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Abstract—In this paper, a robust fixed-time controller is de-
signed for manipulators with unknown dynamics while interact-
ing with environment. To realize compliance of the manipulator
to the environment, an admittance model is adopted in the system.
In the controller design, a non-singular sliding mode torque is
introduced to achieve fixed-time convergence of the system state,
so that the system has better tracking performance and faster
response to external interaction than that using the traditional
terminal sliding mode method. As for the unknown dynamics
of the manipulator, radial basis function neural networks are
developed to approximate the parameters in the dynamics. At
last, simulation studies are conducted to verify the effectiveness
of the proposed method.

Index Terms—Admittance control, non-singular sliding mode
control, fixed-time convergence, neural network.

I. INTRODUCTION

Manipulators have received great attention in many fields
due to their high degree of flexibility, such as industry,
transportation, and medicine [1]- [2]. With the increasing
complexity of application scenarios, higher requirements are
put forward for manipulators, among which the ability to deal
with the external environment is important.

Compliance is a way to interact with environment for
manipulators, which can greatly improve manipulators’ safe-
ty. During working process, if the manipulator is suddenly
blocked by an external force, compliance can drive the ma-
nipulator to move along external force instead of generating
larger torque against the environment [3]. When the external
force is withdrawn, the manipulator will resume tracking
the original trajectory. To realize the relationship between
the environmental interaction position and interaction force,
Mason proposed the admittance model in 1981 [4]. In [5]- [6],
the adaptive admittance control is adopted to realize compliant
behavior for redundant manipulators. In [7]- [8], an admittance
model is employed in the system for cooperation between
multi-manipulators.

When the manipulator is in contact with the environment,
it will inevitably introduce undesirable interference torques,
such as frictional torque and external disturbance. As for
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coping with external disturbance and system parameter per-
turbations, sliding mode control is a powerful method, which
can effectively improve the robustness of the system [9]. In
the early stage, linear hyperplane was used in the sliding
mode control, where the system state can realize asymptotic
stability [10]. Because the convergence time is infinite in
theory, which is not realistic in the actual control. Hence, in
this context, terminal sliding mode (TSM) was developed for
achieving finite-time convergence [11]. However, traditional
TSM controllers all suffer from the singularity problem. To
tackle this problem, [12] proposed to switch the sliding mode
between TSM and linear hyperplane, and [13] specified a non-
singular open region. On the other hand, the convergence time
of the finite-time TSM control depends on the initial states of
the closed-loop system, which cannot be obtained beforehand.
This drawback can be overcome by the recently upgraded
TSM, that is fixed-time TSM control, where the settling time is
uniformly bounded by a fixed time and independent of initial
system states [14].

For general manipulator systems, computed torque control
is usually used to achieve desired tracking performance [15].
However, the system’s performance largely depends on the
fidelity of the system model. In practice, accurate models
of manipulators are difficult to obtain. In this context, much
attention has been drawn to neural network, which can be used
to approximate inaccurate or unknown dynamics of manipu-
lators [16]. Radial basis function neural network (RBFNN) is
one of the commonly used neural networks [17]. Because of
its simple structure and strong generalization ability, RBFNN
is especially suitable for systems requiring high real-time
performance.

In this paper, we design a robust non-singular fixed-
time controller for manipulators interacting with environment,
where an admittance model is introduced to realize com-
pliant motion. In the control design, a non-singular fixed-
time switching manifold is employed to achieve desired fixed-
time convergence for the system state, which results in better
tracking performance of the system and faster response to
external interaction than the system using traditional TSM
controller. Meanwhile, RBFNN is employed to approximate



the unknown parameters in the dynamics. Simulation results
are given to prove the effectiveness of the proposed method.

