A Proactive Controller for Human-Driven Robots
based on Force/Motion Observer Mechanisms

Yanan Li, Senior Member, IEEE, Lin Yang, Deqing Huang, Senior Member, IEEE, Chenguang Yang, Senior
Member, IEEE, and Jingkang Xia

Abstract—This paper investigates human-driven robots via
physical interaction, which is enhanced by integrating the human
partner’s motion intention. A human motor control model is
employed to estimate the human partner’s motion intention. A
system observer is developed to estimate the human’s control
input in this model, so that force sensing is not required. A robot
controller is developed to incorporate the estimated human’s
motion intention, which makes the robot proactively follow the
human partner’s movements. Simulations and experiments on a
physical robot are carried out to demonstrate the properties of
our proposed controller.

I. INTRODUCTION

Human-robot interaction (HRI) has become a popular topic
in the past decades [1], [2], [3], [4]. Among various HRI
systems, human-driven robots are a class of systems where
the robots are guided by their human partner through a certain
interface. How to design a controller for these robots remains
an open problem.

On the one hand, due to highly nonlinear and uncertain
dynamics of a human, it is generally challenging to study
the stability and performance of a HRI system. In [5], a
state-independent stability constraint was proposed for variable
impedance control which is an important control strategy in
HRI. In [6], a method was proposed to detect the robot’s
unstable behaviors and adjust the robot’s impedance control
gains to guarantee the system stability.

On the other hand, it is useful for a robot to understand its
human partner’s motion intention for an efficient interaction.
Although arguably forcing humans to adapt to robots may
be equally and even more effective in a certain scenario,
there are lots of examples where the task performance can
be improved with robots adapting to humans [7], [8], [9],
[10], [11]. Human’s motion intention can be estimated or
recognized via speech [12], gestures [13] or haptic feedback
[14]. When focusing on physical human-robot interaction, it
can be achieved using the information of interaction force
and motion. By assuming that a human’s trajectory should
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follow a certain criterion, some existing works adopt the
results in the field of human motor control. For example,
in [15], human motion was estimated by using a minimum
jerk model where nonlinear least-squares technique was used
to estimate the parameters of this model. This approach was
based on the kinematic information so it was not robust in
the sense of a dynamic interaction. Another approach was
through learning of human’s dynamic model or pattern to
predict human’s motion, such as [16], but it required sufficient
training data. A natural choice to estimate human’s motion
intention is to use haptic information, such as interaction force.
In [17], the authors argued that the human partner’s motion
intention was achieved when the interaction force between the
human and the robot became zero. The interaction force was
also considered as a measure of the human partner’s motion
intention in [18], where its differentiation was used. [19]
describes a cascade-loop pHRI controller, where two neural
networks (NNs) in the “outer-loop” predict human motion
intent and estimate a reference trajectory for the robot that
the “inner-loop” controller follows. This controller also relies
on human force and pose measurements. However, it is well-
known that the force measurement can be noisy and many
commercialized robots are still position-control-based, despite
a trend to equip collaborative robots with force sensors to make
them safe and legally accepted in close vicinity to humans
[20]. How to estimate human’s motion intention without using
force sensing? In [21], a novel idea of using the change in the
robot’s control effort to estimate human’s motion intention
was proposed, which did not require force sensing but was
subjected to a delay due to a passive impedance control phase.

Based on the above discussions, in this work we propose
an approach to estimate the human partner’s motion intention
without force sensors, and rigorously analyze the system
stability. For convenience of analysis, we focus on a typical
HRI system: human-driven robots [22]. In this system, a
human and a robot have a common target position to reach,
while the target position is only known to the human but not
to the robot. One may argue that this task can be accomplished
by using traditional impedance control [23] with zero stiffness.
However, under impedance control the robot behaves like a
passive mass-damper system, which means that certain control
effort has to be made by the human partner to compensate for
both the robot’s dynamics and the object’s. To address this
issue, one natural idea is to make the robot proactively move
the object to the target position, so that the human’s control
effort is reduced. It then raises a problem for the robot about
how to obtain the knowledge of the target position, i.e., the



human partner’s motion intention. The current work addresses
this problem by employing a human motor control model,
which indicates that if the human’s control input becomes
zero, then the actual position has achieved the intended target
position. As the human control input is unknown to the
robot, a system observer is further developed. Then, a robot
controller is proposed by integrating the estimated human
partner’s motion intention as the robot’s reference trajectory.
As two estimation processes are involved, i.e., estimation of
the human control input and estimation of the human partner’s
motion intention, how they influence each other is studied. It
is rigorously demonstrated that the human partner’s motion
intention is estimated and the target position is reached with
the help of the robot. Simulations and experiments on a Baxter
robot are carried out to testify the validity and performance of
our proposed method. Some preliminary results were presented
in [24], without consideration of uncertainties of the human
partner’s dynamics and with only simulation results. Moreover,
a comparison with sensorless force control and impedance
control is presented to highlight the features of our proposed
method.

