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Abstract

Advances in flexible electronic devices and robotic software require that
sensors and controllers be virtually devoid of traditional electronic compo-
nents, be deformable and stretch-resistant. Liquid electronic devices that
mimic biological synapses would make an ideal core component for flexible
liquid circuits. This is due to their unbeatable features such as flexibility,
reconfiguration, fault tolerance. To mimic synaptic functions in fluids we
need to imitate dynamics and complexity similar to those that occurring
in living systems. Mimicking ionic movements are considered as the sim-
plest platform for implementation of neuromorphic in material computing
systems. We overview a series of experimental laboratory prototypes where
neuromorphic systems are implemented in liquids, colloids and gels.

1. Introduction

Complex systems can be correspondingly abstracted in algorithmic for-
mats to describe phenomena that have traditionally been cognition avoided.
Such as the complexities of biological sensorial-actuation networks, through
which phenomena such as ”intelligence” are hypothesized even in organisms
without a nervous system. The sensor-actuator collections represent the first
order of cybernetic systems, which have been extensively studied and repli-
cated. [1] Such applications of computational concepts and the development
of experimental devices in that field enclasp ”unconventional computing”. [2, 3]
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The term ”neuromorphic” was invented by Carver Mead in the 1990s
to refer to very large-scale of integration computing systems (VLSI) with
mixed analog/digital signals, inspired by the neuro-biological architecture
of the brain. [4] A neuromorphic feature of an engineered system mimics the
structure or function of a single or multiple components of the Metazoan ner-
vous system. Typically, this involves attempts to replicate the phenomenon
of synaptic plasticity: self modulation of the excitability of neuron-neuron
junctions (synapses), towards replicating state retention (‘learning’) via a
process of entrainment with graduated input (‘neuromodulation’). Neu-
romorphic devices, as an unconventional computational model, are worth
researching owing to certain features of their biological counterparts, such
as massive parallelism, emergence, and low power consumption, which are
highly desirable for imitation. [5, 6, 7, 8, 9, 10,11,12,13]

‘Neuromorphic engineering’ emerged as an interdisciplinary field of re-
search that focusing on building electronic neural processing systems that
directly imitate the biophysics of real neurons and synapses, [14, 15,16]or ulti-
mately allow direct communication with neurons . [17] Recently, the definition
of the term neuromorphic has expanded in two additional directions. [18] Ini-
tially, the term neuromorphic was used to describe spike-based processing
systems that were engineered to discover large-scale computational neuro-
science models. Second, neuromorphic computations involve specific elec-
tronic neural architectures that implement neural and synaptic circuits. [19]

Neuromorphic computing hardware requires physical models at three dif-
ferent levels: (1) individual components such as artificial synapses and neu-
rons, (2) Networks of these neurons and synapses, and (3) Learning rules
and training methods. [20] Historically, early attempts at understanding the
mammalian brain focused on the physical aspects of neurons including the
McCulloch–Pitts neuron [21] and Rosenblatt perceptron, [22] which formed the
basis for further development. Briefly, the cell body of a neuron collects and
sums the charges generated by synaptic connections in the dendrites until the
total charge reaches a threshold after which the neuron fires a spike along
the axon. [23] The resulting spike is transmitted to other neurons connected
to that synapse, which depending on the synaptic weight can augment or
inhibit the signal. A more accurate Hodgkin-Huxley physiological model [24]

includes differential equations with more than 20 different parameters such
as the concentrations of K+ and Na+ ions, which became the basis for subse-
quent approximations. [25, 26] Subsequent research in neuroscience shifted the
focus to the conceptual basis of higher levels of learning, cognition, and be-
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haviour of neuronal populations, which the resulting models became the basis
for Neural network architecture (ANN) (for example, Hopfield networks) and
learning rules (for example, Hebbian learning). [27]

In this regard, systems such as Spiking Neural Networks (SNN), the third
generation of neural networks, [28] are extremely representative. However,
there is important cross-fertilisation between the technologies needed to de-
velop efficient SNNs and the more traditional non-spiking neural network
technologies, known as artificial neural networks (ANNs), which are usually
time-based. [29]

Early successes in neuromorphic computing have relied heavily on conven-
tional electronic materials. In particular, spiking neural networks composed
of silicon-based Complementary Metal Oxide Semiconductor (CMOS). [30, 31,32]

Since CMOS chips have disadvantages such as inefficient and high energy
consumption synaptic operations based on volatile random access memory
(RAM), considerable effort has been focused on non-volatile memory (NVM)
as a basis for neuromorphic computing. [33] Among the empirical understand-
ing of NVMs we should mention the Resistive Switching Devices (RSDs), to
whom the memristors [34] belong, which has a transition between different
impedance modes that can be related, for example, to binary information.
Such a voltage-controlled, reversible, stable transmission depends on several
nano scale phenomena. [35] The simultaneous presence of NVM and multi-
mode switching in memristors [36, 37] gives CMOS-memristive hybrid circuits
promising for edge computing and the Internet of Things, so that local pro-
cessing of analog and digital data on mobile devices reduces the need for
cloud access. [38]

Conventional Von-Neumann computers based on CMOS technology do
not have the inherent capabilities to learn or deal with complex data such
as the human brain. [29] To overcome the limitations of digital computers,
considerable research efforts have been made around the world to develop
profoundly different approaches, inspired by biological principles. One such
approach is the development of neuromorphic systems, namely computer
systems that mimic the type of information processing in the human brain. [39]

