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Abstract—The aim of this work is to develop a deep learning
model that uses spatial correlation to enable turning turn off a
subset of sensors while predicting their readings. This consider-
ably saves the energy that would be consumed by those sensors
both for sensing and communications (reporting the reading to the
central station), which prolongs sensors’ lifetime and opens sky
for a plethora of Internet of Things (IoT) applications. Subject
of this research, event-based sensing is more challenging than
periodic sensing and is uncovered in the literature. We explore
advanced learning approaches including Graph Convolutional
Network (GCN) and Generative Adversarial Networks (GANs)
and comb them in a novel way to derive a solution that uses
both spatial correlation and the readings of the active sensors to
accurately generate the missing readings from inactive sensors.
The proposed solution is holistic and does not rely on any duty-
cycling scheduling policy. A generic random pattern is used in
this paper in which every sensor is duty-cycled randomly. The
structure of the network is plugged into the GCN through a graph
derived using the sensing range, as well as the euclidean distance
between the sensors that determines the wights on the edges.
Moreover, the accuracy of the GCN is enhanced by optmizing the
weights of its deep neural network with a GANs and a game theory
based model, which adversarially trains the GCN’s generator
by estimating the generator’s performance and calculating the
Wasserstein distance between the real and the generated data.
The proposed solution is evaluated in comparison with the most
relevant state-of-the-art approaches in terms of accuracy, energy
consumption. The results show that the proposed solution provides
high performance and is clearly superior to all the compared
solutions in terms of reducing energy consumption and improving
accuracy.

Keywords—IoT, wireless sensor network, Deep Neural net-
works, adversarial training, graph convolutional networks, sensor
energy saving.

I. INTRODUCTION

Preserving batteries of low-power devices, such as wireless
sensors, is a key solution for achieving sustainable Internet
of Things (IoT). This will not only enable an abundance of
applications that will benefit our society and economy but
will significantly contribute towards green computing by re-
ducing battery disposal and preserving the environment. How-
ever, today’s real-world applications face a big challenge in
achieving long term deployment without battery replacement.
Many research efforts have been devoted to the design of

power-management policies and protocols, e.g., duty-cycling
scheduling [1], medium access protocols [2], routing protocols
[3], optimal relay node placement [4], etc. These solutions
contribute in prolonging batteries life-time but remain insuf-
ficient and are reaching their limits. Other trends focused on
the energy harvesting from the environmental resources such
as electromagnetic waves (wireless charging), solar, wind, etc.,
and proposed solutions to design appropriate hardware [5], as
well as adaptive models and protocols, e.g., [6], [7]. All this
helps prolonging the lifetime but remains insufficient given
the instability and variability of the ambient resources. This
problem is addressed herein by taking advantage of spatial
correlation between sensors and exploring advanced machine
learning methods to accurately estimate sensorial data readings
when sensors are turned off. This way, the sensors can be kept
off as long as possible while using the model to generate the
missing data.

We focus on event-based applications that were uncovered in
the literature from this perspective. Although optimal sensing
coverage is often required for various applications, continuous
monitoring of the entire field is not always needed for detecting
events that occur during short periods and can be detected by
more than one sensor. As the position of a sensor impacts
its reading, several sensors may detect the same event when
nodes’ sensing fields overlap. Therefore, sensors can mutually
cover missing detections of one another if they are correlated to
the event. For example, in a commercial building application
motion sensors in certain areas reporting the arrival of em-
ployees are generally sequentially related. By creating a model
capable of learning data correlation, the sensors’ values will
be predicted and the energy that those sensors would consume
for sensing and communications (transmission of their reading
to central stations) will be saved. Two approaches may be
considered to reach this target, 1) turning ”off” all the sensors
simultaneously then exploiting temporal correlations to predict
future values from their last readings, 2) turning part of the
network ”on” and using spatial correlations to deduce the
values of the sleeping sensors. We already explored the first
approach in [8] and used a sequence model based on LSTM



