Learning Through Programming Games:
Teaching AI With Pac-Man and Netlogo

Jim Smith and Steve Cayzer

Abstract In this paper, we describe a series of practical exercises designed to aid
the teaching of introductory topics in Artificial Intelligence using the metaphor of
the well-known arcade game Pac Man. They are aimed at level one students from a
range of disciplines and motivated by a view of Artificial Intelligence as a means of
automating the problem solving process. Therefore each piece of practical coding
is preceded by an exercise to illuminate the human cognitive activities involved.
The first set of exercises start with search strategies and gradually build up via rule-
based and expert-system approaches to create a pac-man player based on traditional
Al The second semesters activities concentrate on how computational approaches
such as artificial neural networks and evolutionary computation provide a radically
different approach to generating and improving controllers.

1 Introduction

Systems containing some kind of Artificial Intelligence (AI) form the state of the art
in many applications of computing, across the spectrum of social and economic ac-
tivity, from data-mining to films and games via most non-trivial web-based applica-
tions. Moreover the future is certain to contain more, rather than less such systems.

Despite this, many undergraduates view Al as a rather dry subject matter, a sit-
uation which is not helped by many of the learning exercises to be found in text-
books and on-line coursework materials. Several authors have attempted to address
these using robotics-based tutorials [1,2, 3] but these tend to be specific to certain

Jim Smith
Department of Computer Science, University of the West of England, Bristol BS16 1QY, UK, e-
mail: james.smith@uwe.ac.uk

Steve Cayzer
Department of Computer Science, University of the West of England, Bristol BS16 1QY, UK,
e-mail: steve2.cayzer@uwe.ac.uk

Jim Smith and Steve Cayzer

aspects, and often require programming skills beyond a typical level one student.
More importantly, a series of informal conversations with current and potential stu-
dents revealed a view of anything using robots as somewhat techie and off-putting.
Certainly there is a concern that they can reinforce a view of Al as primarily relevant
to the robotics community rather than to all disciplines within computing.

A second problem facing the would-be teacher of a general course on Al is that
books are often specialised, and/or often use different examples, and different soft-
ware to illustrate and teach different types of Al This raises issues where either
students face the overheads of learning many different software packages, or are
required to code their own algorithms, which risks turning Al classes into coding
tutorials.

An alternative approach, based on a series of group-work paper exercises has
been tried with some success at UWE in recent years In seeking to develop the
courses to which Al contributes, it was recognised that the inclusion of more prac-
tical activities and problem-solving exercises would provide benefits beyond the
remits of this module alone. This analysis lead to the identification of the following
wish-list to which any new set of activities should adhere:

Use of a metaphor which is well-known and liked across a range of backgrounds.
Use of a common programming environment, supporting tutor-provided scripts
/ functions to create a naturalistic style of programming with as low a learning
overhead as possible.

e Coverage of the syllabus elements of search strategies, rule-based systems,
expert-systems creation and maintenance, artificial neural networks, evolution-
ary computation and swarm intelligence (multi-agent systems).

e Use of a free, lightweight, and simple to install software environment. Preferably
one which also contains or supports a range of other examples to stimulate the
more able students

In the rest of this paper, we describe how this analysis lead us to design a series
of practical exercises using the metaphor of the well-known arcade game Pac Man,
and implemented in the Netlogo environment [4]. The paper proceeds as follows:

e Section 2 provides background context on the size and nature of the module, and
the use of group exercises.

e Section 3 describes the netlogo environment and how it has been used for this
work.
Section 4 describes the first semesters activities, based on traditional Al
Section 5 describes the activities in the second semester supporting the learning
of Computational Al

e Finally in Section 6 we discuss our findings and experience to date and draw
some conclusions.

Learning Through Programming Games: Teaching Al With Pac-Man and Netlogo

2 Background and Context

These materials were developed to be used on the UWE level one module Introduc-
tion to Artificial Intelligence. This module is compulsory on several degrees such as
the BScs in Computer Science, Robotics, and Games Technology, and optional on
several others. Typically there are between 125 and 150 students taught via one hour
lecture and a 90 minute tutorial each week. The tutorial is timetabled to run two or
three times with 50-75 per session, and uses a trolley of tablet pcs for interactive
group work. The module makes extensive use of the Blackboard t VLE to deliver
course notes, reading materials and weekly self-assessment tests [5], and to mediate
facilitate groupwork through discussion fora, dropboxes etc.