To mimic the synaptic functions of the brain, nonlinearity, memory fea-
tures and rich systems dynamics are needed [41, 42] Dynamics, understood as
evolution of systems in time (or time-ordering of evolution steps) is the turn-
ing point of all neuromorphic computing systems. Exotic concepts, like time
crystals (time crystal is a quantum system of particles whose lowest-energy
state is one in which the particles are in repetitive motion), [43] are considered
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Figure 1: Schematic of (a) biological synapse, compared to organic artificial synapses with
working mechanisms of (b) charge trapping, (c) conductive filament, (d) ion migration,
(e) floating gate, and (f) dipole alignment. Reproduced with permission. [40] Copyright
2019, American Chemical Society (ACS) Publications.
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as universal models for neuromorphic information processing. [44] This con-
cept is fully in line with idea of polychronization: computation with spiking
neurons operating in desynchronized fashion, thus forming a complex spa-
tiotemporal fabric of oscillations [45] so important for cognitive processes. [46]

One of the ways to achieve perfect mimicking of neuronal dynamics and in-
formation processing is replication of ionic movements in the nervous system
(Fig. 1). Therefore, it is important to note that ions move easily in liq-
uids [47] and in soft matter in general. [48] Gels, viscous and non-homogeneous
media are especially interesting in this context - complex diffusion and other
transport phenomena, described in terms of fractional calculus, are ideal for
mimicking complex dynamics of neural systems. [49, 50] The term iontronics
has been coined to describe electronic-like devices and systems based on ion
as information carriers. [51] In numerous cases iontronic devices are based on
membranes with pores of controllable dimensions, which leads to anomalous
transport phenomena. [52, 53] These phenomena, in turn, embodied in devices
called nanofluidic memristors, are proposed as a bio-inspired information
processing platform. [54, 55]

Electrochemical process devices have shown promising synaptic proper-
ties that are useful in artificial synaptic devices because the electrochemical
reactions of ions can mimic the movement of ions in the nervous system. [56, 57]

Along with synaptic functionalities, interaction of metal ion with neural ex-
tracellular matrix in the brain was postulated to be responsible for metal,
most probably via modulation of synaptic plasticity. [58] Resistive switching
and extremely fast (at least as compared with living neurons) responses up to
the range of hundreds of kHz have been observed in electrochemical devices,
which allow the expansion of biological functions. [59]

The Liquid State Machine (LSM) [60] is a nervous system-inspired algo-
rithm that mimics the brain’s ability to process spatio-temporal data. Of
course, this particular term ‘liquid’ does not mean that the physical system
is in a liquid state, but rather refers to the surface of a liquid that is affected
by input forces and creates a pattern of reciprocal waves. A single LSM net-
work can be used as a general intelligent processor that processes different
data streams on a single stream to extract different features. [61] The flow of
the LSM model training process is as follows:

1. Initialization. Each neuron in the fluid is randomly selected as an
inhibitor or excitator, depending on the ratio of inhibitory or excitatory
neurons. The entire set of connections and their corresponding synaptic

5

10.1002/cphc.202200390

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem

This article is protected by copyright. All rights reserved.



strengths are initialized.

2. A set of inputs u(t) are fed into the input layer.

3. The liquid response is calculated based on step (1).

4. The responses in the previous time step are fed into the output layer
and are also stored for the next time step (to calculate liquid response).

5. The Liquid response is used to train the next category, using a specific
training algorithm and update rule.

6. Repeat steps 2-5 on all of the input training sets. [61]

The liquid state machine (LSM) [60] mimics the cortical columns in the
brain. Cortical microstructures are thought to represent non-linearly input
stream into a high-dimensional state space. This high-dimension representa-
tion is then used as input to other areas in the brain where learning is possible.
The cortical microcircuits have a sparse representation and (slowly) fading
memory, The microprocessor state is in the ‘forgets’ state for a certain period
of time. While LSMs may be able to mimic certain functions in the brain,
it should be noted that LSMs cannot be used to explain how and why the
brain functions. [62]

Liquid marbles (LMs) are spherical microlitre quantities of fluid with a
coating of superhydrophobic particles that can be tens to thousands of mi-
crometers in diameter. [63, 64] LM devices are able to perform computation
through a variety of non-standard logics, where the LMs are considered as
data or otherwise, to contain data (i.e. chemical reactants), which may in-
teract with other LMs via collisions that will result in data translation or
transfer via ricochets or coalescence. [65, 66] By exploiting the principles of
collision-based computing [67], LM computing devices may be used to imple-
ment non-standard, collision-based conservative logic [68]. The integration
of LM properties, such as collisions that their results may have been engi-
neered (reflection or integration), and the potential for chemical reactions
between two heterogeneous fluid cores after collisions, further reinforces the
traditional conservative logic toolkit [13].

In the present review, we first briefly introduce the liquid, colloidal, and
gel neuromorphic systems, followed by the review of various liquids, colloids
and gels synaptic devices and their achieved results in neuromorphic com-
puting.
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Figure 2: (a) Schematic diagram of a biological neuron. (b) Schematic illustration of
a biological synapse. (c) Structure diagram of a top gate electrolyte-gated transistor
(d) Schematic diagram of the EDL modulation of the electrolyte-gated transistor. (e)
Schematic diagram of the electrochemical modulation of the electrolyte-gated transistor.
Reproduced with permission Copyright. [69] 2021, American Institute of Physics (AIP).
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2. Neuromorphic liquid systems

In abstract neural networks, information is displayed as weighted connec-
tions or synapses between neurons (Fig. 2). Since the primary computational
bottleneck for artificial neural networks is multiplication of the matrix vec-
tor so that the inputs are multiplied by the weight of the neural network,
conventional processing architectures are not suitable for simulating neural
networks and often require a lot of energy and time.In addition, in biological
neural networks, synapses are not binary junctions, but represent a nonlinear
response function because neurotransmitters propagate between neurons. [62]

Synapse like liquid devices are summarised in Tab. 1, in the following we
discuss some of the key implementations.