(Long Short-term Memory) that learns temporal correlations
along with a reinforcement learning model that decides when
to activate/deactivate the sensors. Despite the promising results,
this approach requires significant data and training time. The
second approach is explored in this paper. This approach has
already been used in the literature and some machine learning
based approaches have been proposed. However, most of these
solutions reduce energy consumption only for a part of the
network while leaving it high for some sensors. They may
save energy of less-informative sensors while putting all the
network’s operation burden on the most indicative ones. For
example, Silvestri et al. [9] update the subset of active nodes
only when their data do not describe the global network. They
neither consider the current state of the nodes’ batteries, nor
balance the load between the sensors. We target the entire
network with a dynamic approach that balances the load. Our
approach operates both on sensor and data collector levels.

The following part of the paper is organized as follows.
Sec.II presents the related work. Assumptions and problem
formulation are given in Sec.III. The proposed solution is
described in details in Sec.IV, including the GCN and the
GAN models. Sec.V reports the experimental study and results.
Finally Sec.VI draws conclusions and perspectives.

II. RELATED WORK

Duty cycling is a technique[1] that schedules the nodes or
their radios to continuously alternate between active and sleep
modes (or on/off modes) while reducing the active periods
to preserve energy. This technique is essential for low-power
IoT devices but introduces latency in communication and
may affect real-time applications. Furthermore, it is reaching
its performance limit for applications with stringent energy
constraints, which yields the need for innovative approaches
[10]. One promising solution is to substitute the usage of
radio and sensing modules by predicting sensory data using
advanced machine learning methods. Dias et al. [11] showed
that forecasting sensorial data can reduce transmissions without
impacting the quality of the data. There are two classes of
prediction schemes [11]; single prediction vs. dual prediction.
In the first category, a central device (a data collector) holds the
prediction model and generates sensorial values. In the second
category, the central node (a cluster-head or the gateway) and
sensors collaborate to make the prediction. The main drawback
of the second category is the limited capacity of sensor nodes
that may fail to hold the computation/memory resources greedy
prediction models. The energy consumed in calculation may
also exceed that saved through the model. Moreover, dual-
based prediction tends to neglect the sensing energy that may be
more important than transmission energy in some application
scenarios. This motivates for the single prediction approach that
is considered in this paper.

Silvestri et al. [9] explored probabilistic models and proposed
an approach to infer sensor measurements using a Gaussian
distribution. The approach is a heuristic that selects a set of

monitoring sensors to remain awake. The authors suggested to
periodically detect changes in the environment and run a new
training phase if required to ensure that the density function
remains inline with the data. Such Gaussian distributions based
models are suitable for continuous and periodic monitoring.
However, event occurrence does not always follow statistical
probability distributions, which calls for novel solutions based
on advanced knowledge of the domain [11]. Emekci et al. [12]
proposed a linear transformation that enables active sensors
to predict data of sleeping sensors. They combined temporal,
spatial, and spatiotemporal correlations among sensor readings.
However, their solution is based on static scheduling of nodes
activity– similarly to all previous solutions. This may have
dramatic consequence on the network’s lifetime and long-term
data precision. Our solution overcomes this shortcoming by dy-
namically selecting the working nodes using a generic random
policy [13] that balances the network’s load and distributes it
amongst all the sensors.

Similar to our approach, Yoon et al., [14] explored the use of
GANs for missing data imputation at the data collector level,
but it does not learn from structural information included in
the data. Seller and Sornin [15] considered data representation
as a graph structure and proposed a method to automatically
generate the graph by measuring the distance between data
features. However, the generated graphs do not reflect the real
structure of sensor networks, which are naturally organized as
graphs using the sensor’s communication and sensing ranges.
Our work exploits nodes sensing coverage to build the graph
structure.