The rest of this paper is organized in the following order:
problem formulation is discussed in Section II, including intro-
duction of the system dynamics and assumptions; the details of
our proposed method and analysis of the system performance
are explained in Section III; simulation and experimental
results are presented in Sections IV and V, respectively; and
finally conclusions are drawn in Section VI and possible future
works are suggested.

II. SYSTEM DESCRIPTION
A. Dynamic model

In this work, we consider an HRI system where a human
hand and a rigid robot manipulate an object and there is no
relative motion between the human hand, object and robot.
The object is considered as an extension of the robot, so the
system dynamics in the Cartesian space are described as

M5+ Coi+ Gy = u+uy (1)

where x is the system position. u# and u;, are the control inputs
of the robot and human for the system, respectively. M, stands
for the inertia/mass matrix, C, the Coriolis and centrifugal
matrix and G, the gravitational force vector. These dynamic
parameters have included both the robot and object. The
dynamics model in Eq. (1) has several fundamental properties
that can be exploited to facilitate controller design and stability
analysis [25]. In particular, the following properties will be
used in later Lyapunov-theory-based stability analysis.

Property 1: The inertia/mass matrix M,(q) is a symmetric
positive definite matrix.

Property 2: The matrix 2Cy(q,4) — My(q) is a skew-
symmetric matrix.

Property 3: My, Cy, G, are linear in terms of a suitably
selected set of the physical parameters, i.e.,

Mi+Cuxi+ G, =Y (X x,x)0

where 0 € R is a vector of the physical parameters of the
system, ng a positive integer denoting the number of these

parameters and Y (¥,x,x) € R" " is the regression matrix
which is independent of the physical parameters. Based on
Property 3, the physical parameters 8 can be estimated, then
M,, Cy, G, can be used in the controller design.

In a general case, the human and the robot have their own
target positions to reach while these two target positions are
not necessarily the same, and either of them knows only own
target position but not the partner’s. From the robot’s point of
view, if u;, = 0, i.e. there is no interaction with the human, this
problem degrades to a traditional trajectory tracking problem
(when the reference is a continuous trajectory) or position
regulation problem (when the reference is a position point).
From the human’s point of view, if u =0, it becomes a human
motor control problem which has been investigated in the field
of motor control [26]. If u and u; are nonzero, they will
both affect the system dynamics. When the partner’s control
input is unknown, it becomes a challenging task to design
own control input. In this paper, we aim to address this issue
by analyzing the traditional human motor control and robotic
tracking control, and then develop a new robot controller to
deal with the interaction with its human partner.

B. Human controller

For development of the robot controller and stability anal-
ysis, we need to consider the explicit form of the human
controller, which is given below according to [27]:

up = —Kpp(x —xp) — Kpax — A 2)

where K}, is the proportional (P) controller gain, K, is the
derivative (D) controller gain, xj, is the human’s target position,
defined as the human motion intention, and A represents
the uncertainty in the human controller that may be due to
incomplete modelling or unintentional behaviours [28], [17].
To facilitate the robot controller design, we make the following
assumptions about the uncertainty component A:

Assumption 1: When the human input to the system be-
comes zero, i.e. uy = 0, A =0, indicating that there is no
interaction between human and robot or that the human’s
position target is reached, i.e. x = xj,.

Assumption 2: According to [29], [30] human control gains
(corresponding to the Cartesian impedance parameters, i.e. s-
tiffness and viscosity/damping) are time-varying and functions
of the position. In Eq. (2), we denote the nominal part of the
gains as Kj, and K4 and lump the time-varying and uncertain
part in A, which is thus a function of position and velocity i.e.
A= A(x,x).

Assumption 1 is reasonable as the uncertainty disappears
when the human input becomes zero. Assumption 2 is made
considering that the uncertainty in the human controller is
correlated with the system state, i.e. position x and velocity x.

