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Abstract

This paper proposes several second-order optimization methods for time-delayed ARX models. Since the time-

delay in the information vector makes the traditional identification algorithms be inefficient, a redundant rule

based method is utilized to transform the model into a redundant model. Then, the nature gradient descent

(NGD) algorithm is developed for such a model. To reduce the computational efforts of the NGD algorithm and

to adaptively update each element in the parameter vector, two modified NGD algorithms are also presented.

The simulation examples verify the effectiveness of the proposed algorithms.
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1. Introduction

System identification plays an important role in control theory and engineering, because a robust controller

or a reliable prediction for future dynamics is usually based on an accurate model of the system [1, 2, 3, 4]. Until

now, the identification algorithms, both applied and theoretical, are mainly dominated by gradient descent (GD)

algorithms, expectation maximization algorithms and least squares (LS) algorithms [5, 6, 7, 8, 9]. Compared

with the GD algorithms, the LS algorithms have quicker convergence rates, but need to compute the inverse

of a matrix. Therefore, the LS algorithms are inefficient for large scale systems, due to their prohibitive

computational costs [10, 11, 12, 13].

GD algorithm is a kind of first-order optimization methods. The GD algorithm updates the parameters

through a direction and a suitable step-length, that does not involve the matrix inversion calculation [14, 15].

However, the GD algorithm has slower convergence rates, that limits its wide use in application. Second-order

optimization methods, which perform second-order derivatives, have quicker convergence rates for their strong

theoretical properties in theory, e.g., the Newton algorithm, the LS algorithm [16, 17, 18]. Unfortunately, the

second-order optimization methods require the matrix inversion calculation, thus have heavy computational

efforts [19, 20, 21, 22]. Thanks to the development of computer science, the better hardware and software make

the second-order optimization methods be feasible in system identification.

Recent existing second-order methods, including the Newton algorithm which involves the Hessian matrix

(HM) calculation, the nature gradient descent (NGD) algorithm which is proposed in this paper, and Shampoo

algorithm which bridges the gap between full matrix preconditioning and the diagonal version, are popular

in deep neural networks [23, 24, 25, 26]. The NGD algorithm is based on the traditional GD algorithm and

Kullback-Leibler divergence (KLD), which can estimate both the point and distribution estimates of the un-

known parameters [25, 27]. The Fisher information matrix (FIM) and KLD used in the NGD algorithm can
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guarantee the point and distribution estimates converge to their true values with the cost of more computational

efforts. As we know, there exist a large amount of unknown parameters in neural network. The FIM or HM for

these kinds of models is then infeasible to compute, store, or invert. This is why the second-order optimization

methods are not widely used in neural network.

To get around this difficulty, one way is to use a simple matrix to approximate the FIM in the NGD

algorithm or the HM in the Newton algorithm. The adaptive gradient descent (Adagrad) algorithm is a special

kind of second-order optimization method, which uses a diagonal matrix to approximate the FIM [28]. Thus

the computational efforts are reduced from O(n3) to O(n). In the contrast, the convergence rates of the

Adagrad algorithm become slower because the related elements are assumed to be independent. Inspired by

the momentum method, we can use the adaptive momentum gradient descent algorithm (Adm) to increase the

convergence rates, with almost the same computational costs [29]. The main contributions of our article include:

(1) Combine the redundant rule and the NGD algorithm for time-delayed ARX models, which can estimate

the parameters and the time-delay in sequence.

(2) Use the Adagrad algorithm to replace the NGD algorithm, which can reduce the computational efforts.

(3) Apply the Adm algorithm for time-delayed ARX models, which has almost the same convergence rates

as the NGD algorithm, and the same computational efforts as the Adagrad algorithm.

The rest of this paper is organized as follows. Section 2 provides the time-delayed ARX model. Section 3

discusses the NGD algorithm. Section 4 describes two modified NGD algorithms. In Section 5, two simulation

examples are proposed to show the effectiveness of the proposed algorithms. Finally, Section 6 concludes this

paper and gives future directions.