III. ASSUMPTION, FORMULATION AND SOLUTION
OVERVIEW

We consider a general scenario that consists of a network of
sensor devices that monitor an area of interest and report their
reading to a centralized data collector. The latter is generally
implemented in a more powerful device such as a base-station
or a cloud central station. We propose the system operates in
epochs and in each one only a part of the network monitors the
field while the remaing sensors go to sleep mode to save energy.
All the sensors are supposed to have the same sensing ranges
and a distributed random sensor scheduler to be used, such
as LEACH [13], to dynamically schedule the sensors between
active and sleeping. Let X ∈ {0, 1, ∗}N denote the vector
representing the sensors’ readings, where N is the number
of sensors. The values 1 and 0 correspond to the presence
and absence of an event, and ∗ represents a missing value
due to the sensor being in the sleep mode. Let us denote
by, A, the adjacency matrix representing the mutual coverage
between sensors. A is built during the preprocessing phase that
will be explained later. To express the missing data in X , we
define a binary mask vector, M ∈ {0, 1}N , where mi indicates
the presence or absence of a reading in xi, i.e., Mi = 0 if
xi = ∗. The generator (described in Sec.IV-B) uses X , M ,
and the spatial relationships between the sensors reflected by



A to complete the missing values in X and produce the vector
Ŷ ∈ {0, 1}N for the generated sensor readings that results from
the learning of a mapping function of A, M , X . Deep learning
methods are used for learning this mapping as described in the
next section. The final output Y ∈ {0, 1}N of inputted missing
values is then calculated using M , where values from X are
copied for entries i in which Mi = 1, and from Ŷ for the other
entries.

IV. SOLUTION DESCRIPTION

A. Preprocessing: Sensor Graph Construction

An undirected weighted graph is used to represent the sensor
network, (V, E), where the set of vertices, V , represents the N
sensors and the set of edges, defined in E ⊆ V × V , represents
mutual coverage links. A unit-disk sensing range based model
is used to construct E , such that (i, j) ∈ E iff the sensor j is
within the sensing range of i, i.e., i can be covered by j. The
graph is undirected since the sensors have the same sensing
ranges. We denote by A the adjacency matrix that associates
weights to the edges. A probabilistic sensing model is used
to build A, which captures the effect of the environment and
the distance on the sensing area. It relies on the ”exponential
decay with distance” model commonly used in the literature
[8]. The weight of an existing edge, Aij , is proportional to the
probability Pij that j covers i. It is given by: Aij = Pij =
e−βdij , where dij is the euclidean distance between vi and vj ,
β ∈ [0, 1] is the sensing capacity decay factor. It describes
how fast the sensing decays with distance and depends on the
sensor and the environment. Notice Aij = 0 if there is no edge
between i and j, and Aii = 1 ∀i.

B. GCN Generator

The GCN generator network generates the missing data by
capturing the spatial dependencies between sensors. The output
of the generator is defined as a function fg(X,M,A), where X ,
M , and A are respectively the features vector, the mask vector,
and the adjacency matrix as defined in Sec.III. The GCN is
based on the Kipf et al. [16] multi-layer model, in which each
hidden layer is expressed as H(l) = f(H(l−1), A), where f is
the propagation rule and H0 = X . Following this propagation
rule model, we define Z = fg(X,M,A) ∈ (0, 1)

N×d, the
output of a two-layer GCN as defined in Eq. 1.

Z = fg(X,M,A) = σ(ÂReLU(Â(X �M)W 0)W 1), (1)

where: Â = D−
1
2AD−

1
2 , D is a matrix with elements

defined as, Dii =
∑
j∈N (i)Aij , which are calculated in the

prepossessing phase, � denotes the Hadamard product. W 0

and W 1 are trainable vectors: W 0 ∈ RH is the first weight
vector (connecting the input layer to hidden layer), W 1 ∈ RH
is weight vector connecting the hidden layer to output layer,
while H the size of hidden unit. ReLU(.) and σ(.) are REctified
Linear Unit and sigmoid activation layer, respectively. The

ReLU activation function is shown in practice to be efficient
against the vanishing gradient problem. Moreover, we use a
sigmoid function in the output layer of the GCN model since
we consider two classes, i.e, the presence or absence of an
event, and we include an intermediate dropout layer between
the two GCN layers. Finally, notice that the identity matrix
was not added to A when calculating Â as the graph already
contains self-loops (Sec. IV-A).