Based on Assumption 2, A(x,%) can be obtained using
approaches of function approximation, such as neural net-
works, polynomials etc. with corresponding basis functions
[31]. Among them, we choose radial basis function neural
network (RBFNN), which has been used in many applications
of function approximation [32]. Using RBFNN, A can be
approximated as

A=W,0(Z)+e 3)



where Z = [xT, iT]T € Q C R? is the NN input, W), € R"*!
is the unknown ideal weight and / > 1 is the number of
the NN nodes. € is the NN approximation error and ¢(Z) =
[01(Z),$2(Z),...,¢,(Z)]" is the basis function, which can be a
Gaussian function
(2 )" (2~ )

3 4)

n;

9i(Z) = exp [

withi=1,2,...,1, W; = [, U, ...,u,»p}T the center of the basis
function and m; the width. RBFNN has been proved to be
able to approximate a continuous function over a compact set
Q7 C RP to an arbitrary accuracy [33], i.e. ||€|| < &g and &g
can be arbitrarily small if / is chosen to be large enough.

Considering that Kj,, and Kj,4 in Eq. (2) are positive definite,
we notice that the human motor control model indicates the
human’s control objective to reach the target position xj,
subject to the uncertainty A. For the analysis feasibility, the
human controller (2) is rewritten as

up = —fp— Kppx — KpgX — A &)

where f, = —Kj,x;. Note that the human controller uy, is
unknown to the robot, including unknown controller gains Kj,,
K4, motion intention x; (thus fj,) and uncertainty component
A.

Assumption 3: The human controller gains Kj, and Kjq
and his/her target position x; are constants, and thus fj is
a constant.

Remark 1: Unknown parameters in the human controller are
assumed to be constants for the purpose of estimation. In prac-
tice, Assumption 3 may be invalid when the human needs to
track a target trajectory rather than reaching a target position.
Using the zero-order hold and piecewise constant function in
[34], [35], a continuous trajectory can be approximated by
a piecewise trajectory composed of constant target positions,
and simulations and experiments will show that the proposed
method still works.

C. Robot controller

The proposed robot controller # includes two components:
u=usr+usp (6)

where uyy is the feedforward component and u;, the feedback
component. Using u sy to compensate for the system dynamics,
we design

ugr = Myi, + Celr + Gy @)

where x, is the reference trajectory of the robot. M,, C, and
G, are system matrices that can be obtained by identification,
as explained in Section ILA. uy, is the feedback component,
ie.

ugp, = —Kpe—Kyé (8)

where K, and K, are respectively the robot’s PD control gains
and e = x —x, is the robot’s trajectory tracking error.

D. Problem statement

By comparing (2) and (6), we see that the human and robot
have their respective targets x;, and x, so there will be a conflict
if these targets are different. As a result, both the human and
robot will unnecessarily make effort to compete with each
other and the final position that is to be reached will be a trade-
off of the human’s and robot’s target positions. Therefore, we
propose an approach in this paper to resolve this issue.

To understand the problem under study, we firstly consider
an ideal case with two additional conditions, as presented in
the following theorem.

Theorem 1: If we consider the system dynamics in (1),
human’s and robot’s respective controllers (2) and (6), with
the following strict conditions satisfied:

« X, = Xx;, which indicates that the robot’s reference trajec-
tory is identical to the human partner’s target position;
e« A=0,i.e., there is no uncertainty in the human controller.

then the system position will eventually converge to the human
partner’s target position, i.e. lim; e x = Xj,.

The proof of Theorem 1 is given in Appendix VI-A.

From Theorem 1, we can see that lim; ,.,.x = x;, can be
achieved if the human’s target position x; is known by the
robot and there is no uncertainty in the human controller.
However, the robot cannot know x;, a priori, which is a result
of motion planning of the human’s central nervous system
[36]. Therefore, the first objective of this work is to estimate
unknown human target position xy. For this purpose, we adopt
the following idea originally developed in [17]: according to
Assumption 2, the human control input u, = 0 yeilds x = xy,
SO we can use u;, to observe the difference between x and x;,.
However, here the human’s control input u; is unknown to
the robot and is subject to the uncertainty A, so the second
objective is to estimate u; by developing a system observer.
Compared to the existing works that are based on a movement
model of which the parameters need to be estimated [15],
our method uses the haptic information (estimated interaction
force) to infer human movement intent without requirement of
the movement model (note that the human dynamics model in
this paper is for analysis purpose but not used in the controller
design).