II. PRELIMINARIES
A. System Dynamics

The dynamic model of a A/-joint manipulator can be
expressed as

Mao(@)i+Ca(q, )i+ Galg) +d=7+T"F. (1)

where ¢, ¢, q € RN represent acceleration, velocity and angle
of the manipulator, respectively. M, € RN*N stands for
the inertia matrix in symmetric positive definite. G, € RV
represents the vector of gravity. 7 € RV is the joint torque
representing the control input of the system. The interaction
force between the environment and the end-effector of the
manipulator is expressed as F, € RV, which can be acquired
by force sensor. 7' € RN XN s the transpose of the Jacobian
matrix corresponding to the mapping from joint velocity to
workspace velocity. d represents the external disturbance,
which is assumed to be bounded ||d| < d,,. C, € RNV
denotes the Coriolis matrix, which is chosen to satisfy

Ma(q) = Calg.9) +C3 (a,4) 0)
The forward kinematic model of the manipulation is
x = E(q) 3)

where x € RV is the pose of end-effector in Cartesian space
with dimension N.. Taking the first and second derivative of
(3) yields

x = J(q)q C)

2 =J(q)q+ T(q)q S))

B. Admittance Control

To achieve compliant motion of the manipulator when
its end-effector follows the reference trajectory and interacts
constantly with the environment, the reference position should
be regulated accordingly. Admittance control is proposed for
this purpose, that is, to maintain desired force contact by
adjusting position. Commonly, the applied admittance model
in the Cartesian space is chosen as

'DA(iT — id) + CA(}.(T - }.(d) + gA(Xr - Xd) =—-F. (6)

where x4 is the desired position in the original trajectory, x,
is the reference position produced by admittance model. (6) is
the typical mass-damping-stiffness model, in which Dy, C4
and G4 are positive diagonal matrices. Based on (4) and (5),
the admittance model (6) can be transformed into joint space

DaT (@) — i) + (Pad (@) +CaT (@) (dr — da)
+Ga(E(g,) —E(aa)) = =T T(@)e (D)

where 7, is the joint torque produced by the interaction with
environment and 7, = J7 (q)Fe.

C. RBF Neural Network

RBFNN has superior generalization ability that can approx-
imate arbitrary linear or nonlinear function. The activation
function commonly uses the Gaussian function:

Vi(@) =exp(lz = 0;l*/f), j=12,....,m (8
where m denotes the corresponding number of neuron, )); is
the output of hidden layer, and Y = [V1, Vs, ..., Y] € R™.
x € Q, C R! is the [-dimension input of the neural network.
0; € Rand o; € R represent the width and center of Gaussian
function of the j-th hidden node, respectively. ||- || is the norm
of Euclidian distance.

For arbitrary continuous vector function f(z) € R™ approx-
imating by RBFNN, it can be written in the form of

fi(z) =W V(z) +e(x), i=1,2,...,n 9)

where ¢; stands for the small approximation error and satisfies
€ < E € is the known upper bound. We define ¢ =
[€1,€2,...,€,]T and W* = Wi Wj, ... WiT € Rmx»
where W* represents the ideal weight of neural network.

Take WV as the estimation of W*. Correspondingly, we can
denote the estimation of the continuous function as

fi(z) =W Y(z), i=1,2,....n (10)
wklerej(r) :A[fl(:zz),ﬁ(x),...,fn(a:)]T € R" and W =
[Wl,WQ,...,Wn]T € R™*™ This is usually what we can
obtain using RBFNN in practice.

D. Fundamental Facts

Consider a nonlinear system:
(1) = £(x(t)) (11)

whose initial value is x¢. £(-) represents a nonlinear mapping.
System (11) can be discontinuous and assumed to have a
unique solution in forward time for arbitrary initial states [18].

Lemma 1: [19] The origin of the nonlinear system (11) is
said to be fixed-time stable with setting time 7 if there exists
a Lyapunov function V(z) and satisfies

V<RV -V + 12)

where scalars k, ¢ > 0, 11 € (0,1), v2 € (1,00), @ € (0, 00).