Table 1: Summary and comparison of reported synaptic neuromorphic liquid devices.
Neuromorphic
liquid device

Device materi-
als

Availability
of stimuli

STP/STD LTP/LTD
Functionality
of plasticity

Refs.

MoO3 device 2D MoO3 Electricity No No yes [70]

Memtransistor 2D SnO2 Electricity yes yes yes [71]

Transistor
PDVT-10, Ion
gel, Si

Electricity yes yes yes [72]

Flexible
RRAM

PEDOT:PSS Electricity yes yes yes [73]

Transistor PEDOT:PF6 Electricity yes yes yes [74]

Memristor Cu/Ag@AgCl Electricity No No yes [75]

Neurons regulate synapse weight depending on stimulation to store infor-
mation, and neuromorphic computational concepts use “synaptic plasticity”
to mimic short- and long-term memory processes. Inspired by this, Cheng
Zhang’s group [70] have presented a systematic study of ionic liquid gating of
exfoliated 2D molybdenum trioxide (MoO3) devices and the resulting electri-
cal properties by electrochemical doping through ion migration during ionic
liquid bias (IL) Related. The formation of a dual electrical layer in ionic liq-
uid (IL) can induce charge carriers electrostatically or collect ions inside and
outside the lattice. This process can cause many changes in the electronic,
optical and magnetic properties of the material and even change the crystal
structure of the material. In this study, the conductivity of the MoO3 was
approximately 9-fold for the two types of ionic liquids studied. In addition,
it was possible to turn on and off quickly through a lithium-containing ionic
liquid, while much slower fusion was induced through oxygen extraction. [70]

In this study, the positive IL gate voltage increased the conduction of
the channel and was attributed to an O−

2 cation that reacted with H+ to
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form a hydroxyl (OH−) bond and at the same time change the capacitance
of Mo+

6 to Mo+
5 valence change, thus electron doping the conduction band.

Negative gate bias (at higher voltages) reduced channel conduction and was
attributed to H+ removal through OH− accumulation in the channel. Be-
cause the team measured the vacuum, they suggested that the change in
conductivity in MoO3 was due to the migration of oxygen in and out of the
MoO3 through the IL gate. The data show that the process of metalliza-
tion (production of oxygen vacancy) was faster than the reversible process
(oxygen extraction). [70]

In this study, they used gate pulses as a stimulus to regulate the drain
current (Id) which acts similar to a synaptic memory process. Short and long-
term memory can be adjusted by tuning the drain voltage, and long-term
memory signal intensity can be adjusted by the gate pulse width. At 1 Vsd,
the current (Id) changes after each pulse, which in neuromorphic calculations
is referred to as the ”excitatory postsynaptic current”. These MoO3 ions with
Lithium Ion Liquid (LIL) devices can detect a long-term current (Id) change
from nA to µA through short pulses. Each of these devices can function
as a single unit and can be turned into a network to store information in
a non-volatile manner. The results of short pulse experiments in this study
also show synaptic plasticity for computational neuromorphic elements. [70]

In a new study, an integrated device of a memristor and a transistor con-
taining a new type of gate adjustable memristor based on the two-dimensional
SnO2 semiconductor was proposed by Chi-Hsin Huang and colleagues [71] to
advance the next generation of neuromorphic computing technology. An
oxide memristor with an tunable gate was developed using SnO2 atomic
ultra-thin polycrystalline nanosheets with a thickness of about 2 nm, which
is energy efficient and can be used in next generation neuromorphic compu-
tational applications.

2D-SnO2 polycrystalline memristors, obtained at low temperatures from
a vacuum-free liquid metal process, offer several interesting resistive switch-
ing features such as excellent digital or analog resistive switching, multi-mode
storage, and gate adjustment performance in resistive switching modes. Sig-
nificantly, the gate tunability function that is not achievable in conventional
two terminal memristors provided the capability to perform heterosynaptic
analog switching by adjusting the gate bias to enable complex neural learning.
They have successfully demonstrated that the gate-tunable synaptic device
dynamically modulated the analog switching behaviour with good linearity
and an improved conductance change ratio for high recognition accuracy

9

10.1002/cphc.202200390

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem

This article is protected by copyright. All rights reserved.



learning. [71]

Artificial neural network simulations for pattern recognition were ob-
tained with high detection accuracy in gate-adjustable SnO2 two-dimensional
memristors. In addition, the presented planar 2D-oxide memristors with very
low conductivity consume very little energy and have the high potential to
develop as an energy-efficient biological nervous system, such as the human
brain. The gate-adjustable 2-dimensional oxide memetransistor presented
in this report improves detection accuracy and develops neuromorphic de-
vices that mimic multiple synaptic connections in neurons. It also opens up
new opportunities for designing learning schemes with a greater degree of
freedom. [71]

Artificial synapse devices with low energy consumption are very desir-
able to imitate the human brain. Thus, Yaqian Liu’s team [72] developed a
self-powered synaptic transistor (SPST) with a distinct structure to simu-
late synapse functions. The voltage required for this transistor to produce a
presynaptic spike is supplied by a triboelectric nanogenerator (TENG), with-
out the use of additional voltage. The proposed SPST device consisted of
a TENG with PET/Cu/PDMS/Cu/PET structure as a presynapse stimula-
tion, and the channel between source and drain electrode in electric-double-
layer (EDLT) was presented as post-synapse. A schematic of the structure
of a typical biological synapse and self-powered synapse transistor (SPST)
device is shown in Fig. 3.