In the next section, we will detail how to achieve these
objectives by developing a robot controller and prove that they
can be achieved simultaneously despite their coupling effects.

III. ROBOT CONTROLLER

This section dedicates to design of the robot controller:
in the first subsection, human controller u;, is estimated by
developing a system observer; then in the second subsection,
the estimated human controller is used to update the robot’s
reference trajectory x,, so that x, tracks the human’s target
position x;,. With the robot controller (6), it will be shown that
the robot’s actual position x eventually reaches the human’s
target position xj,.



A. Observer

By substituting the robot’s controller (6) into the system
dynamics model in Eq. (1), we can obtain the following error
dynamics:

Mxé+(Cx+Kd)é+Kp€=uh 9)

For the system observer design, the above error dynamics
equation is rewritten in the state-space form:

& = AE + Buy, (10)

£= ¢l 4= 0, I,
“le | T | MK, —M;Y(Ci+Ky)

where & is the system state, 0, a n—dimentional zero matrix
and I, a n—dimentional unit matrix. Since u;, in (10) is
unknown, a system observer is designed as below:

—L(E-¢§) (11)

where f stands for the estimate of the system state &, &, the
estimate of the human control input u;, and L > 0 that can be
chosen by the designer. According to the human control input
uy, in Eq. (5), its estimate #i; can be expanded as

iy = — o — Ripx — Kpax — Wy (x, %)

& = A& + By,

12)

where fh, I?h,,, K,y and W, are estimates of Jn> Knp, Kpg and
W, respectively.
Deducting both sides of Eq. (11) by that of Eq. (10), we
have the observer’s error dynamics
& =AE + By, — LE

where E = é — & stands for the state estimation error, and

(13)

dp = Qp—up,
Jo = Ju=tu Kip=Kyp—Kip,
Ka = Kig—Kpa, Wo =W, =W, (14)
Therefore, the estimation error of the human controller
iy = — i — Knpx — Kpax — Wi (x,%) + € (15)

B. Update laws

In this subsection, we will develop update laws to obtain
the estimated parameters in Eq. (12). For this purpose, let us
consider a Lyapunov function candidate as below

V = Vi+Wh+W
i = %(éTMxé—ﬁ-eTK,,e)
1 emn . _
Vo = 5((5%+thfh+VeCT(th)VeC(th))
tvec! (Kpq)vec(Kng)) 4 vecT (Wy,)vec(W;,)))
1
Vi = S(x—x) Knp(x—xp) (16)

2

where vec(-) stands for the vectorisation of a matrix. Taking
the time derivative of Vi, it yields

. 1.
Vi=¢él (Mé+ EMXé) +eé'Kpe (17)

Considering Property 2 and the error dynamics (9), the above

equation can be further written as
Vi = ¢ (Mé+CetKpe)

el (—Kgé +up) = —é" Kge+é' uy, (18)

Taking the time derivative of V,, it yields
Vo = ETE+ T fiu+vec (Kyy)vee(Kyy)
+vec! (Kna)vec(Knq) + vecT (W, )vec(W,)
= ETE4 FT fiu+vec! (Ryy)vec(Kyy)
+vec! (Kpg)vec(Kpg ) + vec” (Wh)vec(Wh) (19)
where f, =0, Kj, =0, Kjg =0 and W, = 0 on the basis of
Assumption 3 have been used.

Considering the estimation error of the human controller in
Eq. (15), we design the update laws as below:

f B é+auh7 th
Khd:(B §+auh)x , th

(B &+ auy)x",

(B"E + aitg) 9™ (20)

where o > 0 is the update rate. It can be increased to speed
up the update process but a too large value of a will lead
to overshoot and even instability. By substituting the above
update laws into V,, we can obtain

" ((A—L)& +Bip) + Jif (BT & + auity)
+vec (Kh,,)vec((BT§ + oty )x))
+vec (Khd)vec((BT§ + auiy)il))
+vec! (Wy,)vec((BTE + auiy)97T))
(@, —€)"B"E

V, =

= &A-DE+E B, -
—Ol(ﬁh — S)Tﬁh
= ETA-L)é—oaala,+e"BTE+acTa, (21)
Taking the time derivative of V3, we can obtain
Vs o=
= & (—up— Kpax — W9 —€)
= —xlup— i Kpgi —xTWy¢ —iT e

XTK]1P (x — )Ch)

(22)

where x;, = 0 on the basis of Assumption 3 has been used.
With the estimated human controller, the robot’s reference
trajectory x, can be updated to minimize it, i.e.

