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Abstract 

Despite the recent advancements in Autonomous Vehicle (AV) technology, safety still remains a key challenge for their 

commercialisation and development. One of the major systems influencing the safety of AVs is its navigation system. Road 

localisation of autonomous vehicles is reliant on consistent accurate GNSS (Global Navigation Satellite System) positioning 

information. The GNSS relies on a number of satellites to perform triangulation and may experience signal loss around tall 

buildings, bridges, tunnels, trees, etc. We previously proposed the Wheel Odometry Neural Network (WhONet) as an approach 

to provide continuous positioning information in the absence of the GNSS signals. We achieved this by integrating the GNSS 

output with the wheel encoders measurements from the vehicle whilst also learning the uncertainties present in the position 

estimation. However, the positioning problem is a safety critical one and thus requires a qualitative assessment of the reasons 

for the predictions of the WhONet model at any point of use. There is therefore the need to provide explanations for the 

WhONet’s predictions to justify its reliability and thus provide a higher level of transparency and accountability to relevant 

stakeholders. Explainability in this work is achieved through the use of Shapley Additive exPlanations (SHAP) to examine the 

decision-making process of the WhONet model on an Inertial and Odometry Vehicle Navigation Benchmark Data subset 

describing an approximate straight-line trajectory. Our study shows that on an approximate straight-line motion, the two rear 

wheels are responsible for the most increase in the position uncertainty estimation error compared to the two front wheels.  
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1 Introduction 

1.1 Motivation for Autonomous Vehicles 

The potential safety benefits of Autonomous Vehicles (AVs) have long been regarded as one of the technology's 

biggest assets [1]. According to [2], human error accounts for 75% of traffic-related road accidents in the UK, and 94% in the 

USA. There is the potential to significantly reduce these road accidents by minimising or eliminating the involvement of 

humans in the operations of vehicles [3]. This has been a strong selling point for self-driving vehicles to a public which, so 

far, seems unwilling to trust the technology [1]. However, the introduction of AVs could introduce new kinds of accidents. 

Such safety concerns can affect the customers’ intention to use AVs [4], and are majorly responsible for the currently delay in 

the commercialisation of the vehicles [1]. 

 

AVs acquire an understanding of their environment through the use of sensory systems [5]. Ultrasonic systems, LIDARs and 

cameras are examples of such sensors that can be found on the outside of the vehicle. Cameras and LIDARs are used in the 

identification of objects, structures, potential collision hazards and pedestrians in the vehicle’s path[6]. Cameras are also 

essential in identifying signs and road markings on structured roads.  An indication of the critical role of imaging systems in 

the operation of autonomous vehicles is clearly noticeable from the numerous sophisticated versions of these systems currently 

being employed [7]. Despite the importance of imaging systems in the assessment of the vehicle’s environments (e.g., 

determination of markings, vehicle-object relative positions, etc), there is the need to localise a vehicle robustly and 

continuously with reference to a well-defined coordinate system for real-time positioning and decision making.  

 

1.2 Global Navigation Satellite System (GNSS) 

The GNSS receiver uses signals from at least three satellites orbiting Earth to localise the vehicle to a road [8]. In spite 

of its wide acceptance for positioning as it is unrivalled in terms of cost and coverage, the GNSS is not a perfect positioning 

system. The GNSS requires a direct line of sight between the GNSS antennae and the satellites to perform localisation, 

however, in metropolitan areas and similar environments, the line of sight can be blocked by features such as tall buildings, 

skyscrapers, bridges, dense tree canopies or road tunnels (Yao et al., 2017). Furthermore, the signal from the GNSS could be 

jammed, leaving the vehicle with no position information [9]. Hence, the GNSS receiver cannot serve as a standalone system 

of vehicle positioning. 

The GNSS enables road localisation of the AV, to localisation the vehicle to a lane, the GNSS is implemented in combination 

with high accuracy LIDARs, cameras, RADAR and High Definition (HD) maps.  There are however instances when the 

LIDAR and camera could be unavailable for use or uninformative. The usage of low-cost cameras and LIDARs could 

compromise their functions and accuracy especially during extreme weather events such as blizzards, heavy snow fall, rain, 
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fogs, or sleet [10]. These issues are well-known in the field. Whilst the acquisition of LIDARs of high accuracy, could render 

it vulnerable to theft and further increase the cost of the AV (Lee Tescher, 2018), camera-based positioning systems may suffer 

low accuracies depending on the objects in the cameras scene and the external light intensity (Lee Tescher, 2018).   

According to tests performed by Cruise LLC and Waymo LLC on level 4 self-driving vehicle applications, the LIDARs scan 

is matched in real-time unto a High Definition (HD) map (Lee Tescher, 2018). As a result, the system is capable of precisely 

positioning the vehicle within its surroundings (Lee Tescher, 2018). Nonetheless, the downside of this method is its high 

computational cost.  Moreso, changes in infrastructures within the driving environment could render an HD map temporarily 

obsolete and thus not effective for navigation. 

Tesla which is well known for its no LIDAR and HD map policy. It handles GNSS signal outages by relying on its cameras 

and road markings until the GNSS signal becomes available. But the question is what happens if a decision is needed to be 

made on navigating to a new road during the signal loss or what happens when the GNSS signal is lost, and the camera is 

uninformative? Failure Mode and Effect Analysis (FMEA), which is an analysis performed to identify all the ways a system 

can fail and identify ways to mitigate them, would need to be performed on all the above failure scenarios to provide a number 

of fail-safe options to support the safe operation of autonomous vehicles. 

 

1.3 Navigation using Inertial Measurement Sensors 

  

The use of high accuracy Inertial Measuring Unit (IMU) has been proven to be a way to overcome the GNSS reliability 

issue [11]. The IMU measures the AVs rotational rate and linear acceleration in the x, y and z-axis and computes its orientation, 

position, and velocity information by continuous dead reckoning. The significant cost of such IMU sensors has however 

hindered their adoption on autonomous vehicles. Even more, low-cost IMU’s have accuracies too low to be used independently 

on autonomous vehicles as they are plagued by noise and biases which are exponentially cascaded over time for instance 

during the double integration from acceleration to position [12]. In what is usually regarded as a symbiotic relationship, the 

GNSS can periodically calibrate the Inertial Navigation System (INS) during signal coverage to improve the position 

estimation accuracy of the INS during the GNSS outages.   

Several researchers [13]–[16] have studied the use of machine learning-based techniques to model the errors and learn the 

non-linear relationships that exists within the sensor’s measurement. Such proposed techniques include Recurrent Neural 

Networks (RNN) based models in [15]–[20], Multi Feedforward Neural Network (MFNN) based models in [13], [21]–[24], 

Radial Basis Function Neural Network (RBFNN) based models in [25], [26] and the Input Delay Neural Network (IDNN) in 

[14]. Despite the numerous research into improving the performance of low-cost INS, the issue remains a challenge in need of 

cost-effective solutions.  