2. ARX model with time-delay

The ARX model with time-delay is written by

A(z)y(t) = B(z)u(t− τ) + v(t), (1)

where u(t) and y(t) are the input and output, respectively, v(t) is a Gaussian white noise satisfies v(t) ∼ N(0, σ2).

τ is the unknown time-delay, A(z) and B(z) are polynomials, defined as

A(z) = 1 + a1z
−1 + · · ·+ anz

−n,

B(z) = b1z
−1 + · · ·+ bmz−m,

where z−iu(t) = u(t− i).

To simplify the ARX model, let

χ(t) = [−y(t− 1), · · · ,−y(t− n), u(t− 1− τ), · · · , u(t−m− τ)]T,

ϑ= [a1, · · · , an, b1, · · · , bm]T.

The information vector χ(t) contains unknown time-delay, which makes χ(t) be unavailable in parameter esti-

mation. To deal with this problem, a redundant rule method is introduced [30].

Assume that the upper bound of the delay is M , then the redundant information vector and the sparse

parameter vector are written by

ϕ(t) = [−y(t− 1), · · · ,−y(t− n), u(t− 1), u(t− 2), · · · , u(t− τ − 1), · · · , u(t− τ −m), · · · , u(t−m−M)]T,

α= [a1, · · · , an, α1, α2, · · · , ατ+1, · · · , ατ+m, · · · , αm+M ]T.

Clearly, the information blocks [u(t − 1), u(t − 2), · · · , u(t − τ)] and [u(t − τ −m − 1), · · · , u(t −m −M)] are

redundant, and the parameter blocks [α1, α2, · · · , ατ ] and [ατ+m+1, · · · , αm+M ] are zero vectors.

The time-delayed ARX model can be transformed into a redundant model

y(t) = ϕT(t)α+ v(t). (2)
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Using the SG algorithm to estimate the parameters yields

α(t) = α(t− 1) + r(t)ϕ(t)[y(t)− ϕT(t)α(t)], (3)

where ϕ(t)[y(t) − ϕT(t)α(t)] is the direction termed as negative gradient, and r(t) is the corresponding step-

length.

For the sparse parameter vector, the SG algorithm has the following disadvantages:

(1) When the number of the unknown parameters is large (has little prior knowledge of the upper bound of

the time-delay, thus should assign a large M), the SG algorithm would have slow convergence rates.

(2) Use one step-length for the sparse parameter vector, the smaller elements in the parameter vector will

shake seriously, while the larger ones will have slow convergence rates.

3. Nature gradient descent method

To increase the convergence rates of the SG algorithm, a second-order optimization method termed as NGD

algorithm is proposed in this section.

3.1. Score function and Fisher information matrix

At the sampling instant t, we aim to maximize the likelihood function

p(y(t)|u(t), α) = 1√
2π

exp

[
− (y(t)− ϕT(t)α)2

2σ2

]
.

Define the score function as

s(α) =
∂ log p(y(t)|u(t), α)

∂α
= ∇α log p(y(t)|u(t), α). (4)

Lemma 1: The expected value of score function s(α) with respect to p(y(t)|u(t), α) is equal to zero.

Proof: Taking the expectation on s(α) with respect to p(y(t)|u(t), α) yields

Ep(y(t)|u(t),α)[s(α)] =

∫
p(y(t)|u(t), α)s(α)dα =

∫
p(y(t)|u(t), α)∇α log p(y(t)|u(t), α)dα

=

∫
p(y(t)|u(t), α)∇αp(y(t)|u(t), α)

p(y(t)|u(t), α)
dα

=

∫
∇αp(y(t)|u(t), α)dα = 0.

Therefore, Lemma 1 is obtained. �

The Fisher information matrix is defined as

F = Ep(y(t)|u(t),α)[s(α)s
T(α)] =

∫
p(y(t)|u(t), α)∇α log p(y(t)|u(t), α)∇α log p(y(t)|u(t), α)Tdα. (5)

In application, it is difficult to compute F . We usually use 1
L

L∑
t=1

∇α log p(y(t)|u(t), α)∇α log p(y(t)|u(t), α)T to

approximate F .