The syllabus of the module is fairly conventional. In the first semester the stu-
dents briefly cover philosophical issues such as Turings test, and Searles Chinese
Room problem, but primarily as a means of focussing on what Al in practice can or
might involve, in opposition to what Hollywood might portray. From there a num-
ber of scenarios (driving a car unaided, acting as a tour guide, playing table tennis)
are used to highlight how Al behaviour can be broken down into groups of related
tasks, and the input-model-output paradigm of computing is used to group these
and introduce the idea of all learning as a search through a space of possible inputs
(or sequences), models, or outputs. During these first two-three weeks the tutorials
activities primarily use relatively large group exercises (10-15) where the students
work on a problem (identifying tasks in the above scenarios, designing questions for
their online Turing test) before presenting their results to the class. These tutorials
have been developed and refined to serve additional purposes as ice-breakers and
development of skills in group working and collaboration.

The formal lectures then move on to cover blind and informed search strategies
as means of automating search (depth-/breadth-/best- first, hill-climbing, A*) then
knowledge representation: moving through first order logic and rule-base systems,
via expert systems to the Semantic Web.

Semester two starts with a recap of the ideas of learning as search, the three
principle classes of search space and some examples of relevant technologies be-
fore moving on to cover three areas in more depth. The first is Artificial Neural
Networks: perceptrons and simple MLPs with back-propagation as a hill-climbing
search method. The second is Evolutionary Computation as a general-purpose
search method, illustrated by Genetic Algorithms for optimisation and Genetic Pro-
gramming for model-building (see e.g. [6]). Finally the cellular Genetic Algorithm
is recast as an emergent process and used to introduce the topic of swarm intelli-
gence illustrated by optimisation Ant Colony Algorithms [7], model-building with
ant metaphors [ibid] and simulation with Reynolds Boids [8].

The majority of the activities designed to support this learning had the students
working in groups of three or four. Typically, after the task was introduced, every-
one would be asked to think about it individually for five minutes before the group
activities commenced, and at the end of the session a wrap-up discussion would see
the groups working together either in competition or collectively to come up with
ideas how this work could be used to solve some larger task.

Jim Smith and Steve Cayzer

3 The Netlogo Environment

The Netlogo environment is an open-source multi-platform package for developing
and running simulations of multi-agent systems. Based on a variant of the logo pro-
gramming language, it combines a simple interpreted scripting tool with an interac-
tive interface for running, pausing and manipulating scripts. A netlogo file consists
of three sections, one describing the interface, a second the instructions, and a third
containing the code for the runtime procedures. These are parsed into different tabs
in the netlogo environment. Scripts can also be saved as applets embedded in a web
page containing the instructions. Netlogo has been used for both research and teach-
ing in a range of disciplines covering the physical sciences, sociology, economics
etc. A wide range of models of systems are available, including the Pac-Man imple-
mentation, which inspired this work. A screenshot is shown in Figure 1.

Pac-Man is a classic arcade game in which the player steers a character (the pac-
man) around a maze eating pellets of food and trying to avoid a number of mobile
ghosts which attempt to eat the pacman reducing the number of lives left. As extra
complications power pellets temporarily change the appearance of the ghosts, ren-
dering them edible to the pacman. While conceptually simple, the games involves
search (finding the valid paths to uneaten pellets), classification (recognizing the
edibility of ghosts), tasks hierarchies (avoiding being eaten) and planning (e.g. not
eating the power pellet if no ghosts are within range). .

In addition to the very well-written, user-friendly environment, Netlogo has the
advantage of a small language and syntax, and great extensibility. Thus the students
only need to learn how to use Boolean constructs (which end in ?), and the syntax of
if, ifelse, “foreach” and while. All the rest of the detailed syntax and coding niceties
(list operations, observer functions, exception handling) can be hidden by the tutors
writing suitably named procedures.

© 00 Netlogo — Pac-Man (/Users/jsmith/|

Fig. 1 Screenshot of Netlogo
PacMan model. Note tabs
for switching between inter-
face, Information and scripts
(Procedures).