X = aidy, (23)
Then, by combining Egs. (18) and (22), we have
Vi+Vs
= —eTKge—xTuy, — 3T Ky —x"Wy¢ — %" e
= —e"Kge— ail u, — i Kpgi — "Wy, ¢ — 5" e
= —éTKdé — aﬁ{ﬁh + 0612]7;12/1 —XTKth —XTWh(P
—ile (24)
By further combining Eqgs. (21) and (24), we obtain
V = —éTKze— ET(L—A)E - 0612,7;12;, — il K
—iTWyo —iTe+e"BE + aelay, (25)



Eq. (25) shows the time derivative of V, thus indicating how
the Lyapunov function V changes. In the following, we need
to discuss two cases to establish the system stability.

In Case 1: V < 0 indicates that V moronically decreas-
es with respect to time. Since V > 0, we can obtain that
lim; .V = 0. According to the definition of V, we further
obtain lim; e é =0, limy_eoe = 0, limy 0o & = 0, limy o fj, =
0, limeI?hp =0, lim_wKy =0, lim_.W, =0, and
lim; oo X = Xp.

Case 2: If V > 0, it leads to

" Kye+ET(L—A)E + ol iy + &7 Kpgt
Aalléll® + ALl + arl|n]|* + Anal 2]

< —i"W,0 —i"e+e"BTE +aelay,
< U W) + 5 (el + el)
3 (el + IBIPIEI) + 2 el + i )
< SRR 45+ 312 +8) + 563 +BRIEIR)

o
+ (g3 + |an]*)
where ||| stands for 2-norm of a matrix/vector, A4, Ay, and A,
are the minimal eigenvalues of K;, L—A and K}, respectively,
by is the upper bound of W, bp is the upper bound of B which
is bounded according to Property 1, and &g is the upper bound
of €. By rearranging Eq. (26), we obtain

(26)

b2
Adlle|? + (AL — ZB)IléH2 *Ilﬁhllzﬂ/lhd*l)llxﬂz
by a+2 ,
— 27
<5 + 5 B (27
Therefore, |||, ||€|, ||dix]| and ||%|| are bounded if

2

b
Aa >0, AL>?B,05>0 and Ay > 1 (28)

Furthermore, by choosing large K;, L and ¢ and having a large
number of approximation nodes so that €g becomes sufficiently
small, |lé]|, ||§]] and ||@;]] can be made sufficiently small.
For convenience of analysis, in the following we loosely state
lé]] = 0, ||&]] ~ 0 and ||dy|| ~ O when t — oo, indicating that
they become small enough when t — co.

Suppose lim, .. € exists, ||€|| ~ 0 leads to ||§ || = 0. There-
fore, according to Eq. (13), we have ||ii,|| ~ 0 and thus |ju,|| =~
0 since [|ii4[| ~ 0. Note that ||itj|| ~ 0 does not necessarily yield
fh ~0, thwo KthO andWh~0 TO obtamfh ~0, th~0
Kjg =~ 0 and W, ~ 0, the signal [1 x” %7 ¢7] needs to meet the
persistent excitation (PE) requirement. In specific, according
to Eq. (15), ||dx|| = 0 yields

—fin = Kipx — Kt = Wi (x,8) = 0 (29)
by considering € ~ 0. Rearranging Eq. (29), we have
(Fni Knp.i Knai Wii][1 x7 57 7|7 ~ (30)

where fj,; stands for the i-th element of f;, and K, Kpa,
and W,,; the i-th rows of Kj,,, Kj,s and W}, respectively. From
Eq. (30), [fii Knpi Knai Wii] =~ 0 if the pseudo inverse of
[1xT &7 ¢T] exists.

Considering ||uy|| ~ 0, ||¢|| ~ 0 and the closed-loop dynam-
ics (9), we have ||e|| = 0. According to Assumption 1, u, =0
also indicates that Kj, ~ 0 or x = x;, if Kj,, is nonzero.

The following theorem summarizes the results of the above
two cases.

Theorem 2: Consider the system dynamics in Eq. (1), the
human’s and robot’s respective controllers (2) and (6). By
designing the observer Eq. (11) with the update laws (20)
and updating the robot’s reference trajectory according to Eq.
(23), we achieve that

e lim;_,.e =~ 0 which indicates that the robot’s actual tra-

jectory x tracks its reference trajectory x.

e lim; ,..x =~ x; which indicates that the robot’s actual

trajectory x reaches the human’s target position xj,.

o lim; .. @i, =~ 0 which indicates that the estimation of the

human’s control input is achieved.
if K;, L and « are chosen to be large and €p to be made small
and if they satisfy
2

b
)Ld>O,AL>737a>O,)Lhd>1 (31)

where A4, Az and A;; are minimal eigenvalues of K;, L—A
and Ky, respectively, and bp is the upper bound of B.