The convergence time 7 is bounded by

rel L 11
Kl—vy ¢y —1
Lemma 2: [20] For any z; € R, ¢ =

following inequalities hold:

ol = O lw ), ifne0,1 (14
=1 =1

(13)

1,2,...,n, the

S lai 2=al ) @i ])?, ify € (1,00)  (15)
=1 =1

To facilitate the development of the following section, a new
continuous function is defined as
(16)

where sign(-) is the standard signum and « > 0 is a constant.

sgn®(x) =| z |* sign(z)



III. CONTROL SYSTEM DESIGN AND STABILITY ANALYSIS
A. Non-Singular Switching Manifold

Traditional TSM controllers face the singularity problem.
Because the control law contains negative exponent of the
system state, a singularity occurs when the system state
reaches zero. In this paper, a non-singular switching manifold
is introduced to avoid singularity.

Firstly, define two important parameters:

—1—1In9d 922
p—9Ind p—9Ind

Then, a nonlinear function £ is introduced [14]:

¢= Y=

po [osen @) +gdle, if |zf<d
sgn?(z), if |z |>9
Take the first derivative of function (17), we have:
o J@pt o) [z +o(le | md+ )9l it |2 |<v
pla |, if | |> 0
(18)

where scalars p > 0, ¥ € (0,exp(—1)) and satisfy the
relationship p = 1 — 9. It is worth noting that the selection of
¢ and 1) needs to guarantee the continuity of function & and
S when |z |= 9

Define the tracking error as

e =q —q 19)
where ¢, € RV is the desired position, e = [e1, ea,...,en] €
RN . Define the following vectors and matrices:

H(e) = [h(er), hlez), .., hlen)]” € R

I'(e) = diag{S(e;)} € ]RNXN, i=1,2,...,.N
Sgn®(e) = [sgn®(e1),sgn(ez), . .., sgn (eN)] eRY
D (e) = diag{| e; |*~ I}GRNXN, i=1,2,...,N

where diag{-} denotes the diagonal matrix. Then, a non-
singular switching manifold can be designed as [14]

S =¢é+ Ky H(e) + KoSgn®(e)

where S = [S1,8s,...,Snv]T € RY, constant o > 1,
matrices K1, Ko € RV*N are of positive diagonal definition.
Upon differentiating S with respect to time, we can obtain:

S=¢é+KiT(e)é+ akyD¥ Le)e

(20)

2n

B. Non-Singular Fixed-Time Controller

Based on the designed switching manifold (20), a robust
non-singular fixed-time controller is proposed in this section.

Substituting (21) and the second derivative of the tracking
error (19) into the dynamic manipulator model (1), we can
acquire

MuS =My + MKiTé + aM KDY e+ Cog

+ga_T_Te+d (22)

To simplify (22), we define a new variable 7, where
n:=84+¢ (23)

Thus, the closed-loop error dynamic model (22) can be rewrit-

ten as
MoS+CaS =Mut +Ca+Ga —T —Te +d (24

Based on (24), we design the non-singular fixed-time con-
troller as

70 = K3Sgn”* (S) + K,Sgn”?(S) (25)
1 = KsSgn(S) + KeSgn”(S) (26)
T=Man+Cad+Go—Te + 10+ T 27)

where 7¢ is the fixed-time sliding mode torque. The settling
time of the sliding variable S to the origin is determined by the
positive diagonal matrices K3, K4 € RN XN and the positive
parameters 3; € (0,1), B2 € (1,00) in 9. K5 € RV s the
factor related to the uniformly ultimately boundedness (UUB)
of the system. Kg € RV is the coefficient diagonal matrix of
the robust term and its diagonal element satisfies Kg; >| &; |,
where £ = d + epm”) + ecn + €g and enq, €c, €g are the
approximation errors. 7. is directly acquired from the sensor.
M,, C,, and G, represent the estimation of /\/la, C, and G,
using RBFNN, which can be expressed as Mo = WD,
(fa = chc, and Qa = Wgy(;. The updating law is designed
as

Wari = Pari(VainnSi — eariWari)
Wei = Poi(VeinSi — eciWei)

Wai = Pai(VeiSi — caWai), i =1,....N (28

where Pyri, Pci, Pgi matrices are positive diagonal defini-
tion, €ps4, €ci» £G4 are small positive constants for disturbance.
Under the control of (27), the system state can firstly reach
the switching manifold (20) that is S = 0 within the fixed time
T1. Subsequently, along the switching manifold, the system
state enters the small domain of the origin Q = {e;| | e; |< 9}
within the fixed time 75 and asymptotically gets to the origin
in the end. According to Lemma 1, the fixed-time 7; and 7
can be calculated, which will be given in the next section.