Learning Through Programming Games: Teaching Al With Pac-Man and Netlogo

4 Search Methods

In order to accustom the students to the idea of blind search, how people use
memory and clues, and how making assumptions can help search, the first tutorial
takes the form of an interactive applet which presents the students with an initially
blank grid. They are told that they have to manoeuvre the pacman around using
up/down/left/right keys to find a gold square. As the students manipulate the pac-
man they are encouraged to write down the strategies they are using. An on-screen
counter displays how many moves they have made which form a natural basis for
competition and comparing strategies.

One powerful teaching tool is the ability to toggle the mazes visibility, either by
displaying a limited window around the pacman, or by simply displaying the whole
maze at all times; the latter allowing strategies which employ look ahead. Another
equally important parameter is memory; this is achieved by colouring visited cells
green and hence facilitating movements that prioritise unexplored directions. The
students were asked to formalise how these factors affected their planning strategy.

To start off with, the task is set with a maze that contains no loops and the gold
is towards the middle. In the 2009 run, about half of the groups discovered or re-
called a wall-following strategy. There seemed to be correlation between success,
and experience of physical mazes.

The role of the tutors in these sessions is critical to it becoming more than just
a play session. We used two or three tutors per session, who moved between the
groups asking questions, prompting and commenting. The other factor critical to
success is the use of a twenty minute wrap-up session with plenty of student inter-
action. During this stage a number of common points should be drawn out and then
related back to the more formal language of the lectures. As mentioned above, this
module is core to several different degrees, so in addition to the obvious points about
memory and the value of heuristics (e.g. most students do turn towards the middle)
the exercise could facilitate discussion tailored to different degrees e.g. global vs
local models for Robotics students, storage and run-time analysis for Computer Sci-
ence students etc. At the end the students are asked to document their solution online
sufficiently unambiguously that another group could follow it.

In the second session the students work in the Netlogo environment. They are
asked to modify the scripts from the first tutorial to implement either depth-first
of bread-first search. The scripts are heavily commented to show where the new
automated code should go. They are provided with examples of if, if-else and nested
versions of these, to aid them with syntax. Most importantly, they are give an set of
primitive constructs from which to build their code. These include Boolean tests
(e.g. can-turn-left?, wall-ahead?) and functions to turn the pacman (turn-left, go-
ahead, turn-around, turn-north,). The surrounding code deals with the movement of
the pacman, so their code only needs to decide which way the pacman should face
at each timestep.

Most students correctly identified their previous wall-following strategy as a ver-
sion of depth-first and chose to implement that, and recognised that they should
use relative (left, forward, right) rather than global (North, East, South, West) co-

Jim Smith and Steve Cayzer

ordinate systems. Given the range of experience and ability of a large level one
class, this task is challenging for some, and achievable for others. They were given
two mazes one with loops so that the more able students could think about how
to modify their code to cope with recursive or looping mazes. Most groups success-
fully built the controller to navigate the loop-free maze.

To reinforce this, at the start of the second session the students are asked to
self-organise themselves so that no two members of the previous weeks groups are
together, at least one person in each group did get the first maze solved last week,
and at least one did not. They are then given a short period to explain their previous
code to each other, and decide on the final version of their code, before a random
member of the team is asked to demonstrate and explain it.

They are then shown a new Netlogo script in which, rather than a single pac-
man moving around the web, the current pacman moves along the maze to the next
junction whereupon it spawns one child facing along each unexplored path (if there
are any) and then dies, whereupon a decision has to be made which of the extant
pacmen to move next. Each pacman contains variables recording their depth and
the initial distance_to_goal. This latter records the Euclidean distance to the goal,
which is of course not necessarily the path distance but it is at least an optimistic
heuristic, which is a prerequisite for the optimality of A* search. Manhattan distance
is another alternative which can be used. Care needs to be taken to take account of
wrapping (that is, if the world is a torus or a 2D grid). All these details can be hidden
from the students but are available for discussion if appropriate.

Figure 2 shows a screen shot of breadth-first search with this model, and Figure
3 the code. As shown in Figure 3, the script contains a ranger of primitives and
switches, and the task is use these to create implementations of depth/breadth and
best-first search, Hill-Climbing and A*.

A number of mazes are provided, and an informal competition between the
groups encourages experimentation. At the end of these sessions all groups had
working implementations of procedures that could be built into a final pacman con-
troller to provide different search mechanisms, and some understanding of the char-
acteristics of each search method.