 

1.4 Inertial Positioning using Wheel Encoder Sensors 

Modern vehicles are embedded with a number of sensors that support several advanced driver-assist systems, such as 

the wheel encoder of the Anti-lock Braking System (ABS). The wheel encoder which operates by measuring the vehicle’s 

wheel or axle speed, has been explored as an alternative to the commonly used low-cost accelerometer of the INS for vehicle 

positioning [27].  The wheel encoder provides a better position estimation solution compared to the accelerometer as its 

resolving requires one less integration step in the computation of the vehicle's position, thus minimising the error propagation. 

Nevertheless, the wheel encoder-based solution is not a perfect one either. The accuracy of the wheel encoder-based position 

estimation is affected by factors such as changes in the sizes of the tyres and wheel slippages. [28]. A smaller tyre diameter 

due to a reduction in the tyre pressure or a tyre replacement, leads to an underestimation of the vehicle's displacement vehicles 

displacement (Onyekpe et al., 2020b), Whereas A larger tyre diameter leads to the vehicle’s displacement being overestimated 

(Onyekpe et al., 2020b).  

Reference [28], showed that the errors present within the position estimation obtained from the wheel speed data can be learned 

by the Long Short-Term Memory (LSTM) neural network even in complex driving environments such as roundabout, 

successive left and right turns, wet roads, etc. In [19], a Wheel Odometry Neural Network (WhONet) was proposed and shown 

to provide better estimations in both complex driving scenarios and longer-term GNSS outages of up to 180s with an accuracy 

averaging 8.62m after 5.6km of travel.   

 

1.5 Motivation for Explainability 

Despite the remarkable performance of machine learning on the vehicle positioning problem, there is the requirement of 

transparency and higher level of accountability from the machine learning based system designs. Explanations for machine 

learning model’s decisions and estimations are thus needed to justify their reliability. This requires greater interpretability, 

often requiring an understanding of the mechanism underlying the operation of the algorithms. Unfortunately, the blackbox 

nature of Neural networks is still unresolved, and many estimations are still poorly understood. Commonly, the eXplainable 

Artificial Intelligence (XAI) procedures consist of ensemble runs, random sampling and Monte-Carlo simulations, which are 

quite common methods in engineering. XAI comprises of a systematic perturbation of some components of the model, which 

enables it to observe how it affects the model’s estimates mostly using sensitivity analysis. Due to the safety critical nature of 

the autonomous vehicle navigation systems, interpretability of the vehicular navigation models is necessary and provides 

sufficient argument for the suitability of a model for use on the road as well as sufficient argument when communicating 

anomaly behaviours to insurance stakeholders, Original Equipment Manufacturers (OEM) and other relevant stakeholders. 

We therefore explore in this research the interpretability of the WhONet models in estimating the position of Autonomous 

vehicles in the absence of GNSS signals.  

 



2 eXplainable Artificial Intelligence (XAI): Background and Current Challenges 

2.1 Why XAI (Significance) 

Neural Network based models are built on complex non-linear functions and are commonly heavily parameterised [29], [30], 

[31]. However, the high non-linearity feature as well as complexity of algorithms makes it difficult to understand the internal 

working mechanisms. More importantly, such opaqueness can create distrust in Artificial Intelligence (AI) based applications. 

For instance, passengers may feel extremely anxious when sitting in the self-driving cars if the behaviours are not self-

explanatory, e.g., a car suddenly turns around at an intersection whereas it normally passes it without explanation. Besides, the 

AI based models can take wrong actions due to biases in training data. This may cause catastrophic and even life-threatening 

consequences in medical diagnosis and treatment. As a result, the eXplainable Artificial Intelligence (XAI) becomes highly 

demanded to interpret models’ decision-making and working mechanisms. 

Explainability can enable good understanding of a model from different aspects, bringing insights that can be adopted by 

different stakeholders involved [32]. Figure 1 shows what positive effects can be brought by explainability to stakeholders. 

For instance, data scientists can easily debug an AI based model, adjust the parameters so as to improve performance, while 

business owners may care more about whether a model will fit with the business strategy and investment purpose. Risk analysts 

will need to check the robustness and decide on the deployment of the model, and regulators can evaluate whether a model is 

reliable as well as what impact can be triggered by its decision on the customers. Finally, consumers can demand for 

transparency in terms of how decisions were taken. Specifically, explainability in the development of AI approaches can help 

addressing different critical concerns [33]. In the example about autonomous vehicles, the passengers can trust the automated 

decision if the car turns around with an explanation such as “a car accident is detected 200 meters in front of us. We will 

choose another route from the previous exit which can take 10 minutes more than the usual route” [34]. 

 
Figure 1. Concerns faced by stakeholders 

 
Table 1. Key stakeholders (Belle & Papantonis, 2021). 

Features Implications 

Correctness How confident are we that the variables contributing to the decision making are all and only 

those of interest? 

How confident are we that the spurious patterns and correlations have been remove?  

Robustness How confident are we that the model is not vulnerable to minor perturbations, and if so, can it 

be justified for that outcome? 

How confident are we that the model does not misbehave in the presence of noisy and missing 

data? 

Bias are there any biases in the data penalises any group of individuals unfairly? And if yes, can 

they be identified and corrected? 

Improvement How can the model’s prediction be improved concretely? 

What are the effects of having an enhanced feature space and additional training data? 

Transferability How can the prediction model be generalised from one application domain to another? 

What properties of the model and data are needed to facilitate the transferability of the model 

to other domains? 

Human 

comprehensibility 

Can the algorithmic machinery of the model be explained to an expert and perhaps a lay 

person? 

Is the model’s explainability needed for a wider deployment of the model 

 

2.2 What is XAI  

2.2.1 Attributes of explainability 

Explainability attributes should contain the criteria and characteristics that researchers could use to define the 

explainability construct. Firstly, it is necessary to make it clear and explicit to the end-users what casual relationships exist 

between the inputs and the model’s predictions [35]. According to [36], the explanation of the logic of an inferential system 

can help to justify, control, discover and improve the learning algorithm. In [37], Interpretation is referred to as the mapping 

of an abstract concept (as a predicted class) to a domain that the human can understand. However, an explanation contains all 

features of a domain that can contribute to making a prediction [37]. Given the definition of interpretability or explainability 

as “the degree to which a human observer can understand the reason behind a decision made by the model” in [38], both 

notions can be interchangeable. 