Fig. 1: Block diagram of our proposed control framework

C. Remarks

For the purpose of implementation, our proposed control
method is depicted in Fig. 1. In this section, it will be
interpreted by comparing with sensorless force control and
impedance control.

Force estimation has been investigated in the field of robot
control and many existing works use observers, e.g., [37],
[38]. In our proposed framework, we use the estimated human
input to adapt the robot’s reference trajectory in (23) to
track the human’s unknown motion intention x;, which was
not considered in the literature. In fact, existing works on
force estimation can be combined with our proposed motion
intention estimation method.

Our proposed method also relates to impedance control in
the sense that the interaction force is modulated by refining
the robot’s reference trajectory. However, impedance control



generates a virtual reference trajectory but its real reference
trajectory does not change. Under impedance control with zero
stiffness, the robot becomes a system passively responding to
the human. In comparison, the proposed method updates the
robot’s reference trajectory and enables the robot to proactively
move to the human’s target position thus reducing the human’s
effort. As a matter of fact, our proposed motion intention
estimation method can be combined with impedance control
as explained in the following.

Herein we carry out mathematical analysis of a simplified
case to compare existing methods (sensorless force control and
impedance control) and the proposed one. Let us first consider
impedance control with the following impedance model:

M3x+Dx = i, (32)

where M and D are desired inertia and damping matrices. We
then consider a simplified version of the human controller in
Eq. (2), by ignoring the damping gain and uncertainty:

up = —Kj(x —xp) (33)

where K, is the stiffness gain in the simplified human con-
troller. Suppose that the external force (or human control input)
can be accurately estimated based on the sensorless force
control method in [38], i.e. &I, = uy;,. Substituting Eq. (33) into
Eq. (32) yields

M+ Dx + Kpx = Kpxy, (34)

It is trivial to see that x will eventually converge to xj.
This explains how a zero-stiffness impedance controller with
accurate force estimation can be used for human-driven robots.

By also using impedance control, the impedance model with
the proposed method becomes

M+ Dx = i, — Ky (% — %) (35)

where K; is a positive definite matrix and the reference
trajectory x, is updated as in Eq. (23). Then, if i, = uy,
substituting (23) into (35) yields

Mi+ (D +Ky)i+ (aKq+ 1)K, = (aKq+ 1)Kpx, — (36)

By comparing with Eq. (34), Eq. (36) under the proposed
method also guarantees the convergence of x to xj. Moreover,
the response with the proposed method is faster by simply
checking the poles of two systems in Eqgs. (34) and (36), if
a is chosen properly. This indicates that the proposed method
enables the robot to respond to the human more actively, which
will be confirmed by the simulation results.

IV. SIMULATION

In this section, simulations are carried out to demonstrate
the properties of our proposed observer and controller. A
typical HRI scenario is considered: a 2-degrees-of-freedom
(2-DoF) robot manipulator is driven by a human arm to
manipulate an object in a planar task. The target position in
the human controller is a fixed position point so the human’s
intended motion is a point-to-point movement. In an ideal
situation, the robot can estimate the human control input by
the developed observer, then the reference trajectory of the

robot’s end-effector is updated accordingly to minimize this
estimated human control input. Using this strategy, the robot
arm is expected to proactively move to the human’s target
position so that the human’s control effort can be reduced. This
advantage will be illustrated by comparing with impedance
control with zero stiffness, as discussed in Section III.C.

A. Settings

For the convenience, we use m;, [;, l; and I; to denote the
physical parameters of the robot’s link i: mass, link length,
distance from the previous joint to the mass center and moment
of inertia about the z-axis, respectively. According to [39],
their values are set as in Table I.