Fig. 2 Breadth-first search.
Current pacman is coloured
yellow. Two other pacmen at
same depth are coloured white
(these are slightly overlaid,
waiting to explore their paths)
and a pacman at the next — :
depth is coloured red. == -

Learning Through Programming Games: Teaching Al With Pac-Man and Netlogo

5 Knowledge Representation

The decision to ask the students to build a controller that decided which way to face
at each timestep, while hiding the looping and movement phases, allowed a deliber-
ately focus on conditional logic. Once the lectures move on to consider knowledge
representation, rule-based and expert systems this is further extended in a series
of exercises which build on this rather stylised form of propositional logic. In the
first exercise the students are shown netlogos turtle shape editor and are first asked
to create and save new ghost shapes. They are asked to create some classification
rules that will assign this ghost shape to the class edible or inedible based on visible
characteristics. Figure 4 shows an example of such a shape.

They are asked to add the ghost details into a world map which is a spreadsheet
containing maze and ghosts characteristics. They need to instantiate new ghosts,
label them as edible or inedible and finally create new attributes describing their
ghosts.

The students are also provided with a script, which loads a map containing four
ghosts (two colours, with or without spectacles). The script calls a stub function that
classifies each ghost in turn. The primary learning task is thus to write the code that

if need-to-pick-another-pacman?

[

;;set current-pacman-id get-oldest-pacman

; i set current-pacman-id get-youngest-pacman

;;set current-pacman-id get-closest-of-all-pacmen

; ;set current-pacman-id get-furthest-of-all-pacmen

set back-tracking-allowed? FALSE

set current-pacman-id get-closest-child-of-last-parent
;;set current-pacman-id get-oldest-child-of-last-parent
; ;set current-pacman-id get-youngest-child-of-last-parent
update-parent-id

]

Fig. 3 Code Fragment for search currently implementing hill-climbing.

|

Rotate Left
Rotate Right

Fiip Horizontal
Fip Vertical

[V Snap to arid
i
Fig. 4 Screenshot of Turtle
Shape Editor showing a new
ghost shape created by the
students with the attribute red
eye indicating that this ghost
is inedible.

I Rotatable

Jim Smith and Steve Cayzer

correctly classifies all the ghosts. Depending on how the ghosts are labelled, and
the number of attributes assigned to the ghost breed, this activity provided scope for
discussion of rule-hierarchies, default rules, disjoint and conjoint logic.

Depending on how the ghosts are labelled, and the number of attributes used in
the classification rules, this activity provides scope for discussion of rule-hierarchies,
default rules, disjoint and conjoint logic. The script shown in Figure 5 shows one
of the possible ways of correctly classifying the four ghosts. Of course there are
many equivalent ways of doing this, providing scope for a wrap-up session where
the different versions produced by students are shown to be formally equivalent.

In the current years run (2009-10) the task of putting together the classification
code with the search strategy was left as an exercise for the students to work on in
their own time. A review session at the end of the term provided for more inten-
sive help and guidance with this. Instead the final set of tutorials focussed on the
specification, creation and maintenance of expert systems. Using the maze from the
previous tutorial, the students were asked to devise a set of rules to determine the
step-by step actions of the pacman.

Figure 6 shows 2 example rules, built using a range of (supplied) primitives in-
cluding choice, condition and action functions. Choice functions include returning
a set of directions to test in the absolute (north, south, east, west) or relative (for-
ward, left, right, behind) or random direction. Condition clauses include simple tests
(clear, safe), ones that involve lookahead (ghost ahead), classification (edible ghost
ahead), heuristics (nearer to edible ghost) and memory (unexplored). Available ac-
tions include both absolute (move north) and relative (move left, turn around) op-
tions. Higher level planning for the more advanced students was provided through
the use of route planning (choose next edible ghost).

The rule production was done as a pyramiding activity each member of the group
was asked to come up with single rule describing a particular situation, and then the
group collectively refined the combined rule set and implemented it iterating as nec-
essary to achieve the desired behaviour. The groups were free to use the procedures
provided, or any other ones they had developed or used previously.

to-report classify-ghost

;; test for conjunction
if (color = 15) and (glasses? = true)
[report "edible"]

;7 2nd test: disjunction
if (color = 85) and (glasses? = false)

[report "edible"]

;; otherwise assume inedible
report "inedible"

Fig. 5 One version of code to classify ghosts.