2.2.2 Theoretical approaches for structuring explanations  

Structuring an explanation for ad-hoc applications can involve decision on what information is included or excluded, 

e.g., causes, contexts, and consequences of the predictions from a model [39]. Some researchers created a classification system 

for different explanation types, which can be suitable for different learning algorithms in terms of logic interpretation [40]. In 



addition, de Graaf & Malle in [41] identified that different types of users, problems, and behaviours require different 

explanations, as illustrated in Figure 2 . With the focus on user types, Glomsrud et al. in [42] summarised four explanation 

categories, ordered by the levels of completeness required by different user groups, i.e., explanations for developer, assurance 

explanations, explanations for end-users as well as external explanations. Stevens et al. in [43], proposed three classifications 

of the types of explanations, the first, called Mechanistic operation which attempts to answer the question “How does it work?”. 

The second was referred to as ontological explanations which describes the structural properties of the model such as it 

attributes and components, and how they relate. The third type was referred to as operational explanations which attempts to 

answer the question “How do I use it?”. Moreso, Sheh and Monteath in [44], provided a more articulated classification of the 

types of explanations of intelligent systems to include teaching explanations, introspective tracing explanations, introspective 

informative explanations, post hoc explanations, and executive explanations. Besides, Barzilay et al. in  [45] proposed a 

classification of the knowledge that should be embedded in an explanation [35],[46]. Finally, Sohrabi et al. in [47] introduced 

a formal framework to generate preferred explanations for a given plan. It is necessary to contextualise the explanation 

preference to the observational patterns. Certain causes may affect the action, and thus require the explanation to reflect on the 

past, which means that produced explanations should consider the past events and data.  

 
Figure 2. Diagram of the main factors shaping the structure of a machine-generated explanation 

 

2.3 Types of XAI 

Six types of post-hoc explanations for opaque models have been listed [48]. In this section we focus on the most 

prominent types, which include model simplification, feature relevance, and visualisations. 

2.3.1 Explanation by Simplification 

Explanations by simplification aims to use a simpler model to approximate an opaque one which can be difficult to 

interpret. A popular technique is Local Interpretable Model-agnostic Explanations (LIME) [49], which can approximate a 

complex model. For instance, the complex model can be explained using a decision tree model built around the predictions. 

Ribeiro et al. in [50] designed a similar technique called anchors, which aims to approximate a model locally by using “if-

then” rules. In [51], Krishnan and Wu proposed another simplification approach which seeks to partition the training dataset 

into similar instances while using a decision tree to structure the explanations. Similarly, Bastani et al. in [52] formulated 

simplification as an extraction process of using a transparent one to approximate a complex model. Particularly, the proposed 

method suggests building a greedy decision tree based on the predictions from a black-box model to obtain more insights about 

the original model which inspecting the surrogate one. Tan et al. in [53] considered the simplification as a way of inspecting 

if the variable set is sufficient to restore the original one with the same accuracy. Wachter et al. in [54] proposed the 

counterfactual explanations for creating instances closed to those users are interested in explaining. Through comparing the 

new data point to the original point, users can obtain insights on what minimal changes should be considered to change the 

decision made based on the original point. 

 

2.3.2 Explanation by Feature Relevance 

Feature relevance explanations attempts to measure the influence of each input and provides a ranking of importance 

scores, showing which corresponding variables are more importance than others for the model. One of the most significant 

contributions in this area is SHAP (SHapley Additive exPlanations) [55]. The Shapley feature values refer to the average 

expected marginal contributions of the features to the model’s decisions. Shapley value has proven to be highly influential in 

the XAI community. Henelius et al. in [56]  designed another method based on feature permutation to identify significant 

variables or variable interactions that are picked up by the model. Additional ways to assess the significance of a feature can 

be quantifying the feature importance, transforming all features of a dataset, and achieving a new dataset without the influence 

of a certain feature [57]. Datta et al. in [58] proposed QII (Quantitative Input Influence) to quantify the influence by estimating 

the performance change with the use of original dataset, and the new dataset with the feature replaced by a random value. In 

this research, the explainability of the localisation model is investigated based on explanation by feature relevance using SHAP.  

2.3.3 Explanation by Visuals  

Visual explanation aims to generate visualisations that allow a better understanding of a model. Existing approaches 

can help in obtaining insights about the decisions as well as how features interact with each other. Consequently, visualisations 

can be used to appeal to a non-expert audience. For this purpose, Cortez & Embrechts in [59] proposed a series of plots and 

discussed additional techniques [60], such as the Sensitivity Analysis approaches. Goldstein et al. in [61] introduced the ICE 

(Individual Conditional Expectation) and PD (Partial Dependence) plots, which can show insights into the relationship between 

the interested feature and the outcome (whether it is monotonic or linear, for example) [62]. However, the average effects can 

be misleading and affect identifying variable interactions. Therefore, a more complete approach would be to utilise both ICE 

and PD plots, given that a relationship exists between these two plots. 

3 XAI in Autonomous Vehicle and Localisation 

Autonomous vehicles (AVs) have achieved a significant milestone in research and development over the last decade 

(Atakishiyev et al., 2021). The significance of the need for XAI has been emphasised as the advanced artificial intelligence 

techniques are applied in self-driving scenarios (Li et al., 2020). Currently, most of the advanced models of AVs are based on 

machine learning (Bojarski et al., 2016). Therefore, one of the research streams involves constructing a knowledge base into 



the AV systems, such as making text-based explanations for the vehicle’s behaviour (J. Kim & Canny, 2017) (J. Kim et al., 

2018). Meanwhile, some other researchers focus on trust computing of explainable AV models (Mittu et al., 2016); (Petersen 

et al., 2017); (Haspiel et al., 2018); (Cysneiros et al., 2018). For example, the trustworthiness levels of AV systems can be 

calculated as a reference for insurance companies and customers (Hengstler et al., 2016).  

The demand for explainable AVs creates diverse concerns and issues. Specifically, the occurrence of car accidents is 

considered a fundamental practical concern. According to Riberio et al (2016), users will not adopt a model or a decision if 

they don’t trust the machine (Ribeiro et al., 2016). With an empirical case study, Holliday et al. (2016) also showed that 

providing explanations can significantly increase users’ trust towards a system (Holliday et al., 2016), however regaining the 

trust can be onerous if it is damaged in an intelligent system (Kim & Song, 2021). Besides, trustworthiness in the decisions 

made by AVs can support transparency in the system. Such a positive factor can further develop fairness enabling good ethical 

analysis and causal reasoning of the decisive behaviours (Arrieta et al., 2020), achieving public approval of automated vehicles. 

In particular, the real-time decisive actions of AVs involve interconnected operational stages of sensing, localisation, planning 

and control as discussed below.  

1. Sensing: As a primary requirement for the self-driving, sensing refers to road surface extraction and object detection 

(Pendleton et al., 2017). Differ by the information types can be captured as well as the environment, Perception data can be 

collected by using devices such as the RADAR, LIDAR, ultrasonic sensors and cameras,  (Yeong et al., 2021) (Ahangar et al., 

2021). 