TABLE I: Robot’s physical parameters

Link | m;(kg) 1;(m) I.i(m) I;(kgm?)
1 431871 | 0.3743 | 0.18715 | 0.000544
2 2.15197 | 0.2295 | 0.11475 | 0.000189

We set the robot arm’s initial position as x(0) =
[0.2,0.25]"Tm and the human’s target position as x;, =
[0.3,0.35]7m. The control parameters in Eqgs. (5) and (8) are s-
elected as Ky, =50 I, Ky =10 I, A = [x3,:3]7, K, = 180 I,
K; =50 I, where I, represents a 2 x 2 unit matrix, RBFNN
nodes number / = 10 and the observer parameters in Eq. (20)
as @ =1.5and L=5,1,1,0;1,4,1,1;0.5,0,4,0;0,2,0,5].

B. Results

Figs. 2 and 3 show the results of the robot arm’s actual
trajectory and reference trajectory along the x and y axes,
respectively. We find that the human’s target position xj is
accurately estimated by the robot and it is eventually reached
by the robot. Fig. 4 shows that the NN weights W, can
converge to constant values, which are used to deal with
uncertainties in the human model.

These simulation results demonstrate the validity of our
proposed method in estimating the human partner’s target
position and in tracking of the updated robot’s reference
trajectory.
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Fig. 2: Human’s target position (x;), robot arm’s reference trajectory
(xr1) and actual trajectory (x;) along the x axis

In order to show the effect of RBFNN on the control per-
formance, the simulation results with and without RBFNN are
compared. The uncertainty component in the human input is
set as A = %>+ (x —x;) sin(x — x;,), and the estimation without
RBFNN is given as i = — Fa fkhprk,,dx compared to Eq.
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Fig. 3: Human’s target position (xj), robot arm’s reference trajectory
(x2) and actual trajectory (x;) along the y axis
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total number of nodes in the simulations is 10 and the weights for
the first five nodes are shown due to limited space in the figure.

Position (m)

. . .
5 10 15 20 25 30
Time (s)

02 | |
0

Fig. 5: Human’s target position (x;;), robot arm’s actual trajectory
with RBFNN (x) and without (x,,;) along the x axis.
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Fig. 6: Human’s target position (xj,), robot arm’s actual trajectory
with RBENN (x,) and without (x,,,) along the y axis.

(12). Results in Figs. 5 and 6 illustrate that the introduction
of RBFNN improves the response speed, especially along the
y axis.

C. Comparison with impedance control

In this section, we conduct a simulation to compare the
proposed method with existing impedance control as explained
in Section III-C. The following parameters are used: M =5,
D =10, K, =10, K; =10, ao =1, xj, = sin(z). The simulation
results are shown in Fig. 7. The upper figure shows that
the human force is much smaller with the proposed method,
indicating reduced human control effort. The below figure
shows that while the human’s desired position 0.3m can be
achieved by both methods, the system response with the
proposed method is faster.

= —existing= proposed|

0 5 10 15 20 25 30

Time[s]

Fig. 7: Comparison between impedance control and the proposed
method: human force (upper) and robot’s position (below)

V. EXPERIMENT

In this section, the validity of our proposed method is further
verified by experiments with a robotic platform Baxter, which
has been developed by Rethink Robotics [40] (see Fig. 8).

Fig. 8: Experiment platform

Fig. 9: Robotic joints

In this experiment, as shown in Fig. 9, we use two joints
El and W1 of the Baxter’s right arm so that its movement
in the Cartesian space is in a plane. We decide not to use
more than two joints for easier illustration of our proposed
method. Position and velocity data are collected by the Bax-
ter’s controller, while the collected data are processed and
our proposed method is implemented in a laptop with a 2-
GHz Intel Core Processor. The laptop communicates with a
computer dedicated to the Baxter via Ethernet in a frequency
of 100Mb/s.

The parameters used in the experiment are the same as
those in the simulation. In each control cycle, the laptop



retrieves the joint angle, estimates the human’s target position,
and sends the reference angle to Baxter. The control cycle
in the experiment depends on the speed at which Baxter
receives control data and returns joint position data, and its
average value is about 1ms. Although Baxter is a robot which
features passive compliance, we do not use this feature in the
experiment. Instead, Baxter’s inner position control loop is
adopted, which raises an issue for the controller design since
Baxter’s control parameters are unknown. To address it, we
choose L to be large enough so that A — L becomes negative
definite and thus the estimation error converges to zero. On the
other hand, L cannot be too large otherwise too fast estimation
will lead to a large overshoot and even instability.
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Fig. 10: Human’s three target positions (xji1, X,12, X413), robot’s
reference trajectory (x,1) and actual trajectory (x;) along the x axis
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Fig. 11: Human’s three target positions (xp21, Xp22, X;23), robot’s
reference trajectory (x,7) and actual trajectory (x;) along the y axis
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Fig. 12: Human’s three target angles (qni1> gni2> qn13), robot’s
reference angle (g,1) and actual angle (g1) of the first joint