3.2. Nature gradient descent algorithm

In the nature gradient descent algorithm, we define the following cost function

J(∇) =
1

2
[y(t)− ϕT(t)α]2 + λ[KL[p(y(t)|u(t), α)|p(y(t)|u(t), α+R)]− c],

where c is a small positive constant and R is the direction.

Remark 1: The above cost function can guarantee both the point estimates and the distribution estimates

to converge to their true values.
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To get a simplified J(∇), the second term in the above equation should be transformed into a concise

structure. Simplify KL[p(y(t)|u(t), α)|p(y(t)|u(t), α+R)] as,

KL[p(y(t)|u(t), α)|p(y(t)|u(t), α+R)] ≈ KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)] +
∂KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]

∂α′ |α′=αR+
1

2
RT

∂2KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]
∂α′2

|α′=αR. (6)

Since

KL[p(y(t)|u(t), α)|p(y(t)|u(t), α) = 0,

Equation (6) is written as

KL[p(y(t)|u(t), α)|p(y(t)|u(t), α+R) ≈
∂KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]

∂α′ |α′=αR

+
1

2
RT

∂2KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]
∂α′2

|α′=αR. (7)

The first term on the right side of the above equation is

∂KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]
∂α′ |α′=αR = ∇α′

∫
p(y(t)|u(t), α) log p(y(t)|u(t), α)

p(y(t)|u(t), α′)
dα′R

=

[
∇α′

∫
p(y(t)|u(t), α) log p(y(t)|u(t), α)dα′ −∇α′

∫
p(y(t)|u(t), α) log p(y(t)|u(t), α′)dα′

]
R

=−∇α′

∫
p(y(t)|u(t), α) log p(y(t)|u(t), α′)dα′R

=−
∫

p(y(t)|u(t), α)∇α′ log p(y(t)|u(t), α′)dα′R

=−
∫

p(y(t)|u(t), α)∇α′p(y(t)|u(t), α′)

p(y(t)|u(t), α′)
dα′R.

When α′ → α, according to Lemma 1, we have

∂KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]
∂α′ |α′=αR = 0. (8)

The second term on the right side of Equation (7) is

1

2
RT

∂2KL[p(y(t)|u(t), α)|p(y(t)|u(t), α)]
∂α′2

|α′=αR = −1

2
RT∇α′

∫
p(y(t)|u(t), α)∇α′p(y(t)|u(t), α′)

p(y(t)|u(t), α′ dα′R

=−1

2
RT

∫
p(y(t)|u(t), α)∇

2
α′p(y(t)|u(t), α′)p(y(t)|u(t), α′)−∇α′p(y(t)|u(t), α′)∇α′p(y(t)|u(t), α′)T

p2(y(t)|u(t), α′)
dα′R

=−1

2
RT

∫
p(y(t)|u(t), α)∇

2
α′p(y(t)|u(t), α′)

p(y(t)|u(t), α′)
dα′R+

1

2
RT

∫
p(y(t)|u(t), α)∇α′p(y(t)|u(t), α′)∇α′p(y(t)|u(t), α′)T

p2(y(t)|u(t), α′)
dα′R.

When α′ → α, we have∫
p(y(t)|u(t), α)∇

2
α′p(y(t)|u(t), α′)

p(y(t)|u(t), α′)
dα′ =

∫
∇2

α′p(y(t)|u(t), α′)dα′ = ∇2
α′

∫
p(y(t)|u(t), α′)dα′ = 0. (9)

According to Equation (5), it gives rise to∫
p(y(t)|u(t), α)∇α′p(y(t)|u(t), α′)∇α′p(y(t)|u(t), α′)T

p2(y(t)|u(t), α′)
dα′

=

∫
p(y(t)|u(t), α)∇α log p(y(t)|u(t), α)∇α log p(y(t)|u(t), α)Tdα = F. (10)

Theorem 1: For the ARX model proposed in (1), the Fisher information matrix is expressed by Equation (5)

and the score function is defined in Equation (4), then the Kullback-Leibler divergence satisfies

KL[p(y(t)|u(t), α)|p(y(t)|u(t), α+R) =
1

2
RFRT.
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(According to Equations (8)-(10), the proof is straightforward.)