The presynaptic spikes of this device, unlike standard synapse devices,
were generated by external mechanical contacts, resulting in a considerable
reduction in synapse device power usage. Observations revealed that the
artificial synapses performed well with varying touch spike duration times,
and that with increasing stimulation, a short-term plasticity transition to a
long-term plasticity occurred. Furthermore, combining TENG and a synapse
device might successfully simulate tactile synapse functions while consuming
insignificant power and having a basic device architecture. In addition, self-
charging synaptic devices with several TENGs understood logic modulation
and tactile investigation. [72]

The TENG can also serve as a tactile sensor, allowing for the creation of a
self-charging tactile synapse device with a basic form. With the use of TENG
touch, important synaptic functions such as excitatory postsynaptic current
(EPSC), paired-pulse facilitation (PPF), dynamic filtering, and short-term
plasticity (STP) to long-term plasticity (LTP) were demonstrated in self-
powered synaptic transistor devices. A tactile study was replicated using
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Figure 3: (a) Schematic illustration of a biological synapse and the SPST. Touch bottom
TENG will produce a pre-synaptic spike to the gate to achieve a self-powered synapse.
(b) Open-circuit voltage (Voc) with varying separation distances. (c) IDS-d transfer char-
acteristic curve of the SPST. Reproduced with permission. [72] Copyright 2019, Elsevier.
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Figure 4: (a) The schematic structure of a bio-synapse and the corresponded PEDOT:PSS-
based RRAM; (b) optical image of our flexible synaptic device in the bend state. Repro-
duced with permission. [73] Copyright 2018, MDPI Publications.

TENG as multiple presynaptic, and logic gates were derived by using and,
and or logic gates. Integrating TENG and synapse transistors is a promising
approach for artificial intelligence and human-computer interaction in e-skin
devices. [72]

A flexible artificial synaptic device with an organic functional layer was
proposed by Tian-Yu Wang and colleagues. [73] They created a flexible RRAM
out of PEDOT:PSS and investigated its current response to various volt-
ages. Under direct-current sweep, the device demonstrated excellent resis-
tive switching characteristics. At low operation voltages, it switched from
high resistance state (HRS) to low resistance state (LRS) and back to HRS.
Also, this organic device demonstrated good switching characteristics, such
as an ON/OFF ratio greater than 100. The set and reset voltages were less
than 0.5V and 0.25V, respectively. This flexible synaptic device was used to
mimic long-term plasticity, spike-timing-dependent plasticity learning rules
(STDP), and forgetting function. Both the excitatory and inhibitory post-
synaptic currents had retention times greater than 60s. The long-term plas-
ticity without significant degradation was reproducible after applying five
cycles of voltage pulse to the upper electrode. [73]

The synaptic device developed in this study had a structure of Indium
Tin Oxides (ITO)/ PEDOT:PSS /Au with a cross-sectional junction circle
of 200 um diameter, as shown in Fig. 4. Polyethylene terephthalate (PET)
was adopted as the flexible substrate. The electrode of Au was deposited
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on PEDOT:PSS with a shadow mask by physical vapour deposition. The
controllable conductivity in this device was related to the transformation
and migration of PEDOT+ ions. [73] This team applied voltage to the top
electrode and recorded the responded current of the bottom electrode to to
evaluate the device’s characteristics. After five repeatable experiments with
300 positive and 300 negative pulses for LTD and LTP, no obvious degra-
dation was observed in the device. These results demonstrate the feasibility
of RRAM-based organic PEDOT:PSS flexible bi-terminal, which is used as
artificial synapses for neuromorphic calculations and has great potential for
wearable electronics applications (Fig. 4). [73]

There was also an exploration of the space parameters of soft NV RSDs
by using flexible polymers and the chemistry of Ag ions and nanoparticles,
leading to several interesting results, in particular: a stability to cycling
above 103 cycles with the system based on AgNO3, PVDF-HFP and ionic
liquid, having ON/OFF ratio around 10 and a retention time in the order of
1000 seconds; [48] a maximum ON/OFF ratio above 104 for systems based on
AgNO3, PEO and ionic liquid, leading to cyclic stability around 500 cycles
and retention time above 104 seconds; [35] the formulation of a printable ink
leading to a Write Once Read Many (WORM) flash memory. [76]

An emerging class of devices, organic electrochemical transistors (OECTs),
operate in electrolyte solutions and exhibit controllable memory effects, hold-
ing great promise for bioelectronics and neuromorphic computing. In a
study, Matteo Cucchi’s group [74] have proposed AC-electropolymerization
to produce directionally controlled channels (Fig. 5). Through changing
the polymerization parameters, including voltage, frequency, and salt con-
centration, it is possible to adjust physical properties such as strength and
capacitance. [74]

The monomers used in this research was 3,4-ethylene-dioxythiophene
(EDOT) and the salt was tetrabutylammonium hexafluorophosphate (TBAPF6).
TBAPF6 is not only a suitable salt with high potential for electrochemical
processes, but also an oxidizing agent for the monomer and an efficient dopant
for the polymer derived from polymer poly(3,4-ethylenedioxythiophene)- tetra-
butylammonium hexafluorophosphat. Conductive fibers of poly-3,4-ethylenedioxy-
thiophene doped with hexafluorophosphat (PEDOT:PF6) were prepared by
AC electropolymerization in an electrolyte solution under AC signals (square
wave 10–200 Hz) with between two gold electrodes.

Polymerization was carried out in three steps: [74]
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Figure 5: Set-up and growth of the dendritic networks. a) Setup and materials used to
grow the organic dendritic networks. b) Sketch of the polymerisation process: during the
positive polarity of the applied electrical signal, the anions oxidise the monomers at the
interface and trigger the reaction; during the negative polarity, the monomer surrounded
by cations is inert. c) Networks grown at 4 V with varying frequency: higher frequencies
promote thinner fibres and a higher degree of bifurcation. Reproduced with permission. [74]

Copyright 2021, John Wiley & Sons
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• By introducing a positive voltage above the monomer oxidation poten-
tial, the radicalization at the electrode/electrolyte interface was moti-
vated. An electrical double layer (EDL) was formed as (PF−

6 ) anions
drifted to the electrode and accumulated.