C. Stability Analysis

Theorem 1: Upon introducing the non-singular fixed-time
controller to the manipulator system (1), the tracking error of
the system can achieve fixed-time convergence regardless of
the initial conditions.

Proof: ~ The fixed-time convergence analysis of the
system can be divided into two stages. The fist stage is to
prove S = 0, where the system state reaches the switching
manifold within 77. The second stage is to prove that the
tracking error e converges to the small domain € within 75,
then asymptotically converges to the origin.

stage 1:



Construct the Lyapunov function candidate as

N
V= fSTM S+ = ZWMZP YWrri
1=0
1L S A "
+3 > WEPC Wi + 3 > WEPG Was

=0 =0

(29)

where W(.,;) is the weight estimation error and W(,,-) = W(* 0

W(.i). Taking the derivative of (29), then substituting (2) and
(24)- (28), we can obtain:

V =8T[-K38gn” (S) — K4Sgn (S) — K5Sgn(S)
N
— KeSgn’(8)] + STE+ D " enriWi Wi
1=0

N N
+ Z ECiniWCi + Z EGiwgiWGi

i=0 =0

(30)

Since

ZE DWW

Y E(4) | 1ya
ol = 5 WP

=0

><Z

(30) can be transformed into

N
. 2)\min{K:5} 1 2
V = — )\maX{MQ}iAmax{Ma} | Sz |
EMi 1
max{PMz}”WMz”
i=0 )‘max{PMlz} 2
N ECi 1 ~
- %*)‘max{P&l}HWCiHQ
; Amax{Pc; } 2
N EGi 1 ~
= ooy 5 mad Pai HWaill® + G
VL
<—p1V+GQ (31)

where Apax{-} and Anin{-} denote the largest and s-
mallest elgenvalue of the matrix, respectlvely G =

N
Zz:O 81\24L WJV[)% ?;CZ'L 0 ESL WC7.||2+21 0 ESL WG1||2
_ s min EMi ECi £Gi
p1o= mm{xmx{/\/[ 3 M APt} Aman AP} A,W{Pg}}}’

min{-} represents the operation of taking the minimum value.
According to Lemma 22 in [21], we can derive that

a

Y < V(0)e 1t +
P1

(1—e "), t>0 (32)

Remark 1: For the Lyapunov function (29) V > 0 and its
first derivative satisfying V< —1V + (1, we can acquire its
maximal solution expressed as (32). Since V(0) is bounded,
we can derive that S, VNV(.i) and W(.i) are bounded.

Based on (30), we can develop

V< —S8TK38gn” (8) — STK,Sgn™(S)

N
+ Z( — Kei*
i=0
IWari [P0 = Kl a7 = Ksi [ Wea |71
— Koi|[Weil 772 — Kroi|Wai |7
— K1 Weai| 72 ) + G
N
where G = > i (S5 Wiy 1P+ 552 [IWE 12+ =5 [We 1P+
Kei Wil 50+ Kl WV ||1+B2 + ’CSzHWCzHHBl +

K:QZHVVC'%HI—"_[R2 + ICIO'L”WGzHl—hBl + ICIIZHWG’L||1+62)
Utilizing Lemma 2, V can be transformed into