Learning Through Programming Games: Teaching Al With Pac-Man and Netlogo

In the final practical of this section, the students were invited to put their clas-
sification, search and expert system work together in a series of provided mazes,
with challenges such as dead ends and moving ghosts. Supporting material has been
made for motivated students to extend this work into the full pacman game with
pellets and power pills.

This activity provided a valuable experience in the naturalness of expert systems,
but also of the difficulties of ensuring correctness and maintaining the rule bases.
It also showed how increasing levels of knowledge can be built into rules which
deal with environments at a range of complexities. The classification, expert system
and route planning activities also showed how Al techniques can be employed at
different levels of detail.

5.1 End of Semester Competition

In the final tutorials it was pointed out that the pellets in a traditional pacman maze
can be considered as simply a different type of static edible ghost. The students
were provided with a version of pacman with pellets and ghosts that moved at the
same speed (and just after) the pacman and a competition was held to see which
traditional Al based strategy could achieve the highest score. This will be repeated
at the end of semester two.

set pacman-still-to-move? true

;7 rule 1
foreach all-directions
[
if pacman-still-to-move?
and is—-direction-clear (?)
and is-direction-safe (?)
and is—-direction-unexplored (?)
[move (?) 1]

;5 rule 1
foreach all-directions-random
[
if pacman-still-to-move?
and is-direction-clear (?)
and is—-direction-safe (?)
[move (?) 1

Fig. 6 expert system style rules for a pacman controller.

Jim Smith and Steve Cayzer

6 Artificial Neural Networks

It should be pointed out at this stage that these activities are being run for the first
time in 2009-10, so the activities described hereafter have been planned and tested
by the tutors but not yet run in class.

The lectures for this topic cover the use of perceptrons as a stylized represen-
tation of the action of biological neurons, Hebbian learning, and the strengths and
weaknesses of single perceptrons e.g. the XOR problem. They move on to cover
simple multi-layer perceptrons (MLPs) and back-propagation. Among the set of
models that come provided with Netlogo are a simple perceptron and a three-input,
two-hidden node MLP. These come with train/test routines for learning and testing
simple functions such as or/and/xor. A particularly nice feature is that the value of
the weights are show graphically by varying the width of the link between nodes.
Having used the pre-built models to demonstrate the behaviour on simple logical
functions, the first set of activities then uses a modified versions of the perceptron
model. Using training and test sets built from variations on the set of four ghosts
from Figure 4, the learning goal is to show how these formal functions relate to
practical problems by showing that the perceptron is capable of learning rules that
correctly classify ghosts - effectively using and and or, but not xor. In a subsequent
set of activities the multilayer perceptron is used with the same tasks. Issues such
as over-fitting and scalability are illustrated by varying the number, type and size
(number of attributes) of ghosts in the training set. In the final set of activity the stu-
dents will take the trained MLPs and insert the code into their previous controllers
in place of the rule-based classifiers.

7 Evolutionary Computation

Like many agent-based systems, netlogo comes complete with a model of a sim-
ple genetic algorithm using one-point crossover, bitwise mutation and fitness-
proportionate selection to evolve a solution to the binary OneMax problem, where
the fitness is simply the number of bits in a string. Sliders in the interaction tab allow
the effect of changing selection pressure, mutation and crossover rates, and popula-
tion sizes to be explored. Modifying the fitness function to explore individual tasks
relevant to the pacman game is relatively straightforward. In this case an interactive
client-server model has been devised, where the tutor runs a genetic algorithm that
interactively requests the fitness value for each member of the population. The tutor
distributes the individual binary strings to the different groups via a Blackboard dis-
cussion fora. Each group pastes their solution into a file, then loads that file into the
pacman simulator where it is interpreted as a set of rules governing motion (tech-
nically each rule is a turtle owning an action attribute which it reads from the file).
At each time step the state of the neighbourhood is queried and used as an index.
The corresponding rule is then queried to provide the relevant action. The fitness
given to a rule set is the score obtained (number of pellets eaten in a fixed number

Learning Through Programming Games: Teaching Al With Pac-Man and Netlogo

of lives and time steps). The binary representation for this problem is effectively a
Pittsburgh-style classifier system, and works as follows:

e Only the three squares left, right and ahead of the pacmen are considered.

e Initially each cell is considered occupied (by a wall) or empty.

