for joint ‘A’ which refers to the top node on the fourth 

floor are shown in Figure 24. The displacement time history results, reveal that the normal and prestressing 

steels in the PPC elements contributed substantially to the dynamic responses of the concrete structures because 

of higher capacity and energy absorption and less formation of hinge mechanisms in the frame, as explained in 
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displacements of the four-story RC building subjected to El-Centro earthquake excitations are 29.8 mm (2.16 

seconds) and -27 mm (4.53 seconds), respectively.  

However, the maximum positive and negative horizontal displacements of the four-story PPC building in the 

X direction are 16.5 mm and -11.7 mm at 2.31 and 2.15 seconds, respectively. Therefore, the negative lateral 

displacement of the PPC building in the X direction decreased by 130 percent compared to the RC building. In 

addition, the positive lateral displacement of the node ‘A’ in the PPC building in the X direction decreased by 

80 percent compared to the RC buildings.  

 

 

(a) Horizontal displacement at X direction 

 

 

(b) Horizontal displacement at Z direction 
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(c) Vertical displacement at Y direction 

Fig. 24. Dynamic response of four-story RC and PPC buildings subjected to El-Centro earthquake  

As Figure 24b shows, the maximum positive and negative lateral displacements of the PPC building in the Z 

direction decreased by about 100 percent compared to the RC building. The maximum positive and negative 

horizontal displacements in the four-story RC in the Z direction are 18.6 mm and -18.5 mm and, for the PPC 

buildings, are 9.3 mm and -9.2 mm, respectively. Figure 24c illustrates that the four-story RC building had a 

maximum vertical displacement of about 0.19 mm at 4.37 seconds; however, it was about 0.11 mm at 2.47 

seconds in the PPC building. The results of the time history analysis prove that using the PPC elements in long-

span buildings increase the damping effect.  

The number of plastic hinges formed in the structural components of the four-story PPC building decreased 

dramatically (by 31.5 percent), reached to 280 plastic hinges, whereas 409 plastic hinges formed in the 

conventional RC model during applied seismic excitation. 

Consequently, the number of plastic hinge formations is significantly reduced in the structural components, 

especially in the PPC beam elements of considered frame. 
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in PPC structures under static and dynamic loading is the main challenging issue to conduct nonlinear analysis 

of RC frames with PPC members. Therefore, this paper aimed to develop a new analytical model for PPC frame 

elements subjected to static and dynamic loads. For this purpose, the constitutive law and mathematical model 

for 3 dimensional PPC frame element were formulated. Moreover, to detect damage and to determine the 

location of plastic hinges formation in the element during dynamic loading, the formulation for plasticity and 

the yielding surface mechanism for PPC frame element was derived.  

The developed analytical model and plasticity model were codified and implemented in a special FEM program 

of ARCS3D in order to perform inelastic static and dynamic analyses of PPC structures. In order to validate the 

developed analytical model, plasticity formulation, and the computer model, three conventional RC and PPC 

beam elements and also a PPC frame were casted and tested experimentally under nonlinear static flexural load 

and lateral incremental load respectively. A maximum difference of 13% was observed between ultimate load 

capacities of experimental results and analytical model responses of the beam elements. Further, maximum 

differences of 9.3%, 2.3% and 9.0% were observed between energy dissipation capacities, maximum lateral 

loads and corresponding displacements of experimental results and analytical model responses of frames. These 

may occurred due to differences between constitutive models of materials as well as support condition during 

experimental. An improvement in constitutive model of concrete in numerical analysis and a perfect support 

condition during experimental is suggested for future studies. 

Also, an experimental seismic testing result for 4 story RC frame with PPC members available in the literature 

is considered to verify the seismic analysis results by developed computer model. The comparison of all 

experimental testing data and result of developed analytical model, revealed a good agreement between the 

numerical simulation and the experimental testing results and demonstrated the reliability of the proposed 

model.  

The experimental and numerical result of beams and frames indicated that although implementing of the 

prestressing strands increase the construction costs for PPC members but significant improvements were 

observed in ductility, ultimate failure load, crack control, and energy dissipation capacity compared to the RC 

beam specimen without increasing the member depth. Also, the number of plastic hinges formed in the frame 

with PPC member highly decreased in comparison to the conventional RC building. 
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Ultimately, this study facilitates the analysis and design procedures of multistory PPC and RC buildings and 

increase the computational efficiency and thereby facilitate the improvement of current design methods. 
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