The generator uses the information from the labels and its
capacity to learn from structural data to predict the readings of
the remaining sensors. The generated vector, Z, is compared
to the values of active sensors in X , entries for which mi = 1.

Given that the task is a binary classification, the binary cross-
entropy loss is used to express the loss function. The loss
function for the GCN network is defined by Eq. 2.

Lg = −
N∑
i=0

ximi log zi + (1− ximi) log(1− zi). (2)

In the deployment phase, Z is rounded to the binary vector Ŷ
(values above 0.5 rounded to 1 and to 0 otherwise). However,
the generator is combined with the critic during the training
phase when the critic challenges the generator for the purpose
of producing synthetic data samples closer to the real distri-
bution. The critic network and the critic’s training process are
described in the next section.

C. GAN Critic Network

The GAN critic network adversarially challenges the GCN
generator to help improving its outcome during the training
process, in which the critic enhances the capability to differ-
entiate the generated sensor readings from the real data while
the generator aims to increase its capacity to produce sensor
readings that are similar to the real data . We use the W-GAN
approach of [17] based the Wasserstein distance (also called
Earth-mover distance) between the real data distribution, pr,
and the generated data distribution, pg .

The goal of the critic is to learn a function, say c, that allows
the calculation of the Wasserstein.

The critic learns c during training and guarantees it is a
continuous 1-Lipschitz function that is continuously differen-
tiable with a gradient’s norm no more than1 everywhere, i.e, it
satisfies |c(x)− c(y)| ≤ |x− y| ,∀x,∀y.

Gulrajani et al. [18] proposed a penalty on the gradient’s
norm to enforce this constrains when defining the Wasserstein
distance. This is given in Eq. 3, where Lc′ is the Wasserstein
distance (loss) with gradient penalty, x and x̃ are sampled from
pr and pg , respectively, λ is the weight (its common value is
10 [18]) and ∇ denotes the gradient of the function.

Lc′ = E
x̃∼pg

[c(x̃)]− E
x∼pr

[c(x)]+λ E
x̂∼px̂

[(‖∇x̂c(x̂)‖ − 1)2]︸ ︷︷ ︸
gradient’s penalty

, (3)



The gradient’s norm is calculated for random samples
x̂ ∼ px̂. That is, px̂ is sampled uniformly along straight
lines between pairs of points sampled from pg and pr, i.e.,
x̂ = εx+ (1− ε)x̃, ε ∼ U [0, 1].

While the critic is trained to minimize Lc′, the generator is
trained to minimize − E

x̃∼pg
[c(x̃)]. Eq.(4) defines the global loss

of the generator, Lg ′, which combines the GCN loss (Eq.(2))
with the adversarial loss. The hyperparameter ζ is included to
balance between the two losses.

Lg ′ = Lg − ζ E
x̃∼pg

[c(x̃)] (4)

Similarly to [18], [17], the critic is iteratively trained. The
practically, E

x∼pr
[c(x)] and E

x̃∼pg
[c(x̃)] are computed by sam-

pling a random mini-batche, x, from real sensor reading. x
and x̃ are fed to the critic network and the expectations are
approximated with critic’s output averages. We used the Adam
optimization algorithm [19] for the gradient optimization of
the two networks, which is more robust against the vanishing
gradient problem.

V. PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

Without loss of generality, we evaluate the performance of
the proposed solution (we call herein AG-SensPred) in a smart
building environment that serves as a use case for an application
scenario. This is a typical IoT application with great potential to
take advantage from the advanced machine learning techniques
[20]. The MERL [21] real dataset was used in this experimental
study. It was collected in an indoor setting and includes over 50
million of motion sensor events spanning over two years with
milliseconds granularity. The models have been implemented
using Pytorch[22] deep learning framework and GDL (Deep
GraphLibrary)[23] for the generator’s implementation on two
GPU environments1. 80% of data was used for training and the
remaining 20% for tests. In the following, the proposed solution
is compared with the most relevant solutions of the literature,
1) JGD [9], 2) GCN [16], 3) GAIN [14], 4) GINN[15].
JGD uses Gaussian distribution, standard heuristics for the
prediction of sleeping sensors’ values. GCN uses a semi-
supervised classification with GCN but without adversarial
training function to infer sensor readings. GAIN uses GAN
for data imputation but without graph structure, contrary to
AG-SensPred. GINN shares many features with AG-SensPred,
notably of the exploration of adversarially-trained GCN for
data imputation. However, its context is different and the graph
generation in GINN is not tailored to sensor networks.

A. Accuracy

We use the F-score as the accuracy metric that captures
the recall as well as the precision [24]. Precision may be

1Nvidia GeForce RTX 2080 Ti and Nvidia Quadro RTX 6000.

defined as the probability that an event is relevant given that
it is predicted by the system, while recall is the probability
of correctly predicting events. We varied the percentage of the
active sensors that represents the percentage of the data used
from the datasets as real data. Fig.1 shows the superiority of
AG-SensPred with respect to this metric over all the compared
solutions. Compared to GIIN, the results confirm that AG-
SensPred’s formulation for the weighted graph is effective
for generating missing sensor data since it considers sensor
locations and the sensing range. On the other hand, being su-
perior to GCN confirms the usefulness of including adversarial
training. The fact that the best three solutions with respect
to this metric are those including adversarial training also
confirms this. The performance of AG-SensPred is very close to
GAIN when the percentage of active sensors is below 20% and
above 70%. This is since both networks learn equally when a
high or a low amount of data is available. However, our solution
clearly shows better performance in the interval 20% to 70%.
The results also show that almost all solutions (except GCN)
have a similar and low F-score at 10%. This can be explained
by the difficulty of training the models when a very small
amount of data is used for learning. In a more realistic scenario,
the active sensors (implicitly missing data) are typically in
the middle range. For these values, AG-SensPred is clearly
outperforming all solutions including GAIN. JGD has less
varied performance. This confirms that event-based sensing
data does not follow traditional probability distribution methods
like Gaussian distributions.
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Fig. 1. F-score

B. Energy Conservation

We measured the energy in watt second consumed on
average by one sensor. We used a hardware manufacturer data-
sheet of a wireless motion detector as a reference, which is
powered with a CR2032 coin cell battery of 3V ) and 240mAh.
It consumes 1.57 mA in active mode for 56.66 ms, 3.45 µA in
standby mode, and 2.16 µA when shutdown [25]. Fig. 2 shows
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Fig. 2. Average consumed energy

a clear superiority of the AG-SensPred compared to all the
other solutions and confirms it provides the best energy-saving.
Moreover, the inevitable increase of the consumed energy with
the percentage of active sensors is smooth for AG-SensPred.

VI. CONCLUSION AND FUTURE WORK

Predicting sensor reading to preserve energy in event-based
IoT applications has been dealt with in this paper and a new
approach has been proposed. It saves the energy consumed for
sensing and communications by deactivating part of the sensors
and using the readings from the active sensors along with
the spatial correlation of the network to generate the missing
data. The proposed approach is holistic and does not rely on
any duty-cycle policy. Instead, the sensors sleep and wake up
randomly while an adversarially trained GCN generates the
missing data. The proposed solution has been evaluated using a
real dataset and compared against four state-of-the-art relevant
solutions. The results showed that the proposed solution offers
the best accuracy, as well as energy-saving. Future directions
to this work include the quest for optimization techniques
that increase spatiotemporal learning, e..g, by adding attention
layers to extract both local and global relevant features from
spatiotemporal data.
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