The cost function of the NGD algorithm is transformed into

J(α(t− 1) +R) =
1

2
[y(t)− ϕT(t)(α(t− 1) +R)]2 + λ[

1

2
RFRT − c]

≈
1

2
[y(t)− ϕT(t)α(t− 1)]2 −RTϕ(t)[y(t)− ϕT(t)α(t− 1)] + λ[

1

2
RFRT − c].

Performing the derivative of J(α(t− 1) +R) with respect to R and then equating it to zero yield

R =
1

λ
F−1ϕ(t)[y(t)− ϕT(t)α(t− 1)]. (11)

Combing the step-length, the direction at the sampling instant t is normalized as

R(t) = F−1ϕ(t)[y(t)− ϕT(t)α(t− 1)]. (12)

Then, the NGD algorithm for the time-delayed ARX model is summarized as follows

α(t) = α(t− 1) + γR(t), γ = 0.001,

R(t) = F−1(t)ϕ(t)[y(t)− ϕT(t)α(t− 1)],

F (t) =
1

t

t∑
i=1

∇α log p(y(i)|u(i), α)∇α log p(y(i)|u(i), α)T.

The NGD algorithm starts with the following steps:

Nature gradient descent algorithm

Initialize α(0) and threshold ϱ

for t=1:L

Collect u(t), y(t)

Compute ϕ(t)[y(t)− ϕT(t)α(t− 1)]

Compute F (t)

Compute R(t)

Update α(t)

Compare each element in α(t) with ϱ

Get τ(t)
end

until convergence

Lemma 2 [25]: The negative expected Hessian of log likelihood is equal to the Fisher Information Matrix

F .

Remark 2: Lemma 2 demonstrates that the NGD algorithm can be regarded as a modified Newton algo-

rithm. Like the Newton algorithm, the computational efforts of the NGD algorithm are heavy because of the

matrix inversion calculation.

Remark 3: Although the NGD algorithm can estimate the parameters, but some small elements in the

parameter vector may have poor estimation accuracy, because all the elements are not adaptively/separately

estimated.

4. Modified NGD algorithms

The NGD algorithm is a second-order optimization method which has quicker convergence rates but heavy

computational efforts. As we know, F is a full matrix, the major computational cost of the NGD algorithm is

caused by the matrix inversion calculation. If F is a diagonal matrix, the computational efforts will be decreased

intensively. In this section, two modified NGD/second-order algorithms are provided which can overcome the

shortcomings of the traditional NGD algorithm.
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4.1. Adaptive gradient descent algorithm

Rewrite the parameter vector as

α = [a1, · · · , an, α1, α2, · · · , ατ+1, · · · , ατ+m, · · · , αm+M ]T.

Some elements in the parameter vector are equal to zero, then the NGD algorithm will be inefficient for those

small elements. Naturally, a question arises: can each element be updated adaptively.

Assume that the parameter vector estimate at the sampling instant t− 1 is

α(t−1) = [a1(t−1), · · · , an(t−1), α1(t−1), α2(t−1), · · · , ατ+1(t−1), · · · , ατ+m(t−1), · · · , ατ+M (t−1)]T.

Then, the element a1 at the sampling instant t can be updated by the following cost function

J(a1, ᾱa1(t−1)(t− 1)) =
1

2
[y(t)− a1y(t− 1)− ϕ̄T

y(t−1(t− 1)ᾱa1(t−1)]
2,

where

ᾱa1(t−1)(t− 1) = [a2(t− 1), · · · , an(t− 1), α1(t− 1), α2(t− 1), · · · , ατ+1(t− 1), · · · , ατ+m(t− 1), · · · , ατ+M (t− 1)]T,

ϕ̄T

y(t−1(t− 1) = [−y(t− 2), · · · ,−y(t− n), u(t− 1), u(t− 2), · · · , u(t− τ − 1), · · · , u(t− τ −m), · · · , u(t−m−M)]T.