During the experiment, the human moves the robot arm
to his three target positions in the Cartesian space that are
unknown to the robot. When the human stops exerting a force
to the robot arm, it remains in its current position. Figs. 10 and
11 show the experimental results of the robot arm positions
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Fig. 13: Human’s three target angles (gj21, qm22. qn23), robot’s
reference angle (g,7) and actual angle (¢,) of the second joint
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Fig. 14: Robot’s tracking errors along the x axis (e;) and y axis (e)

along two axes, illustrating that the human can lead the robot
arm to his target positions. Moreover, the developed observer
can accurately estimate the human’s target positions. After
reaching the last target position, the human remains in contact
with the robot for a certain time to verify whether the tracking
error can completely converge. Figs. 12 and 13 show how
the robot arm’s movement in the Cartesian space is realized
by tracking of reference angles in the joint space. Fig. 14
illustrates that the tracking errors along axis x and axis y are
within an acceptable range.

Corresponding to these results, snapshots of the experimen-
tal process are shown in Fig. 15. In these figures, we have
used the white lines to mark the robot arm’s initial position
so its movement revolution can be clearly seen. These figures
illustrate that the robot arm moves according to the intention
of its human partner, whose three target positions are reached
in sequence.

VI. CONCLUSIONS

The presented experiment has demonstrated the features
of the designed controller in a simple scenario of human-

t=40S

t=20S

Fig. 15: Snapshots of the experimental process. The initial configu-
ration of the robot arm is shown by a white line, the human’s three
target positions are marked by three hexagons with different colors,
and a blue circle is used to cover the face of the human.



driven robots, where the human guided the robot to his target
positions through direct physical contact. This experiment was
carried out without considering an object manipulated by the
human and robot and it was assumed that the object could be
an extension of the robot arm if there is no relative motion
between them. In a real-world application, e.g. luggage loading
and offloading in airports, the relative motion between the
robot, object and human arm may have significant effects
on the manipulation performance, so this issue needs to be
investigated in our future works.

This paper only shows the feasibility of the proposed
method with 2-DoFs of the robot arm, while in theory it
can be applied to a robot with more DoFs. In the later case,
the coupling effects of different directions and redundancy
problem may need to be addressed when implementing the
proposed method. While our proposed method is discussed
and implemented in the Cartesian space, it can be also applied
to the joint space. This is useful in applications such as
robotic exoskeleton, where it needs to detect the human user’s
motion intention in its joint space and moves its own joints
correspondingly [41]. This will be investigated and tested on
a lower-limb exoskeleton that has been developed in one of
our previous works [42].

HRI has been studied to testify the usefulness of the
observer developed in this paper. As a matter of fact, this
observer can also estimate the contact force exerted by a
passive environment. For example, our proposed method may
be useful in haptic exploration or surface polishing, where the
contact force needs to be regulated. This possibility will be
explored in the future works.

APPENDIX
A. Proof of Theorem 1

Substituting human’s and robot’s respective controllers (2)
and (6) into the system dynamics in Eq. (1), and considering
the conditions stated in Theorem 1, we can obtain the follow-
ing error dynamics

My (q)é+(Cx(q.9) +Ka + Kpa) é + (Kp + Knp)e =0 (37)
where
e=X—Xr=X—Xp (38)
Now, let us consider a Lyapunov function candidate
W= %(éTMxéJreT (Kp+Knp)e) (39)
Taking the time derivative of W, we can obtain
W=2¢" (M + %Mxé) + e (Kp+ Kip)e (40)

Considering Property 2 and the error dynamics in Eq. (37),
we can obtain

W = & (Mé+Ceé+ (Ky+Knp)e)
e" (—(Ka+Kna)é)
= —¢"(Kq+Kna)é

(41)

Therefore, W is non-positive since K; is designed to be
positive definite and Kj,; assumed to be positive definite. Next,
the following two cases of W will be discussed.

Case 1 W < 0 indicates that W moronically decreases. Since
W >0, it yeilds that lim;_,.. W = 0. According to the definition
of W, we can obtain lim; ,..¢ =0 and lim;_,..e = 0.

Case 2 If W =0, then ¢ = 0 which leads to e = 0 by
considering the closed-loop dynamics (37).

In both cases, lim;_,..e = 0 and this completes the proof.
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