2. Localisation: Localisation enables an AV to locate its position accurately in the physical world (Woo et al., 2018) 

(Grigorescu et al., 2020) by comparing the location of reflected objects to the high-definition maps. One of effective ways is 

to use satellite to get a position of self-driving cars, such as determining a global location of a car by using the Global 

Navigation Satellite System (GNSS) (de Miguel et al., 2020). In the places like underground tunnels and canyons, alternative 

sensor technologies like Inertial Measurement Units (IMUs) are used combined with GPS, to navigate, control, and direct a 

car.  

3. Planning: Based upon real-time environmental perception and localisation, an AV can plan its trajectory from the starting 

point to the destination. Particularly, the motion planning needs to consider the interaction with other vehicles, dynamics of 

the environment such as people met on a trajectory, as well as available navigating resources and infrastructure. Geisberger et 

al. proposed the contraction hierarchies in fast routing in (Geisberger et al., 2012). Studies on AV’s planning use a variety of 

different terms for relevant components of the planning process. Overall, the planning of a self-driving vehicle can be made 

in a hierarchical process including three essential constituents (Paden et al., 2016). 

4. Control: A feedback controller in an AV can read inputs from an actuator, fulfil the motion and correct errors brought in by 

actuation variables. With the aim of calculating the optimal solution for the prediction horizon, the feedback controller can 

make prediction on motions within a short time interval. Model predictive control has been successfully applied in several 

control applications, including the combined steering and braking, lane-keeping and navigating in adverse conditions 

dynamically (Liu et al., 2015)(Falcone et al., 2007) (Borrelli et al., 2006). 

In this research, we however focus on XAI for AV localisation. 

 

 

4 Methodology 

In this section, we discuss the dataset employed in this study, the mathematical formulation of the target of the machine 

learning model, details characterising the optimisation and evaluation of the WhONet model, and the SHapley Additive 

exPlanation method. 

4.1 Dataset: IO-VNBD (Inertial and Odometry Vehicle Navigation Benchmark Dataset) 

The IO-VNBD, publicly available at [63] is a large scale inertial and odometry dataset created to facilitate the 

benchmarking, development, and evaluation of positioning algorithms. The dataset is made up of several simple and complex 

driving scenarios such as residential road drives, sharp cornering hard brakes, dirt roads, roundabout, town drives, dirt roads, 

etc., and was collected over 5700km and 98 hours of driving. A Ford Fiesta Titanium vehicle as illustrated in Figure 3 was 

used to collect the data on public roads within the United Kingdom. The dataset contains information describing the dynamics 

and position of the vehicle such as the speed of the vehicle’s wheel (in rad/sec) and GPS coordinates (in degrees) which were 

extracted from the vehicle’s Electronic Control Unit (ECU) at a sampling frequency of 10 Hz. In this research, the V-Vw12 

IO-VNB data subset which describes on a motorway within the UK is used.  For more information on the IO-VNBD, please 

see [64].  

 
Figure 3. Data collection vehicle, showing sensor locations [64]. 

 



 

4.2 Mathematical Formulation of the Learning Problem 

 

The angular velocity of the vehicle’s wheels at any time (t) are measured by the wheel encoder. However, there can be 

uncertainties in the wheel encoders measurements and the state of the tyres due to tyre wearing, changes in tyre pressure and 

wheel slips. The accuracy of the displacement estimation from the wheel encoder’s measurements 𝜔 are affected by these 

uncertainties.  

Equations (1) – (4) considers the errors that could affect the calculation of the vehicles wheel speed.  
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The calculation of the angular velocity of the rear axle is as shown in Equation (5) and (6).  
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The vehicle’s linear velocity in the body frame can be found from 𝑣 = 𝜔𝑟, where 𝑟 is a constant which maps the angular 

velocity of the rear axle to its linear velocity: 
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The vehicle’s displacement in the body frame can be found through the integration of its velocity from 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8 and 

incrementally updated for continuous tracking.  𝜀𝑤ℎ𝑟,𝑥
𝑏  in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9 is the integral of 𝜀𝑤ℎ𝑟,𝑣

𝑏  from 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8. 

𝑥𝑤ℎ𝑟
𝑏 = ∫ (𝜔𝑤ℎ𝑟

𝑏 𝑟
𝑡

𝑡−1

) + 𝜀𝑤ℎ𝑟,𝑥
𝑏  

 (9) 

The uncertainty in the position estimation can be found through 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10) during the presence of the GNSS signal. The 

task thus becomes that of estimating 𝜀𝑤ℎ𝑟,𝑥
𝑏  during GNSS outages needed to correct the vehicles displacement 𝑥𝑤ℎ𝑟

𝑏 .  

𝜀𝑤ℎ𝑟,𝑥
𝑏 ≈  𝑥𝑤ℎ𝑟

𝑏 − 𝑥𝐺𝑁𝑆𝑆
𝑏   (10) 

where 𝑥𝐺𝑁𝑆𝑆
𝑏  refers to the true displacement of the vehicle measured according to reference [18] using Vincenty’s formula for 

geodesics on an ellipsoid based on the latitudinal and longitudinal positional information of the vehicle as implemented in 

[65], [66]. The accuracy of 𝑥𝐺𝑁𝑆𝑆
𝑏  is however limited to the accuracy of the GNSS which according to [67], is defined as ±3m. 

 

4.3 WhONet’s Learning Scheme 

We adopt the WhONet model developed and evaluated in [19] based on the simple Recurrent Neural Network proposed 

by [68]. The WhONet’s learning scheme is as presented in Figure 4, where for any time t, the Neural Network’s (NN’s) input, 

𝑋𝑡|𝑡−0.9, is made up of the wheel speed information of all four wheels of the vehicle: �̂�𝑤ℎ𝑟𝑙
𝑏 , �̂�𝑤ℎ𝑟𝑟

𝑏 , �̂�𝑤ℎ𝑓𝑙
𝑏  and �̂�𝑤ℎ𝑓𝑟

𝑏  from 

every tenth of a second within the previous second; 𝑋𝑡, 𝑋𝑡−0.1 … …  𝑎𝑛𝑑 𝑋𝑡−0.9.  

The NN is then tasked with predicting 𝑌𝑡, which is defined as the error 𝜀𝑤ℎ𝑟,𝑥
𝑏  between the GNSS-derived displacement 

𝑥𝐺𝑁𝑆𝑆
𝑏  and the wheel-speed-derived displacement 𝑥𝑤ℎ𝑟

𝑏 . 

 
Figure 4. WhONet's learning scheme 

 



4.4 Performance Evaluation Metric  

The Cumulative Root Square Error (CRSE) metric as adopted in [17] is used to evaluate the performance of the WhONet 

model in this work. The CRSE describes the cumulative root mean squared of the prediction error for every one second of the 

total duration of the GNSS outage. The mathematical definition of the CRSE is as presented in Equation (12).  