Then, the adaptive gradient descent (Adagrad) algorithm for the ARX model is written by

ai(t) = ai(t− 1) +
γy(t− i)√
si(t) + c

[y(t)− ai(t− 1)y(t− i)− ϕ̄T

y(t−i)(t− 1)ᾱai(t−1)], i = 1, · · · , n, γ = 0.001,

(13)

αj(t) = αj(t− 1) +
γu(t− j)√
sn+j(t) + c

[y(t)− αj(t− 1)u(t− j)− ϕ̄T

u(t−j)(t− 1)ᾱαj(t−1)], j = 1, · · · ,m+M, (14)

si(t) = βsi(t− 1) + (1− β){y(t− i)[y(t)− ai(t− 1)y(t− i)− ϕ̄T

y(t−i)(t− 1)ᾱai(t−1)]}2, β = 0.999, si(0) = 0,

(15)

sn+j(t) = βsn+j(t− 1) + (1− β){u(t− j)[y(t)− αj(t− 1)u(t− j)− ϕ̄T

u(t−j)(t− 1)ᾱαj(t−1)]}2, sn+j(0) = 0,

(16)

where c is a small constant.

Remark 4: In the Adagrad algorithm, each element in the parameter vector is updated adaptively, that

means each element has its own direction and step-length. Thus, the disadvantages of difference of parameter

magnitude can be overcome by using the Adagrad algorithm.

4.2. The relationship between the Adagrad algorithm and the NGD algorithm

Define

S =


√
s1(t) + c 0 · · · 0

0
√
s2(t) + c · · · 0

...
...

. . .
...

0 0 · · ·
√
sn+m+M (t) + c

 . (17)

According to Equations (13)-(16), the Adagrad algorithm is equivalent to

α(t) = α(t− 1) + γS−1R(t),

R(t) = ϕ(t)[y(t)− ϕT(t)α(t− 1)].

Clearly, the Adagrad algorithm has the same structure as the NGD algorithm. However, the Adagrad algorithm

differs from the NGD algorithm in two ways:

(1) The matrix S in the Adagrad is a diagonal matrix, thus the Adagrad algorithm has less computational

efforts. On the other hand, the matrix F in the NGD algorithm is a full matrix, which considers the relationships

of each element, thus the NGD algorithm has quicker convergence rates than the Adagrad algorithm.

(2) The step-lengths of the Adagrad algorithm become smaller and smaller with the increased number of t.

Therefore, the estimation variances of the Adagrad algorithm are smaller than those of the NGD algorithm.
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4.3. The adaptive momentum gradient descent algorithm

The Adagrad algorithm can be regarded as a modified NGD algorithm. It has less computational efforts

but slower convergence rates when compared with the NGD algorithm. To increase the convergence rates of the

Adagrad algorithm, an adaptive momentum gradient descent (Adm) algorithm is proposed in this subsection.

The basic idea of the momentum method is to combine the previous direction with the current one, and then

to update the parameters using this combined direction [31]. By using the momentum method, the convergence

rates can be increased.

In the adaptive momentum gradient descent (Adm) algorithm, the direction of each element is written as

Rai(t)(t) = ηRai(t−1)(t− 1) + (1− η)y(t− i)[y(t)− ai(t− 1)y(t− i)− ϕ̄T

y(t−i)(t− 1)ᾱai(t−1)], η = 0.9,

and then the parameter ai(t) can be updated by

ai(t) = ai(t− 1) +
γ√

si(t) + c
Rai(t)(t),

where γ is usually assigned as 0.001.

The Adm algorithm starts with the following steps:

Adaptive momentum gradient descent algorithm

Initialize α(0) si(0), di(0), i = 1, 2, · · · ,M + n+m, and threshold ϱ

for t=1:L

Collect u(t), y(t)

Compute ϕ(t)[y(t)− ϕT(t)α(t− 1)]

Compute Ri(t) and si(t)

Compute a1(t), · · · , an(t) and α1(t), · · · , αm+M (t)

Form α(t)

Compare element in α(t) with ϱ

Get τ(t)
end

until convergence

Remark 5: The Adm method uses the momentum technique, thus it has quicker convergence rates than

the Adagrad algorithm.