• An PF−
6 anion neutralized the radical cation of EDOT+

0 .

• The EDOT:PF6 complex had now reached a state of neutrality and was
reacting with other EDOT+

0

An almost isotropic growth would be induced by DC voltage, resulting
in a closed film covering the entire positive bias electrode, expanding in any
direction which was inconvenient for transistor channels. However, this study
found that an AC stimulus (square wave, duty cycle 50%) caused the little
amount of polymerization only where the kinetics were fast. Fibers prefer to
grow in areas where the local field is higher since the reaction rate depends on
the concentration of anion. By growing new fibers, the field would become
stronger in the next cycle (tip effect), and would accelerate reactions at
the end of the fiber rather than the base (Faraday cage). Furthermore, an
AC stimulator enables growth in a selectable spatial direction to bridge two
or more electrodes on the substrate, allowing the channels to be upgraded
multiple times. [74]

For neuromorphic applications, the growth method proved highly valu-
able since it allowed for the fabrication of devices that followed learning
principles with arbitrary time constants. Adjustable neuromorphic features
and the ability to decrease channels to the micrometre size were used to
highlight the advantages of this technique. Finally, they address the issue
of miniaturisation by demonstrating sub-micrometer devices integrated in a
dense crossbar array on a flexible substrate. [74]

Soft memory devices for smooth nerve transmission, as well as wear-
able applications, attract a lot of attention due to the ion concentration
polarisation mechanism. [77] Muhammad Umair Khan and his colleagues, [75]

proposed a core-shell soft ionic liquid (IL)-resistive memory device, using
Cu/Ag@AgCl/Cu for electronic synapses. Cu+

2 ions were significantly con-
trolled in the liquid electrolyte by the Ag@AgCl core-shell, leading to a multi-
state resistive switching characteristic.

According to Fig. 6, the core shell-based device was strongly affected by
the polarization of ion concentrations, which is the main cause of synaptic
activity. The pulse width, frequency, and amplitude of pulses were studied in
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Figure 6: Proposed model for working mechanism of the artificial synaptic device using
Ag@AgCl core-shell ionic liquid. The working mechanism of the core-shell soft ionic liquid
neuromorphic device. Reproduced with permission. [75] Copyright 2021, Nature Publishing
Group.
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both positive and negative voltage regions. It was discovered that the core-
shell IL soft memory device could open a gateway for electronic synapses by
demonstrating stable synaptic behavior in bending tests. [75]

3. Neuromorphic colloid systems

Table 2: Summary and comparison of reported synaptic neuromorphic colloid devices.
Neuromorphic
liquid device

Device materi-
als

Availability
of stimuli

STP/STD LTP/LTD
Functionality
of plasticity

Refs.

Sodium ion
reservoirs

Na2TP@Nafion Electricity yes yes yes [47]

Memristor CNT-Cu Electricity No No No [13]

Optoelectronic
device

Si-Si nanocrys-
tals

Light yes yes yes [78]

Photoelectro-
chemical
synapse

CdS/MWCNT
composites

Light yes no yes [79,80]

Transistor
Li1–xCoO2/
SrTiO3

Electricity No yes No [81]

The reported synapse like colloid devices are summarised in Tab. 2. The
first study to demonstrate liquid state, colloidal RSDs goes back to 2016. [82]

Chiolerio and co-authors showed that ZnO nano and microparticles can be
used to create flexible soft RSDs after photocuring, or liquid devices when
the system is still at liquid state, prior to curing. Comparing the degree
of polymerization, from the null state (oligomer, liquid state) to the soft
crosslinking to strong crosslinking, the oxidation state at the particle surface
(including a range of positions from the metal state to the variable oxygen
vacancy density), and the degree of interaction between Oxygen vacancies
and ethoxylated groups, it was possible to adjust the electronic properties
of the obtained devices. A new interaction mechanism called the interfacial
coupling mechanism (ICM) was developed.

In one study, Dongshin Kim et al., [47] demonstrated the use of [Na+]
cations in an aqueous solution to transmit electrical signals, as liquids can
be useful components for neuromorphic devices. By utilizing ion reservoirs
for synaptic properties, they developed a neuromorphic device that controlled
[Na+]. Schematic of the device structure is shown in Fig. 7. According to
the applied stimuli, NaCl-based device exhibited synaptic characteristics of
potentiation, depression, STP, LTP, and STDP. Electrochemical reactions
between [Na+] and Na2TP@Nafion were used to simulate the signal trans-
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Figure 7: Schematic device structure and biological synapse. a Left side: Structure of
the device, consisting of a Pt bottom electrode, a Na2TP@Nafion layer, a NaCl solution,
and a top electrode; Right side: Detailed schematic showing ions in the NaCl solution on
the surface of the Na2TP@Nafion layer. b Chemical structure of Na2TP and insertion or
removal of Na+. Comparison of a biological synapse and an artificial synapse. Reproduced
with permission. [47] Copyright 2020, Nature Publishing Group.
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mission processes of neurons. To control synaptic properties and simulate
synaptic functions, the device used an aqueous solution of [Na+].

To control the concentration of [Na+] in the liquid, sodium terephthalate
(Na2TP) was used as a reservoir. The device’s synaptic functions were then
induced by a change in [Na+]. potentiation, depression, excitatory postsy-
naptic current (EPSC), paired-pulse facilitation (PPF), and spike timing-
dependent plasticity (STDP), were all observed in the device. The device
operated in four distinct states. In the beginning, [Na+] and [Cl−] were dis-
tributed randomly in the NaCl solution. Nafion separates the NaCl solution
and Na2TP. In the initial state, [Na+] and [Cl−] could be displaced by bias
polarity when positive bias pulses were applied to the device.