Where 𝑁𝑡 is the length of the GNSS defined as 18s, 𝑒𝑝𝑟𝑒𝑑 refers to the prediction error, and 𝑡 is the sampling period. 

We also adopt the Average Error Per Second (AEPS) metric from [16] in evaluating the performance of the WhONet 

model. The AEPS measures the average error of the prediction every second of the GNSS outage and is defined mathematically 

in Equation (12) below. 

A𝐸𝑃𝑆 =  
1

𝑁𝑡
 . ∑ 𝑒𝑝𝑟𝑒𝑑

𝑁𝑡
𝑡=1 . (12) 

  

4.5 Training of the WhONet Models 

The training of the WhONet model is done according to [19]. The model is trained using the Keras–Tensorflow version 

1.15 platform [69], in order to ensure compatibility with the SHAP library [70]. Unlike the training dataset is made up of the 

first 80% of the V-Vw12 data subset of the IO-VNB dataset as presented in Table 1. The V-Vw12 training set used to train 

the WhONet Model is characterised by motion on an approximate straight-line trajectory on the motorway over a distance of 

265m.  The model was optimised with the adamax optimiser using an initial learning rate of 0.0007 and a mean absolute error 

loss function. Table 2 highlights the parameters characterising the training of the WhONet model.  

 
Table 2. WhONet’s training parameters. 

Parameters Displacement Estimation 

Learning rate 0.0007 

Dropout rate 0.05 

Time step 1 

Hidden layers 1 

Hidden neurons 72  

Batch size 128 

4.6 WhONet’s Evaluation 

The WhONet model is evaluated on the last 20% of the V-Vw12 IO-VNBD data subset characterised by approximately 
18 seconds.  

The performance of the WhONet is examined on a relatively easy scenario, i.e., an approximate straight-line travel on 
the motorway to measure the WhONet’s performance on a relatively easy driving situation. Nonetheless, the motorway 
scenario could be considered challenging due to the large distance covered per second. GPS outages are assumed on the test 
scenarios, for the purpose of the investigation with a prediction frequency of 1s. 

4.7 SHapley Additive exPlanations (SHAP) Method 

SHAP which was proposed in 2017 [55], is a unified framework for the interpretation of the predictions of machine 

learning models. It is regarded as the only locally accurate and consistent method for feature attribution based on expectations. 

As well as being able to provide interpretable predictions, SHAP also interprets feature importance scores from complex 

models. SHAP values presents a unified measure of feature importance by assigning an importance value 𝜑𝑖  to each feature, 

as such describing the effects of having that feature included in the model’s prediction. SHAP values in cooperative game 

theory could be represented mathematically as follows: 

 

Here 𝐹 refers to a set of all the features, 𝑆 is a subset of all features from 𝐹 after the 𝑖th value has been removed. Consequently, 

two models 𝑓𝑆 and 𝑓𝑆∪{𝑖} are retrained and then a comparison is made between the predictions from these models and the 

current input 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆), where 𝑥𝑆 describes the input feature’s values in the set 𝑆. The estimation of 𝜑𝑖 from 2|𝐹| 

differences is done by the approximation of the Shapley value by either Shapley quantitative influence or performing Shapley 

sampling.  

We employ the SHAP approach in this study to interpret the predictions of the WhONet model. The SHAP analysis on 

the WhONet model is presented and discussed in Section 5. 

 

5 Results and Discussions 

 

The results from the evaluation 0f the WhONet model on the test data subset are presented on Table 3. The results reported, 

shows that the adapted WhONet model achieves a CRSE of 0.72 m and AEPS of 0.04m/s after about 265m and 18 seconds of 

travel.  
Table 3. Performance measures of the WhONet model on the test dataset 

Performance Evaluation Metrics Results 

CRSE 0.72m 

CRSE =  ∑ √𝑒𝑝𝑟𝑒𝑑
2

𝑁𝑡

𝑡=1

 (11) 

𝜑𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(

𝑆⊆𝐹,{𝑖}
𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)] 

 

(11) 



AEPS 0.04m/s 

 

To further understand the predictions of the WhONet model trained on the motorway dataset, the SHAP values were calculated 

for the test observations. Figure 5 shows each feature ordered according to its average absolute SHAP  value, with the feature 

that contributes the most to the model’s output identified as the top placed bar in the illustration. Similar to Figure 5, Figure 6  

presents a SHAP summary plot which also ranks the features according to their influence on the model’s output.  However, 

for each feature captured on the summary plot, there are multiple coloured dots which each represents the SHAP value for that 

feature, and for  each observation in the test dataset. The colour of the dots indicate the magnitude of the value of the feature, 

with the red dots indicating high wheel speed values and blue dots representing low wheel speed values. A greater distance 

from zero shows a greater influence on the model’s prediction whilst a smaller distance shows less impact. The SHAP summary 

plot, essentially, reaveals the effect an increase or a decrease on a specific feature affects the WhONet’s position error 

estimation and to what degree. Figures 5 and 6 show that the top 5 features with the greatest impact on the WhONet’s output 

are the wheel speed of the front right wheel at time 𝑡 − 0.1𝑠,  the front left wheel speed at 𝑡 − 0.2𝑠, the front right wheel speed 

at 𝑡 − 0.3𝑠, the front right wheel speed at 𝑡 − 0.9𝑠, and the rear left wheel speed at 𝑡 − 0.1𝑠. Of these 5 features, an increase 

in the value of the wheel speed of the front right wheel at 𝑡 − 0.1𝑠 and 𝑡 − 0.9𝑠 leads to a decrease in the position error 

prediction. Conversely, an increase in the value of the wheel speed of the front left wheel speed at 𝑡 − 0.2𝑠, the front right 

wheel speed at 𝑡 − 0.3𝑠 and the rear left wheel speed at 𝑡 − 0.1𝑠 leads to an increase in the position error estimation. We also 

notice that the higher the speed of both front wheels at 𝑡 − 0.1𝑠 the higher the accuracy of the position error estimation. 

Similarly, these behaviors are repeated for the front right wheel speed at 𝑡 − 0.9𝑠, and 𝑡 − 0.8𝑠 and for the front left wheel 

speed at 𝑡 − 0.4𝑠, 𝑡 − 0.7𝑠, and 𝑡 − 08𝑠. These observations hint at a greater connection between the two front wheels and 

the accuracy of the predicted position error compared to the two rear wheels. We investigate these observations further by 

looking at the SHAP waterfall plot and the SHAP decision plot.       