Remark 6: Both the Adm algorithm and Adagrad algorithm are second-order optimization methods,

thus they have quicker convergence rates than the first-order optimization methods, such as the SG algorithm

and gradient iterative algorithm. In addition, these two second-order optimization methods avoid the matrix

inversion calculation, thus they have less computational efforts than the NGD algorithm and Newton algorithm.

The properties of the SG, NGD, Adagrad and Adm algorithms are summarized in Table 1.

Table 1: Properties of the four algorithms

Algorithms SG NGD Adagrad Adm

Order First-order Second-order Second-order Second-order

Computational efforts The smallest The heaviest Smaller Heavier

Convergence rates The slowest The fastest Slower Faster

Matrix inversion None Require None None

Adaptively Unable Unable Enable Enable

(Smaller: smaller than Adm but heavier than SG; Heavier: smaller than NGD but heavier than Adagrad;

Faster: faster than Adagrad but slower than NGD; Slower: slower than Adm but faster than SG; Adaptively:

can estimate each element adaptively.)
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5. Examples

5.1. Example 1–time-delayed ARX model

Consider an ARX model with time-delay

A(z)y(t) =B(z)u(t− τ) + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 = 1− 0.2z−1 + 0.2z−2 − 0.3z−3,

B(z) = b1z
−1 + b2z

−2 = 0.5z−1 + 0.17z−2,

the input signal u(t) satisfies u(t) ∼ N(0, 1), the noise {v(t)} is taken as a white noise sequence with zero mean

and variance σ2 = 0.102. Assume the time-delay τ = 3 and the upper bound of τ is M = 6.

The redundant model is written by

y(t) = ϕT(t)α+ v(t),

ϕ(t) = [−y(t− 1),−y(t− 2),−y(t− 3), u(t− 1), u(t− 2), u(t− 3), u(t− 4), u(t− 5), u(t− 6), u(t− 7), u(t− 8)]T,

α= [a1, a2, a3, α1, α2, α3, α4, α5, α6, α7, α8]
T = [0.2,−0.2, 0.3, 0, 0, 0, 0.5, 0.17, 0, 0, 0]T.

Apply the SG, NGD, Adagrad, Adm algorithms for this redundant model, the parameter estimates and their

estimations errors δ = ∥α(t)− α∥/∥α∥ are shown in Table 2 and Figure 1.

From Table 2 and Figure 1, the following findings can be obtained.

(1) The NGD algorithm has the fastest convergence rates among these four algorithms, but has the largest

estimation variances.

(2) Compared with the Adagrad algorithm, the Adm algorithm is more effective for its faster convergence

rates and smaller estimation variances.

(3) The SG algorithm may converge to a suboptimal point because the step-length approaches to zero with

the increased number of t.

Assign different thresholds for these four algorithms. If the absolute value of the estimate is smaller than

the threshold, we can regard it as a redundant element and pick it out from the parameter vector, then the

time-delay can be obtained. This is illustrated in Table 3.

Since the redundant elements are α1, α2, α3, α6, α7, α8, Table 3 shows that Adm is the most robust

algorithm, and follows the NGD algorithm, then is the Adagrad algoritm, finally is the SG algorithm. Table 3

also demonstrates that the SG algorithm cannot pick out all the redundant elements whatever the thresholds

are because of its poor estimation accuracy.

5.2. Example 2–ARX model with different orders of magnitude

In this example, an element in the parameter vector is much smaller than the others. The ARX model with

different orders of magnitude is written by

A(z)y(t) =B(z)u(t) + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 = 1− 0.2z−1 + 0.2z−2 − 0.3z−3,

B(z) = b1z
−1 + b2z

−2 = 0.5z−1 + 0.0017z−2,

the input signal u(t) satisfies u(t) ∼ N(0, 1), the noise {v(t)} is taken as a white noise sequence with zero mean

and variance σ2 = 0.052.