(33)

y min{K:S} 1 +51
V- o (i M} S5 %)
g( Amin{Ma}) 2
% i +/32
- mm{’C“}wQ (1 Amin{ Mo} | S; 2)

i=0 (3Amin{Ma}) 2

N Kei 1 1y aF o\ 181
-2 ez (5 Amin {Pari Waril*) 2
1
i=0 ( mm{PMz})
N
ICW 1 1+52
- Z 1+/32 ( mln{P }HWMz” )
2
=0 ( Hlln{PZ\/Iz})
N
Kgi 1 +/1
- Z 1 1+ﬁ1 ( mln{P&l}HWCl” )
i=0 ( mm{PCz })
N
K:9i 1 1+/32
- Z 1+/32 ( mm{,PCzl}HWCz” )
1
i=0 (3Amin{Pgi }) 2
N
IClO‘ 1 +[1
=Y O G P W)
=0 ( mm{PG7 })
N
K11 1 EEY
- Z 1 1+52 ( mm{Pczl}HWGZH )
i=0 ( mm{PGz })
+ (2
B Be
< —@VE VT g (34)
where w2 = mln{ Amin{)cs}ﬁrﬁl ’ B 1+81 »
GAmin{ M) T2 (FAmin{Py )2
Ksi 1+61 Kioi , 3 —
(%)‘mm{Pcl }) 1 é mm{,PGL }) i B
3 mm{K:él}N K:71N 2 ’CQlN 7252
min ) 1+B3 1 +B2
( A pin (%Amin{pm )2 (% min{Poz })
% . (o can be proven to be bounded
(3 Amin{Pg;

according to Remark 1.

The form of (34) is in keeping with Lemma I. Therefore, the
system state will arrive at the switching manifold (i.e. S = 0)
within a designed settling time 77, where

1 2 1 2
21— w3P2—1
and the result is irrelevant with the selection of the initial
conditions.

T = (35)
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Fig. 1. Two-joint manipulator.

stage 2:

In this stage, the system state moves along the switching
manifold. According to (20), we can obtain S = ¢+ /K1 H(e)+
KaSgn*(e) = 0.

When | e; |> ¥, the dynamics of the tracking error e;
becomes

€ = —K1;5gn”(e;) — KCo; sgn(e;) (36)

where C1; and Ko; denote the diagonal elements of matrices
K1 and K, respectively. Define the Lyapunov function as
V1 = e2. Taking the first derivative of V; yields:
. 1tp 1ta
Vl = —2’C1i (612) 2 - 2’C2i (612) 2
It is obvious that (37) is consistent with (12), which means
the tracking error e; can convergence to a small domain 2 =
{ei] | e; |< ¥} within the designed settling time 75 and
11 L 1 1
_’Cul—p ’Cgia—l
When | e; |< ¥, based on (17) the dynamics of the tracking
error e; changes to

(37

Tz (38)

éi = 7’C1i (¢ sgnp+1(ei) + 1/)’l9lei|6i) - ’CQ»L‘ sgna(ei) (39)

Construct the Lyapunov function candidate V, = %e?.
Differentiating V, with respect to time yields

Vo= —Kuio | e; 772 —Krigpd!lef — Ko | e |*F (40)

Since 0 < ¥ < exp(—1), p = 1 — 4, we can derive that ¢ > 0
and ¥ > 0 based on (17). Therefore, we can obtain Vg <0,
which means the system state can asymptotically converge to
the origin. This completes the proof. ]

IV. SIMULATION

In this section, two simulation studies are given to prove
the effectiveness of the proposed method. The first one is to
compare the convergence effect of the proposed non-singular
fixed-time controller and the general TSM controller in [9].
The other is to verify the performance of the manipulator
when it interacts with the environment under the control of
the proposed controller. The simulation plant is a two-joint
manipulator shown as Fig.1, which is given by the parameters

in the dynamics
M 11 _ gl
é;a - [§;2]

Ma = [Mm

M12:| c - [Cu

Ci2
Mg Coa1

022

tracking error ({
°
N

I3
°
&

tracking error (rad)
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s
9

o

05 1 15 2 25 3 35 4 45 5
sampling time

Fig. 2. Comparison of the angle tracking errors in two controllers.

where M1 = L£(1) + £(2) 4+ 2L£(3) cos(q2), M1z = Moy =
E(?) + £<3) COS(C]Q), M22 = ﬂ(?), Cll = —£(3)QQ Sin(C]Q),
Ci2 = —L(3)(¢1 +¢2) sin(gz2), Ca1 = L£(3)d1 sin(gz), C22 = 0,
G1 = L(4)g cos(q1)+L(5)g cos(q1+q2), G2 = L(5)g cos(q1+
g2), L = [2.9;0.76;0.87;3.04;0.87], g is the gravitational
acceleration. To achieve fast convergence and small tracking
error, the parameters in the control torque are finally tuned as
9 =03 p=07a=19, K =Ky = K5 =[50;5 0],
K3 = [50 0;50 0], K4 = [2 0;5 0], K¢ = [0.01 0;0.01 0],
B1=0.5, By = 2.