 
Figure 5. Average absolute SHAP value per feature 



 
Figure 6. SHAP summary plot showing individual feature contributions 

The SHAP waterfall plot, shown in Figure 7, offers more insight into how each feature affects the WhONet’s position 

error estimation. Starting from the expected value, when no features are taken into account (see the bottom of Figure 7), the 

waterfall plot shows how applying one feature at a time affects the predicted position error, increasing or decreasing the error 

in the model’s estimations, until it reaches the final model output, after all features have been taken into account. The features 

are sorted according to their influence on the predicted position error with those that have the least impact on the model’s 

output shown at the bottom of the plot and those with the most impact positioned at the top. The colour of the arrows indicates 

the direction of the change with red arrows showing an increase in the model’s predicted position error and  blue arrows 

showing a decrease. In this specific test observation , the wheel speed of the front left wheel at 𝑡 − 0.2𝑠 increases the predicted 

position error the most. However, considering the SHAP values for each wheel speed across the timesteps within the sequence 

as presented on Table 4, it is observed that overall, the front left wheel contributes significantly to the reduction of the error in 

the predicted positional uncertainty compared to the other three wheels. It is further observed that the rear left wheel increases 

the error in the position uncertainty estimation the most. Table 5 reports the aforementioned behaviours across 4 additional 

test observations.  

 
Table 4. Total SHAP values for wheel each across the timesteps 

 Front Left Front Right Rear Left Rear Right 

t -0.01 0.02 0.03 -0.11 

t-1 -0.18 -0.28 0.22 0.01 

t-2 0.27 0.14 -0.07 -0.17 

t-3 0.09 0.23 0.06 0.09 

t-4 -0.20 0.16 0.00 0.08 

t-5 -0.04 0.08 -0.08 0.04 

t-6 -0.03 -0.04 0.17 0.20 

t-7 -0.21 0.01 -0.03 0.20 

t-8 -0.18 -0.11 0.05 -0.05 

t-9 -0.01 -0.22 0.06 -0.06 

Grand total -0.50 0.00 0.41 0.23 

 
Table 5. Average SHAP value for 5 test observations 

 Test Observations Front Left Front Right Rear Left Rear Right 

Observation 1 -0.50 0.00 0.41 0.23 

Observation 2 0.13 0.18 -0.05 -0.04 

Observation 3 -0.72 -0.01 0.61 0.35 

Observation 4 -0.70 -0.09 0.47 0.35 

Observation 5 0.22 0.10 -0.18 -0.10 

Average -0.31 0.04 0.25 0.16 

 



        

 

 

Figure 7. Sample SHAP waterfall plot for a single observation 

 



 

 

 

Figure 8 provides a collective demonstration on how the model arrives at it’s estimations across all the test observations. The 

decision plot uses a line graph to illustrate how the WhONet model navigates through the decision for  each test observation, 

consequently demonstrating the effect of each feature on the decisions made by the model. Starting from the bottom, much 

like the waterfall plot, the decision plot shows how the SHAP values of the 20 most important features accumulate to  move 

the model’s predicted position error from the expected value to the final prediction . The y-axis, again, shows each feature 

ordered from lowest at the bottom of the plot to highest at  the top, according to their influence of the model’s predicted 

position error. The movement of the line on the x-axis is the result of the SHAP value for that feature. The results in the 

decision plot confirms what was show in the waterfall plot.  In the majority of the cases, the rear wheels seem to increase the 

value of the predicted position error while the front wheels decreases it. 

 
Figure 8. Decision plot across all test observations 

6 Conclusions 

In this work, we have examined the interpretability of the WhONet model on a relatively simple scenario: an 

approximate straight line trajectory on the motorway. Our study shows that overall, the two rear wheels are responsible for the 

most increase in the position error estimation, with the rear left being the most prevalant of the two. Although the reason for 

this isn’t immediately clear, the contributions of the measurements from the front wheels compared to the wheels could be 

attributed to the vehicle being a front wheel drive. Nevertheless, these behaviours have been observed on a motion on an 

approximate straight line. Future research would involve exploring the generalisation of these behaviors to more complex 

scenarios, especially those chracterised by a differences in the wheel speeds of the left and right front wheels, such as on a 

round about, successive left right turns, etc. The output of this study could provide insights on how to improve the performance 

of the WhONet model for safer autonomous vehicle navigation.  

Furthermore, gaining a deeper insight into how features influence the model’s predicted position error offers transparency into 

the decision making of the model. This can be valuable for the different stakeholders. For insurance companies, for example, 

explainability can offer a deeper understanding of the underlying causes in case of an accident. This information can also help 

manufacturers improve autonomous vehicles so that they take into account features that increase the predicted position error 

during the manufacturing process, consequently reducing the chance of an accident happening in the first place. By 

understanding the model, car retailers can have better knowledge of the vehicles they have available and can highlight their 

strengths and weaknesses to potential customers. Finally, for consumers knowing how features affect the predicted position 

error reduces the element of the unknown and provides some transparency into how the autonomous vehicle makes certain 

decisions.  

 



 

7 References 

 

[1] J. Wang, L. Zhang, Y. Huang, and J. Zhao, “Safety of Autonomous Vehicles,” Journal of Advanced 

Transportation, vol. 2020, 2020, doi: 10.1155/2020/8867757. 

[2] P. Liu, R. Yang, and Z. Xu, “How Safe Is Safe Enough for Self-Driving Vehicles?,” Risk Analysis, vol. 39, 

no. 2, pp. 315–325, Feb. 2019, doi: 10.1111/risa.13116. 

[3] A. Papadoulis, M. Quddus, and M. Imprialou, “Evaluating the safety impact of connected and autonomous 

vehicles on motorways,” Accident Analysis and Prevention, vol. 124, pp. 12–22, Mar. 2019, doi: 

10.1016/j.aap.2018.12.019. 

[4] J. Lee, D. Lee, Y. Park, S. Lee, and T. Ha, “Autonomous vehicles can be shared, but a feeling of ownership 

is important: Examination of the influential factors for intention to use autonomous vehicles,” Transportation 

Research Part C: Emerging Technologies, vol. 107, pp. 411–422, Oct. 2019, doi: 

10.1016/J.TRC.2019.08.020. 

[5] S.-J. Babak, S. A. Hussain, B. Karakas, and S. Cetin, “Control of autonomous ground vehicles: a brief 

technical review - IOPscience,” 2017. https://iopscience.iop.org/article/10.1088/1757-899X/224/1/012029 

(accessed Mar. 22, 2020). 

[6] K. Onda, T. Oishi, and Y. Kuroda, “Dynamic Environment Recognition for Autonomous Navigation with 

Wide FOV 3D-LiDAR,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 530–535, Jan. 2018, doi: 

10.1016/j.ifacol.2018.11.579. 