Using the SG, NGD, Adagrad and Adm algorithms for the ARX model, the parameter estimates and the

estimation errors are shown in Figure 2 and Table 4. Figure 2 shows that the second-order optimization methods

(NGD, Adagrad, Adm) are more effective than the first-order optimization method (SG). Table 4 demonstrates

that the Adagrad and Adm algorithms can get more accurate estimates of the smallest element b2 than those

of the NGD algorithm, that is because the Adagrad and Adm algorithms estimate the parameter elements

adaptively.
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6. Conclusions

Several second-order optimization methods are proposed for ARX models with time-delay. By using the

redundant rule, the ARX model can be turned into a redundant model whose parameter vector is sparse. Then

the NGD algorithm can estimate the parameters and the unknown time-delay quickly. Since a matrix inversion

is involved in the NGD algorithm, two modified NGD algorithms: Adagrad and Adm algorithms are provided,

where these two modified NGD algorithms do not require matrix inversion, and can estimate the parameter

elements adaptively.

The second-order optimization methods, especially the two modified NGD algorithms, are more efficient

for large-scale systems, and can be further extended to structure identification. However, there remain some

problems need to be further discussed, e.g., the convergence properties of the second-order optimization methods,

and the selection of an optimal threshold.
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Figure 1: The parameter estimation errors
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Figure 2: The parameter estimation errors
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Table 2: The parameter estimates and their estimation errors

Algorithm t a1 a2 a3 α1 α2 α3 α4 α5 α6 α7 α8 δ (%)

1000 0.050 0.019 0.036 0.078 0.105 0.056 0.197 0.144 0.041 0.097 0.128 78.985

2000 0.058 0.005 0.036 0.069 0.080 0.047 0.270 0.171 0.016 0.091 0.126 70.467

SG 4000 0.065 -0.010 0.034 0.043 0.052 0.030 0.361 0.201 -0.010 0.085 0.114 61.741

6000 0.069 -0.020 0.034 0.024 0.032 0.022 0.417 0.217 -0.026 0.082 0.106 57.830

8000 0.070 -0.025 0.038 0.019 0.024 0.014 0.450 0.225 -0.036 0.083 0.104 56.213

10000 0.070 -0.028 0.040 0.012 0.017 0.010 0.470 0.230 -0.040 0.082 0.098 55.247

1000 0.228 -0.383 0.332 0.005 -0.023 -0.050 0.506 0.215 0.058 0.031 -0.009 31.647

2000 0.237 -0.327 0.346 0.011 -0.016 -0.034 0.496 0.193 0.035 0.010 -0.014 22.649

NGD 4000 0.243 -0.243 0.314 0.010 -0.009 -0.021 0.496 0.169 0.013 -0.002 -0.007 10.320

6000 0.234 -0.247 0.310 0.000 -0.002 -0.003 0.503 0.157 0.010 0.007 -0.002 9.205

8000 0.189 -0.193 0.295 0.003 0.008 -0.008 0.501 0.173 -0.010 -0.002 0.012 3.601

10000 0.225 -0.209 0.338 -0.002 0.008 -0.001 0.502 0.147 -0.003 -0.017 -0.017 8.613

1000 0.254 -0.113 0.187 0.016 0.016 0.008 0.465 0.138 -0.074 0.035 0.040 27.683

2000 0.238 -0.126 0.220 0.012 -0.002 0.004 0.505 0.148 -0.060 0.033 0.031 20.954

Adagrad 4000 0.222 -0.147 0.210 0.001 -0.010 -0.005 0.501 0.165 -0.026 0.021 0.021 17.050

6000 0.198 -0.191 0.239 -0.004 -0.005 -0.000 0.506 0.171 -0.007 0.021 0.024 10.513