e In the more complex version, the occupancy of each of these takes one of four
values: empty, wall, edible, inedible

There are 8 (64) of these situations, for each of which there are four possible out-
puts (turn left/right/around, go ahead) coded by two bits, so the representation is a
16 (128) bit binary string. Working with 15 groups per session - and so a population
size of that size - should provide well able to solve the simpler problem, and able to
make a good attempt at the more complex one. In practice for the latter it may be
necessary to tweak the rule set or to seed the initial population with some rule sets
that actually achieve something. Should time permit a script that merges the pac-
man and genetic algorithm code and runs the pacman simulator without displaying
it will be produced. This will show a simple plot of fitness vs. time and possible the
behaviour of the best in the final generation. Another option under current consid-
eration is the creation of a Genetic-Programming-like system to evolve rule sets for
classifying ghosts or to control behaviour based on the Sondahls GP framework in
netlogo and Maze Marchers model [9].

8 Swarm Intelligence

The agent-base nature of netlogo makes it eminently suitable for illustrating swarm
intelligence, and models exist in the distribution to show ant-based clustering and
route-finding. As an exercise the students shown how to modify the pacman model
code to start with multiple pacmen, and then asked to investigate how they interact
and to find a set of rules that facilitates productive interaction to clear the maze of
pellets more rapidly. This is deliberately left as an open-ended task to encourage
exploration of different ideas.

9 Conclusions

This paper reports an attempt to enliven the teaching of artificial intelligence by a
coherent set of providing practical activities which illustrate al the main elements of
an introductory course to Al via the metaphor of PacMan. These activities have been
running since September 2009 and have been well received. Attendance, already
high in previous years has been extremely high and activity of discussion board
sand between classes has been higher than usual. Of course at this stage it is too
early to say whether this is because of a change in the nature of the activities, or
the use of PacMan. Developing these activities has been an extensive and iterative

Jim Smith and Steve Cayzer

task. It is expected that the activities for semester two may change from week to
week as they are rolled out. Should time allow, there are a huge number of options
for future development for example the Hub-net client-server model provided in
Netlogo should prove ideal to co-ordinate some of the activities in semester two.

10 Acknowledgements

The author would like to thank Doctor Gordon Downie for his input to this project.
The work was supported by grants from the Faculty of Environment and Technology
at UWE (Development of interactive small group tasks to be embedded within larger
group tutorials) and the Higher Education Academy Subject Centre in Information
and Computer Sciences (Teaching Artificial Intelligence with PacMan).

11 References

[1] Kumar, D, and Meeden, L. A Robot Laboratory for Teaching Artificial Intelli-
gence, Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Com-
puter Science Education (SIGCSE-98), Daniel Joyce, Editor, ACM Press, 1998.

[2] Karapetsas , E. and Stamatis, D., Teaching AI Concepts Using a Robot as an As-
sistant, in Fasli, M. (ed.) Proceedings of the 4th Artificial Intelligence in Education
Workshop, Cambridge, UK. HEA-ICS, 2009.

[3] Parsons, S. and Sklar, E. Teaching Al using LEGO mindstorms, Proceedings of
the AAAI Spring Symposium on Accessible Hands-on Artificial Intelligence and
Robotics Education, Stanford, 2004.

[4] Wilensky, U. NetLogo. Available from http://ccl.northwestern.edu/netlogo. Cen-
ter for Connected Learning and Computer-Based Modeling. Northwestern Univer-
sity, Evanston, IL. 1999

[5] Smith, J.E. Re-usable Online Assessment Materials for Teaching Artificial Intel-
ligence in Fasli, M. (ed.) Proceedings of the 4th Artificial Intelligence in Education
Workshop, Cambridge, UK. HEA-ICS, 2009.

[6] Eiben, A.E. and Smith, J.E. Introduction to Evolutionary Computation Springer,
2003.

[7] Dorigo, M. Swarm Intelligence. Oxford University Press, 1999.

[8] Reynolds, Craig (1987), "Flocks, herds and schools: A distributed behavioral
model.”, SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques (Association for Computing Machinery): 25-34,
doi:10.1145/37401.37406, ISBN 0-89791-227-6

[9] Sondahl, F., Solving Mazes with Genetic Programming Final Year project, 7CS
460: Multi-Agent Modeling, Northwestern University (2005).