[7] S. Ahmed, M. N. Huda, S. Rajbhandari, C. Saha, M. Elshaw, and S. Kanarachos, “Pedestrian and Cyclist 

Detection and Intent Estimation for Autonomous Vehicles: A Survey,” Applied Sciences, vol. 9, no. 11, p. 

2335, Jun. 2019, doi: 10.3390/app9112335. 

[8] W. Yao et al., “GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution,” 

Electric Power Systems Research, vol. 147, no. C, pp. 254–262, Jun. 2017, doi: 10.1016/j.epsr.2017.03.004. 

[9] Gerard O’Dwyer, “Finland, Norway press Russia on suspected GPS jamming during NATO drill,” 2018. 

https://www.defensenews.com/global/europe/2018/11/16/finland-norway-press-russia-on-suspected-gps-

jamming-during-nato-drill/ (accessed Jun. 04, 2019). 

[10] B. Templeton, “Cameras or Lasers?,” 2017. http://www.templetons.com/brad/robocars/cameras-lasers.html 

(accessed Jun. 04, 2019). 

[11] M. G. Petovello, M. E. Cannon, and G. Lachapelle, “Benefits of using a tactical-grade IMU for high-accuracy 

positioning,” Navigation, Journal of the Institute of Navigation, vol. 51, no. 1, pp. 1–12, 2004, doi: 

10.1002/J.2161-4296.2004.TB00337.X. 

[12] C. Chen, X. Lu, A. Markham, and N. Trigoni, “IONet: Learning to Cure the Curse of Drift in Inertial 

Odometry,” pp. 6468–6476, 2018. 

[13] K. W. Chiang, A. Noureldin, and N. El-Sheimy, “Constructive neural-networks-based MEMS/GPS 

integration scheme,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, pp. 582–594, 

Apr. 2008, doi: 10.1109/TAES.2008.4560208. 

[14] A. Noureldin, A. El-Shafie, and M. Bayoumi, “GPS/INS integration utilizing dynamic neural networks for 

vehicular navigation,” Information Fusion, vol. 12, no. 1, pp. 48–57, 2011, doi: 

10.1016/j.inffus.2010.01.003. 

[15] W. Fang et al., “A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal 

Outages,” Remote Sensing, vol. 12, no. 2, p. 256, Jan. 2020, doi: 10.3390/rs12020256. 

[16] H. fa Dai, H. wei Bian, R. ying Wang, and H. Ma, “An INS/GNSS integrated navigation in GNSS denied 

environment using recurrent neural network,” Defence Technology, 2019, doi: 10.1016/j.dt.2019.08.011. 

[17] U. Onyekpe, V. Palade, and S. Kanarachos, “Learning to Localise Automated Vehicles in Challenging 

Environments Using Inertial Navigation Systems (INS),” Applied Sciences 2021, Vol. 11, Page 1270, vol. 

11, no. 3, p. 1270, Jan. 2021, doi: 10.3390/app11031270. 

[18] U. Onyekpe, S. Kanarachos, V. Palade, and S.-R. G. Christopoulos, “Vehicular Localisation at High and 

Low Estimation Rates during GNSS Outages : A Deep Learning Approach,” in In: Wani M.A., Khoshgoftaar 

T.M., Palade V. (eds) Deep Learning Applications, Volume 2. Advances in Intelligent Systems and 

Computing, vol 1232., V. P. M. Arif Wani, Taghi Khoshgoftaar, Ed. Springer Singapore, 2020, pp. 229–248. 

doi: 10.1007/978-981-15-6759-9_10. 

[19] U. Onyekpe, V. Palade, A. Herath, S. Kanarachos, and M. E. Fitzpatrick, “WhONet: Wheel Odometry neural 

Network for vehicular localisation in GNSS-deprived environments,” Engineering Applications of Artificial 

Intelligence, vol. 105, p. 104421, 2021, doi: 10.1016/J.ENGAPPAI.2021.104421. 

[20] U. Onyekpe, V. Palade, S. Kanarachos, and S.-R. G. Christopoulos, “A Quaternion Gated Recurrent Unit 

Neural Network for Sensor Fusion,” Information, vol. 12, no. 3, p. 117, Mar. 2021, doi: 

10.3390/info12030117. 

[21] K.-W. Chiang, “The Utilization of Single Point Positioning and Multi-Layers Feed-Forward Network for 

INS/GPS Integration.” pp. 258–266, Sep. 12, 2003. 

[22] R. Sharaf, A. Noureldin, A. Osman, and N. El-Sheimy, “Online INS/GPS integration with a radial basis 

function neural network,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 3, pp. 8–14, Mar. 

2005, doi: 10.1109/MAES.2005.1412121. 

[23] N. El-Sheimy, K. W. Chiang, and A. Noureldin, “The utilization of artificial neural networks for multisensor 

system integration in navigation and positioning instruments,” IEEE Transactions on Instrumentation and 

Measurement, vol. 55, no. 5, pp. 1606–1615, Oct. 2006, doi: 10.1109/TIM.2006.881033. 



[24] M. Malleswaran, V. Vaidehi, and S. A. Deborah, “CNN based GPS/INS data integration using new dynamic 

learning algorithm,” International Conference on Recent Trends in Information Technology, ICRTIT 2011, 

no. June, pp. 211–216, 2011, doi: 10.1109/ICRTIT.2011.5972270. 

[25] M. Malleswaran, V. Vaidehi, A. Saravanaselvan, and M. Mohankumar, “Performance analysis of various 

artificial intelligent neural networks for GPS/INS Integration,” Applied Artificial Intelligence, vol. 27, no. 5, 

pp. 367–407, 2013, doi: 10.1080/08839514.2013.785793. 

[26] L. Semeniuk and A. Noureldin, “Bridging GPS outages using neural network estimates of INS position and 

velocity errors,” in Measurement Science and Technology, Oct. 2006, vol. 17, no. 10, pp. 2783–2798. doi: 

10.1088/0957-0233/17/10/033. 

[27] P. Merriaux, Y. Dupuis, P. Vasseur, and X. Savatier, “Wheel Odometry-based Car Localization and Tracking 

on Vectorial Map (Extended Abstract),” 2014. 

[28] U. Onyekpe, S. Kanarachos, V. Palade, and S.-R. G. Christopoulos, “Learning Uncertainties in Wheel 

Odometry for Vehicular Localisation in GNSS Deprived Environments,” in International Conference on 

Machine Learning Applications (ICMLA), Dec. 2020, pp. 741–746. doi: 10.1109/ICMLA51294.2020.00121. 

[29] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2017, pp. 1251–1258. 

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Dec. 2016, vol. 2016-

December, pp. 770–778. doi: 10.1109/CVPR.2016.90. 

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal 

networks,” Adv Neural Inf Process Syst, vol. 28, 2015. 