With repeated stimulation, the ionic current gradually decreased due to
the ion diffusion characteristics in the solution. [Na+] could not be absorbed
in the Na2TP if the applied voltage was low. As a result, the [Na+]in the
solution remained unchanged, and the device’s conductivity returned to its
original level. When a high enough voltage was supplied, [Na+] was able
to pass through Nafion and react with Na2TP. The [Na+] was subsequently
absorbed into the Na2TP, lowering the [Na+] in the solution and decreasing
the device’s conductivity. The Na2TP could release the [Na+] absorbed in
it when a negative voltage was applied to the device. The applied negative
voltage increased the concentration of [Na+] in the solution, resulting in
potentiation. The [Na+] in the solution could be controlled by the number
and amplitude of bias pulses. These EIS results could be used to calculate
ion mobility and concentration. The diameter of the semicircles altered as a
result of the reaction between Na2TP and [Na+] during the bias voltage was
applied. [47]

Richard Mayne and his colleagues [13] fabricated liquid marbles with neu-
romorphic properties through copper coatings and fluid cores containing car-
bon nanotubes 1:0 mg.ml−1. The experiment was performed by sandwiching
marbles between two cup electrodes and stimulating them with repeated DC
pulses at 3:0 V.

This study was presented as a pathway for the development of microlitre-
quantity three-dimensional ballistic-chemical reactors, which exhibited neu-
romorphic properties and may hence be used as unconventional computing
media. Their results demonstrated that entrainment copper liquid marbles
filled with carbon nanotubes can cause their electrical resistance to change
rapidly between high to low resistance profiles, through periodic pulses, upon
inverting the polarity of stimulation. The advantages of their devices, which
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Figure 8: Biological and Si-NC-based synapses. (a) Schematic of biological neurons that
are connected with synapses. (b) Schematic of an array of Si-NC-based synaptic devices.
The top electrode, Si NCs and transparent electrode represent the presynaptic axon termi-
nal, vesicle and postsynaptic dendrite terminal, respectively. Stimulus light is introduced
from the transparent-electrode side. (c) Cross-section SEM image of a Si-NC-based synap-
tic device. The thickness of the Si-NC film is about 300 nm. (d) Low-resolution TEM
image of Si NCs. The selected area electron diffraction (SAED) and high-resolution TEM
image are shown as the insets. (e) Size distribution with a log-normal fit for Si NCs. The
mean size of B-doped Si NCs is about 7.5 nm. Reproduced with permission. [78] Copyright
2018, Elsevier.

are enclosed in liquid marbles, are enormous, but revolve around soft and
ballistic data sources, the contents of which may be considered as chemi-
cal reactors. This technology is of interest to the design and fabrication
of massively parallel wet computers, which include their applications from
computing to biomedicine. [13]

In another research, Hua Tan and colleagues [78] used Si-Si nanocrystals
(NCs) to make synaptic devices, which could be effectively illuminated by
light over an unprecedented region of the ultraviolet to near-infrared spec-
trum, which has a wavelength of about 2 micrometers. These Si-NC-based
synaptic devices with optical stimulation demonstrated a series of important
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synaptic functions that mimicked biological synapses well. Figure 8 schemat-
ically shows a biological neural system with typical synaptic structures and
the structure of an array of Si-NC based synaptic devices.

In this work they have used highly boron-doped Si NCs to fabricate op-
tically stimulated synaptic devices.The plasticity of Si-NC-based synaptic
devices originated from the dynamic entrapment and propagation of pho-
togenerated carriers at defects such as dangling bonds at the NC surface.
When pulsed optical signals in the wide UV to NIR region were used as in-
put spikes, these Si-NC-based synaptic devices performed important synaptic
functions such as excitatory postsynaptic current (EPSC), paired-pulse fa-
cilitation (PPF), short-term plasticity (STP) to long-term plasticity (LTP)
transition and spike-timing-dependent plasticity (STDP). It was found that
the performance of the device is mainly controlled by the electronic and op-
tical behavior of Si NCs. The current ease of use of Si NCs in broadband,
low-energy consumption optoelectronic synaptic devices has important im-
plications for large-scale Si use in emerging neuromorphic computing. [78]

Plasticity of photoelectrochemical responses have been observed in CdS-
multiwalled carbon nanotubes composites [79] as well as tetragonal (hawleyite)
and hexagonal (greenockite) polymorphs of cadmium sulfide. [80] Stimula-
tion of photoelectrodes fabricated with one of the above mentioned materials
on flexible substrates ((poly)ethylene terephthalate foil coated with indium-
doped tin oxide) in the presence of liquid or gel electrolytes resulted in photo-
current responses that can be described as spike-rate dependent plasticity:
the amplitude of photo-current pulses increased with the number of light
pulses applied and also with decreasing time interval between pulses (Figure.
9).