A. Comparison Study

This simulation setup is to track the same joint angle, where
the desired joint angles are set as ¢,; = 0.6 and ¢,2 = 1.7. The
initial values of the joints are selected as g1 (0) = 1.1, ¢g2(0) =
1.5,G1(0) = ¢2(0) = 0. The curves of the angle tracking
errors are shown in Fig.2, where the label —ng and —7gas
in the legend represent the non-singular fixed-time controller
and the general TSM controller, respectively. It is obvious that
both controllers can converge the angle tracking error, and the
system using the non-singular fixed-time controller has faster
convergence effect than that using the general TSM controller.

B. Manipulator Interacting With Environment

In this simulation, the admittance model is utilized to
modify the reference trajectory, and the proposed fixed-time
controller is employed for angle tracking. The parameters in
the dynamic model are approximated by BRFNN. An external
torque will be exerted on the manipulator from sampling time
8 to 16, where 7, = [2;0]. The original reference trajectory
is designed as gq1 = 1.25 — L exp(—t) + o5 exp(—4t), qaz =
1.25+exp(—t) — 1 exp(—4t). We set the external disturbance
as [2sin(0.2¢); cos(0.5¢) + 0.5sin(0.17t)]. The initial values
of the joints are selected as g1 (0) = 0.6, g2(0) = 1.8, ¢1(0) =
G2(0) = 0. The parameters in the admittance model are chosen
as Dy =[30;30], C4 =[300;30 0] and G4 = [20 0;20 0].
By balancing the computing time and the approximate effect,
the RBFNNSs are designed with 5 neurons and their parameters
are chosen as oy [—1;—0.5;0;0.5; 1],
OM = 0c = Qg = 10, EMi — 2, Eciy = 0.55, EGgi = 0.05,
Pamii = 15, Peis = 10, Pgii = 25. The simulation results are

= O0¢c = O0g =
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Fig. 3. Trajectory tracking with admittance control.
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Fig. 4. Tracking errors.

shown as Figs. 3-5, where ¢; is the real-time angle of the ¢-th
joint of the manipulator, q4; represents the original reference
joint angle, ¢,; denotes the modified joint angle by admittance
model. In the beginning, the modified trajectory gradually
coincides with the reference trajectory, which is consistent
with the admittance model that when f.,; = 0, ¢, — qq.
Then, a large change of the modified trajectory occurs because
of the external torque. The external torque is canceled after
sampling time 16, therefore, the modified trajectory gradually
coincides with the reference trajectory again. We set an input
constrain as 50 Nxm for safety, that is why the control torque is
limited to 50 Nxm at the beginning. During the whole process,
the manipulator can quickly track the modified trajectory even
though there is a large variation in the trajectory.

V. CONCLUSION

In this paper, we propose a non-singular fixed-time con-
troller for unknown-dynamics manipulators. An admittance
model is adopted into the system to realize compliant be-
havior of the manipulator while interacting with environment.

control torque (N*m)

sampling time

Fig. 5. Control torques.

The sliding mode control based on a non-singular fixed-
time switching manifold is introduced to the system control
design, which greatly improves the convergence effect of the
system. In addition, RBFNNs are employed to approximate
the unknown parameters in the dynamics. Simulation studies
verify that the proposed controller has better tracking error
convergence and faster response to external interaction than
that using the traditional terminal sliding mode method.

REFERENCES

[1] P. Xu, C.-F. Cheung, B. Li, et al., “Kinematics analysis of a hybrid
manipulator for computer controlled ultra-precision freeform polishing,”
Robot. Comput. Integr. Manuf., vol. 44, pp. 44-56, 2017.