[32] N. Tintarev and J. Masthoff, “A survey of explanations in recommender systems,” in 2007 IEEE 23rd 

international conference on data engineering workshop, 2007, pp. 801–810. 

[33] V. Belle and I. Papantonis, “Principles and practice of explainable machine learning,” Frontiers in big Data, 

p. 39, 2021. 

[34] S. Atakishiyev, M. Salameh, H. Yao, and R. Goebel, “Explainable Artificial Intelligence for Autonomous 

Driving: A Comprehensive Overview and Field Guide for Future Research Directions,” arXiv preprint 

arXiv:2112.11561, 2021. 

[35] M. Fox, D. Long, and D. Magazzeni, “Explainable planning,” arXiv preprint arXiv:1709.10256, 2017. 

[36] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on explainable artificial intelligence 

(XAI),” IEEE access, vol. 6, pp. 52138–52160, 2018. 

[37] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting and understanding deep neural 

networks,” Digital Signal Processing, vol. 73, pp. 1–15, 2018. 

[38] H. K. Dam, T. Tran, and A. Ghose, “Explainable software analytics,” in Proceedings of the 40th 

International Conference on Software Engineering: New Ideas and Emerging Results, 2018, pp. 53–56. 

[39] G. Vilone and L. Longo, “Notions of explainability and evaluation approaches for explainable artificial 

intelligence,” Information Fusion, vol. 76, pp. 89–106, 2021. 

[40] M. Ribera and A. Lapedriza, “Can we do better explanations? A proposal of user-centered explainable AI.,” 

in IUI Workshops, 2019, vol. 2327, p. 38. 

[41] M. M. A. de Graaf and B. F. Malle, “How people explain action (and autonomous intelligent systems should 

too),” 2017. 

[42] J. A. Glomsrud, A. Ødegårdstuen, A. L. S. Clair, and Ø. Smogeli, “Trustworthy versus explainable AI in 

autonomous vessels,” in Proceedings of the International Seminar on Safety and Security of Autonomous 

Vessels (ISSAV) and European STAMP Workshop and Conference (ESWC), 2019, pp. 37–47. 

[43] S. R. Haynes, M. A. Cohen, and F. E. Ritter, “Designs for explaining intelligent agents,” International 

Journal of Human-Computer Studies, vol. 67, no. 1, pp. 90–110, 2009. 

[44] R. Sheh and I. Monteath, “Introspectively assessing failures through explainable artificial intelligence,” in 

IROS Workshop on Introspective Methods for Reliable Autonomy, 2017, pp. 40–47. 

[45] R. Barzilay, D. McCullough, O. Rambow, J. DeCristofaro, T. Korelsky, and B. Lavoie, “A new approach to 

expert system explanations,” 1998. 

[46] P. Langley, B. Meadows, M. Sridharan, and D. Choi, “Explainable agency for intelligent autonomous 

systems,” 2017. 

[47] S. Sohrabi, J. Baier, and S. McIlraith, “Preferred explanations: Theory and generation via planning,” in 

Proceedings of the AAAI Conference on Artificial Intelligence, 2011, vol. 25, no. 1, pp. 261–267. 

[48] A. B. Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and 

challenges toward responsible AI,” Information fusion, vol. 58, pp. 82–115, 2020. 

[49] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘ Why should i trust you?’ Explaining the predictions of any 

classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and 

data mining, 2016, pp. 1135–1144. 

[50] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-agnostic explanations,” in 

Proceedings of the AAAI conference on artificial intelligence, 2018, vol. 32, no. 1. 

[51] S. Krishnan and E. Wu, “Palm: Machine learning explanations for iterative debugging,” in Proceedings of 

the 2Nd workshop on human-in-the-loop data analytics, 2017, pp. 1–6. 

[52] O. Bastani, C. Kim, and H. Bastani, “Interpretability via model extraction,” arXiv preprint 

arXiv:1706.09773, 2017. 



[53] S. Tan, R. Caruana, G. Hooker, and Y. Lou, “Distill-and-compare: Auditing black-box models using 

transparent model distillation,” in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and 

Society, 2018, pp. 303–310. 

[54] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without opening the black box: 

Automated decisions and the GDPR,” Harv. JL & Tech., vol. 31, p. 841, 2017. 

[55] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” 2017. Accessed: 

May 02, 2022. [Online]. Available: https://github.com/slundberg/shap 

[56] A. Henelius, K. Puolamäki, H. Boström, L. Asker, and P. Papapetrou, “A peek into the black box: exploring 

classifiers by randomization,” Data Min Knowl Discov, vol. 28, no. 5, pp. 1503–1529, 2014. 

[57] J. Adebayo and L. Kagal, “Iterative orthogonal feature projection for diagnosing bias in black-box models,” 

arXiv preprint arXiv:1611.04967, 2016. 

[58] A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quantitative input influence: Theory and 

experiments with learning systems,” in 2016 IEEE symposium on security and privacy (SP), 2016, pp. 598–

617. 

[59] P. Cortez and M. J. Embrechts, “Opening black box data mining models using sensitivity analysis,” in 2011 

IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011, pp. 341–348. 

[60] P. Cortez and M. J. Embrechts, “Using sensitivity analysis and visualization techniques to open black box 

data mining models,” Information Sciences, vol. 225, pp. 1–17, 2013. 

[61] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking inside the black box: Visualizing statistical 

learning with plots of individual conditional expectation,” journal of Computational and Graphical 

Statistics, vol. 24, no. 1, pp. 44–65, 2015. 

[62] C. Molnar, Interpretable machine learning. Lulu. com, 2020. 

[63] U. Onyekpe, V. Palade, S. Kanarachos, and A. Szkolnik, “IO-VNBD: Inertial and Odometry benchmark 

dataset for ground vehicle positioning,” Data in Brief, vol. 35, 2021, doi: 10.1016/j.dib.2021.106885. 

[64] U. Onyekpe, V. Palade, S. Kanarachos, and A. Szkolnik, “IO-VNBD: Inertial and odometry benchmark 

dataset for ground vehicle positioning,” Data in Brief, vol. 35, p. 106885, May 2021, doi: 

10.1016/j.dib.2021.106885. 

[65] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations,” 

Survey Review, vol. 23, no. 176, pp. 88–93, 1975, doi: 10.1179/sre.1975.23.176.88. 

[66] M. Pietrzak, “vincenty · PyPI,” 2016. https://pypi.org/project/vincenty/ (accessed Apr. 12, 2019). 

[67] “VBOX Video HD2,” 2019. https://www.vboxmotorsport.co.uk/index.php/en/products/video-loggers/vbox-

video (accessed Feb. 26, 2020). 

[68] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations By Error 

Propagation,” 1985. 

[69] Google Brain, “tensorflow 1.15.” 2017. 

[70] S. Lundberg, “shap 0.40.0.” Oct. 2021. 

  