Observed synaptic plasticity is a result of two competing secondary pro-
cesses following charge-carrier generation: interfacial charge transfer (blue
arrows in Figure 9d) and charge trapping (red arrows in Figure 9d). Due
to significant difference of reaction rates, filling the trap states associated
with carbon nanotubes, result in gradual increase in photocurrent ampli-
tude. E excitation of CdS nanoparticles occurs results in the generation of
electron–hole pairs, which undergo subsequent dissociation under the influ-
ence of internal electric field and give rise to photo-current spikes, however
their intensity is decreased by parasitic processes of charge trapping and
charge carrier recombination. In the case of long-lived charge trap states the
intensity of subsequent photocurrent pulses increase due to gradual filling of
the trap states. Therefore, in the case of short intervals between light the ob-
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Figure 9: The response of the artificial synapse upon illumination (450 nm) with (a) 2
s and with (b) 50 ms time intervals between light pulses. The plasticity of the studied
synaptic system with the fit line described by bi-exponential function (c) The charge
trapping mechanism responsible for the synaptic behavior of the CdS/MWCNT-based
device. Reproduced with permission. [79] Copyright 2020, John Wiley & Sons.
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served photocurrent intensity is significantly higher than for pulses separated
by longer intervals. A short break in pulse sequence result in full reset of the
materials - all trap level are emptied and the subsequent light pulse can gen-
erate low intensity photocurrent. These mechanism is valid locally for every
junction between a CdS nanoparticle and a carbon nanotube, however the
overall effect observed in the experiment results from the collective behav-
ior of the hybrid material. Very similar effects have been observed for even
simpler materials, like greenockite-hawleite mixtures [80] and used for more
complex computational tasks, like classification of hand-written digits from
MNIST database. Due to the specific nature of the device (spike-rate de-
pendent plasticity) spacial patterns of hand-written digits were transformed
into temporal patters of light pulse sequences - the arrangement of black and
white pixels was translated into variable time intervals between subsequent
pulses (Figure 10).

Heshan Yu and colleagues [81] have investigated the change in crystal ori-
entation of thin-film grains by tuning the oxygen deposition pressure while
fabricating epitaxial Li1–xCoO2 (LCO) thin films on SrTiO3 substrates with
different orientations. Tensile strain analysis in these thin films revealed the
depth dependence in these epitaxial LCO thin films. On the basis of these
high-quality LCO films, synaptic transistors have also been fabricated and
long-duration nonvolatile states of potentiation and depression have been
demonstrated. These findings revealed a clear dependence on the LCO chan-
nel’s crystal orientation. The signal-to-noise ratio of nonvolatile switching
was significantly improved without increasing energy consumption by reduc-
ing the thickness of the LCO channel. The lattice orientation of the LCO
channel strongly influenced the potentiation and depression states, suggest-
ing that an anisotropic Li-ion diffusion rate is responsible for the device’s
performance. [81]

On of the most complex colloidal neuromorphic devices has been reported
recently by Tanaka et al. [83] The device is fabricated from single-walled
carbon nanotubes modified with a complex modifier composed of proto-
nated tetraphenyl porphyrin and Keggin-type polyoxometalate, namely the
[H4TPP]2[SV2W10O40] (Por-POM) supra-molecular assembly. This modifier
has been reported to exhibit negative differential resistance and pinched hys-
teresis loops when deposited as thin layer on platinum comb electrodes. [84]

Modified nanotubes are deposited as randomly oriented and interpenetrated
network onto a prepatterned glass substrate, as shown in Figure 11. Due to
high flexibility of nanotubes analogous devices can be fabricated on flexible
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Figure 10: A 28 × 28 pixels image of a handwritten character with a marked row (a)
translated into a sequence of bits and corresponding light pulses (b). A pattern of pho-
tocurrent spikes for a given binary input with three thresholds indicated (c). An image
of the character reconstructed from the normalized photocurrent amplitudes (d). Repro-
duced with permission. [80] Copyright 2019, MDPI Publications.
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Figure 11: The full circuit schematic of the outputs obtained from different electrode
pads when a sine wave of 11 Hz, ±1 V is applied at the yellow-coloured electrode pad
connected to the SWNT (black line)/Por–POM film (green circle). A function generator
is used where the output from one pole is fed as the input signal, whereas the other pole
is grounded via a 50 Ω resistor (z value, orange box). All outputs are then taken from the
DAQ system which is grounded via a similar 50 Ω resistor, to complete the full circuitry.
Reproduced with permission. [83] Copyright 2022, John Wiley & Sons.

substrates as well.
Application of a simple sine wave to one randomly selected input resulted

in generation of a series of complex outputs at remaining device’s terminals
(cf. Figure 11). This behaviour results from the combination of the NDR
character of the Por-POM modifier and a complex, percolated networks of
SWCNTs. Thus, a device transforming a single into into a set of time series of
the 1/fγ(0 < γ < 2) character, which is a signature of brain-like computation
at the edge of chaos. This power-law signature indicates that the signal
generated from the input is solely an intrinsic property of the material. It also
indicates the scale-free nature of electrical processes in the network. Thus,
the device potential can be considered as a reservoir computing system.

In order to verify this hypothesis tho sets of tests have been performed.
The device has been used to generate any arbitrarily chosen waveform by
computing linear combinations of signal from different outputs. This, how-
ever has been achieved with a significant software support - the weights for
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these operation has been computed by ANN, which can be considered as a
digital output layer of the reservoir. Finally, the device, also equipped with
a simple trainable ANN output layer, has been applied for processing of sig-
nals generated by touch sensor mounted on a robotic arm (Figure 12). The
gripper arm of the Toyota HSR robot has been used for gripping a series
of object of different shape and softness: a toy bus model, a plastic block,
a teddy dog and a plush hedgehog (Figure 12a). Recorded signals (grasp-
ing angle vs grasping force) has been translated into time-dependent voltage
signals (Figure 12b) and applied to a SWCNT/Por-POM reservoir system,
equipped with a trained ANN perceptron (Figure 12c). As a result, as se-
ries of one-hot vector has been obtained (Figure 12d), representing very high
accuracy of object recognition.
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Figure 12: Step wise object binary classification with SWNT/Por–POM reservoir: (a) The
HSR (left) with a schematic of the arm (middle) connected to the gripper via force-torque
sensor gathers tactile data from the change in the gripper angle and grasping force applied
to objects (right) like bus, block, dog, and hedgehog (HH) toys presented in a red box.
(b) The raw sensory data (left) obtained from each of the objects are converted to time-
series voltage data using LabVIEW by sampling at 5 bits/s (left) in the range [0, -5] V
as depicted graphically to the right. (c) Time series inputs from different objects m (HH,
dog, bus, and block) are separately inputted into the SWNT (black line) Por–POM (green
circles) reservoir with recurrent connections (red arrow), left figure. Voltage readouts from
a total of i output pads each of m objects are collected as shown in the right for one of
the electrode pads. (d) One-hot vector encoding is used for binary classification. Each
square box with the lines inside represents the target signal, for each of HH, dog, bus, and
block. The file output is the one-hot vector as the object to be truly predicted is true
given a vector value 1 while the others a vector value 0. Reproduced with permission. [83]