8000 0.174 -0.193 0.250 -0.002 0.008 -0.007 0.505 0.180 0.001 0.025 0.020 10.024

10000 0.160 -0.198 0.248 -0.002 0.004 0.005 0.507 0.189 0.014 0.025 0.019 11.455

1000 0.302 -0.204 0.198 0.014 0.008 0.002 0.469 0.125 -0.038 0.060 0.034 25.996

2000 0.265 -0.203 0.239 0.011 -0.001 0.003 0.505 0.129 -0.032 0.046 0.018 17.205

Adm 4000 0.259 -0.198 0.231 0.003 -0.010 -0.006 0.499 0.144 -0.009 0.021 0.007 14.653

6000 0.243 -0.222 0.266 -0.003 -0.003 0.001 0.505 0.151 0.001 0.017 0.013 9.804

8000 0.214 -0.211 0.274 -0.002 0.006 -0.007 0.503 0.158 -0.002 0.018 0.007 5.974

10000 0.211 -0.207 0.278 -0.002 0.001 0.003 0.503 0.165 0.005 0.013 0.005 4.533

True Values 0.200 -0.200 0.300 0.000 0.000 0.000 0.500 0.170 0.000 0.000 0.000

Table 3: The picked out elements

Thresholds SG NGD Adagrad Adm

0.01 α1,α2,α3,α6 α1,α2,α3 α1,α2,α3,α6,α8

0.02 α1,α2,α3 α1,α2,α3,α6,α7,α8 α1,α2,α3,α6,α8 α1,α2,α3,α6,α7,α8

0.05 a2,a3,α1,α2,α3,α6 α1,α2,α3,α6,α7,α8 α1,α2,α3,α6,α7,α8 α1,α2,α3,α6,α7,α8

0.1 a1,a2,a3,α1,α2,α3,α6,α7,α8 α1,α2,α3,α6,α7,α8 α1,α2,α3,α6,α7,α8 α1,α2,α3,α6,α7,α8
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Table 4: The parameter estimates and their estimation errors

Algorithm t a1 a2 a3 b1 b2 δ (%)

1000 0.06611 -0.00593 0.06147 0.49106 0.13085 55.47355

2000 0.06468 -0.00724 0.06555 0.49323 0.12856 54.89612

SG 4000 0.06342 -0.00861 0.06922 0.49471 0.12669 54.37764

6000 0.06261 -0.00940 0.07121 0.49518 0.12539 54.08828

8000 0.06216 -0.00999 0.07268 0.49581 0.12483 53.88581

10000 0.06178 -0.01039 0.07377 0.49609 0.12426 53.73455

1000 0.39671 -0.35488 0.37405 0.48558 -0.09083 42.79920

2000 0.28695 -0.25658 0.33919 0.49024 -0.04181 18.44302

NGD 4000 0.25195 -0.21374 0.30653 0.50159 -0.02894 9.60017

6000 0.21785 -0.20629 0.30949 0.49634 -0.00930 3.72464

8000 0.17339 -0.20545 0.30430 0.49832 -0.02594 5.66245

10000 0.20751 -0.20135 0.30291 0.49591 -0.02159 2.49801

1000 0.06434 -0.09751 0.23529 0.49438 0.07043 30.01942

2000 0.08021 -0.15685 0.28030 0.51088 0.06572 22.26256

Adagrad 4000 0.12865 -0.18172 0.29214 0.50373 0.03611 12.61632

6000 0.15473 -0.18947 0.29987 0.50015 0.02164 7.80394

8000 0.17055 -0.19729 0.29891 0.50073 0.01086 5.44148

10000 0.17866 -0.19273 0.29885 0.50073 0.00416 3.18050

1000 0.06435 -0.06137 0.24481 0.46558 0.06805 33.18500

2000 0.08033 -0.15119 0.27775 0.50818 0.06637 22.59691

Adm 4000 0.14884 -0.18579 0.29286 0.50431 0.01464 8.53083

6000 0.18094 -0.19539 0.30323 0.49995 0.00334 3.07739

8000 0.18665 -0.20128 0.30177 0.50164 0.01100 2.54650

10000 0.19014 -0.19519 0.30073 0.49964 0.00239 1.64781

True Values 0.20000 -0.20000 0.30000 0.50000 0.00170
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