[2] C. Shin, P. W. Ferguson, S. A. Pedram, et al., “Autonomous tissue
manipulation via surgical robot using learning based model predictive
control,” Int. Conf. Robot. Autom., pp. 3875-3881, 2019.

[3] M. Schumacher, J. Wojtusch, P. Beckerle, O. Stryk, “An introductory
review of active compliant control,” Robot. Auton. Syst., vol. 119, pp.
185-200, 2019.

[4] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” [EEE Trans. Syst., Man, Cybern., vol. 11, no. 6, pp. 418—
432, 1981.

[5] C. Yang, G. Peng, Y. Li, et al., “Neural networks enhanced adaptive
admittance control of optimized robotenvironment interaction,” IEEE
Trans. Cybern., vol. 49, no. 7, pp. 2568-2579, 2019.

[6] G.Peng, C.L.P. Chen and C. Yang, “Neural networks enhanced optimal
admittance control of robot-environment interaction using reinforcement
learning,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1-11, 2021.

[71 Y. Li, C. Yang, W. Yan, et al., “Admittance-based adaptive cooperative
control for multiple manipulators with output constraints,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3621-3632, 2019.

[8] W. He, C. Xue, X. Yu, et al., “Admittance-based controller design for
physical humanrobot interaction in the constrained task space,” IEEE
Trans. Autom. Sci. Eng., vol. 17, no. 4, pp. 1937-1949, 2020.

[9]1 Y. Wu, X. Yu, and Z. Man, “Non-singular terminal sliding mode control
of rigid manipulators,” Autom., vol. 38, no. 12, pp. 2159-2167, 2002.

[10] S. Sivrioglu and K. Nonami, “Sliding mode control with time-varying
hyperplane for AMB systems,” IEEE/ASME Trans. Mechatronics, vol.
3, no. 1, pp. 51-59, 1998.

[11] Y. Tang, “Terminal sliding mode control for rigid robots,” Autom., vol.
34, no. 1, pp. 51-56, 1998.

[12] Z. Man and X. Yu, “Terminal sliding mode control of MIMO linear
systems,” IEEE Trans. Circuits Syst. I, vol. 44, no. 11, pp. 1065-1070,
1997.

[13] Y. Wu, X. Yu, and Z. Man, “Terminal sliding mode control design for
uncertain dynamic systems,” Syst. Control Lett., vol. 34, no. 5, pp. 281—
287, 1998.

[14] L. Zhang, Y. Wang, Y. Hou and H. Li, “Fixed-time sliding mode control
for uncertain robot manipulators,” IEEE Access, vol. 7, pp. 149750-
149763, 2019.

[15] B. Jin, “Robotic manipulator trajectory control using neural networks,”
Proc. Inst. Conf. Neural Netw., vol. 2, pp. 1793-1796, 1993.

[16] G. Peng, C. Yang, W. He, et al., “Force sensorless admittance control
with neural learning for robots with actuator saturation,” IEEE Trans.
Ind. Electron., vol. 67, no. 4, pp. 3138-3148, 2020.

[17] G. Peng, C. L. P. Chen, W. He and C. Yang, “Neural-learning-based
force sensorless admittance control for robots with input deadzone,”
IEEE Trans. Ind. Electron., vol. 68, no. 6, pp. 5184-5196, 2021.

[18] A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of
linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp.
2106-2110, 2012.

[19] B.Jiang, Q. Hu and M. 1. Friswell, “Fixed-time attitude control for rigid
spacecraft with actuator saturation and faults,” IEEE Trans. Control Syst.
Technol., vol. 24, no. 5, pp. 1892-1898, 2016.

[20] Z. Zuo and L. Tie, “A new class of finite-time nonlinear consensus
protocols for multi-agent systems,” Int. J. Control, vol. 87, no. 2, pp.
363-370, 2014.

[21] C. D Rahn, Mechatronic Control of Distributed Noise and Vibration: A
Lyapunov Approach. Heidelberg, Germany: Springer-Verlag, 2001.