Copyright 2022, John Wiley & Sons.
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4. Neuromorphic gel systems

Table 3: Summary and comparison of reported synaptic neuromorphic gel devices.
Neuromorphic
liquid device

Device materi-
als

Availability
of stimuli

STP/STD LTP/LTD
Functionality
of plasticity

Refs.

Actuators
Hydrogel/ Au
NPs

light/
heat

No No No [85]

Transistor P3HT Electricity yes No yes [86]

Transistor VO2 Electricity yes yes yes [87]

Transistor PS-PMMA-PS Electricity yes yes yes [88]

Transistor In-Zn-O Electricity No No No [89]

Biological materials allow learning in response to past experiences. Clas-
sical conditioning is an elementary form of associative learning, which in-
spires us to explore simplified routes even for inanimate materials to respond
to new, initially neutral stimuli. Neuromorphic devices implemented in gel
systems are summarised in Tab. 3, below we discuss key prototypes.

Hao Zeng and colleagues, [85] have demonstrated that soft actuators made
of thermoresponsive liquid crystal networks can ‘learn’ to respond to light
based on a conditioning process in which light is associated with heating. A
soft microrobot based on this concept was demonstrated, including a loco-
motive which ‘learns to walk’ under periodic stimulation, as well as gripping
devices capable of ‘recognize’ the colour of irradiation. This team predicted
that actuators that algorithmically mimic basic aspects of associative learn-
ing and whose sensitivity to new stimuli can be conditioned based on pre-
vious experiences could pave the way for adaptive, autonomous soft micro-
robotics. [85]

Another step towards imitating psychological behaviours in synthetic ma-
terials could be to imitate the process of forgetting. Potential approaches
could include the use of molecules or particles with dynamic properties,
responsive material-based logic gates, or more sophisticated intelligent re-
sponses. They showed that artificial memory could be manipulated exter-
nally using chemicals. [85]

The concept of soft robotics was demonstrated by developing a walker
and colour-recognising grippers that evolved to respond to light as a result
of the association process. Meanwhile, an artificial Pavlov’s dog was con-
structed to show off the modularity of the concept. This method allowed the
construction of an artificial Pavlov’s dog that could mimic a simple learn-
ing process and modify its behaviour based on its previous experience. The
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dynamic response of the actuators combined with the diversity of the ways
in which they respond to stimuli could provide unexpected pathways toward
self-adapting, intelligent soft micro-robots. [85]

Chuan Qian and colleagues [86] demonstrated an artificial synapse sim-
ulation based on ion-gel gated organic field-effect transistors (FETs) with
poly(3-hexylthiophene) (P3HT) active channels. Also, key synaptic behaviours
including paired-pulse facilitation (PPF), short-term plasticity (STP), self-
tuning, the spike logic operation, spatiotemporal dentritic integration, and
modulation were successfully mimicked.

In this work, Artificial synapses were constructed using lateral gated ion-
gel OFETs. The model simulated some key traits of synaptic behaviour,
including excitatory postsynaptic currents (EPSC) and self-tuning. Spike
logic, spatiotemporal dentritic integration, and EPSC regulation were also
realised with two presynaptic inputs. According to the results of XPS and in
situ absorption spectra, electrical measurements revealed a direct correlation
between the change of current and the [TFSA]− transferred at the interface.
The intensity of π−π∗ absorption was found to be proportional to the amount
of [TFSA]− penetrated into P3HT film. [86]

The electrolyte ion interface doping processes between the active P3HT
layer and ion gels were thoroughly investigated in order to confirm the op-
erational processes behind the fluctuations in conductivity and excitatory
postsynaptic current (EPSC) in organic synaptic devices. This research was
a significant step forward in the development of future artificial neuromorphic
systems using newly developed ion gel gated organic synaptic devices. [86]

To imitate the functions of the biological synapse, Xing Deng’s group [87]

created a transparent, flexible ionic gel-gated VO2 Mott synaptic transistor.
The volatile electrostatic carrier accumulation and nonvolatile proton-doping
modulation were used to achieve short-term and long-term plasticity of the
synapse, respectively. The channel semiconductor and gate insulator were
made of epitaxial VO2 film and a rubbery solid ionic gel, respectively.

The Mott synaptic transistor was well-suited to simulating a key sen-
sory nerve nociceptor with threshold, relaxation, and sensitization proper-
ties. More notably, this synaptic transistor demonstrated outstanding bend-
ing stability and endurance. Under the inter-conversion of flat and bending
states, the cycle-to-cycle (C2C) variance of continuous LTP and LTD mea-
surement was as low as 3.8%, which is analogous to the synaptic device on
rigid substrate. Simulations with an artificial neural network made from
these Mott transistors demonstrated that the recognition accuracy of hand-
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written digits can reach 95% based on the low variance of multi-conductance
states in potentiation and depression features. [87]

Instead of modifying the pattern of presynaptic spikes, Dae-Gyo Seo and
colleagues [88] modified the synaptic decay constant of organic synaptic tran-
sistors using stable materials and device topology, allowing for a wide range
of applications ranging from neuromorphic computing to neuro-prosthetic.
Fig. 13 depicts a schematic of their device. The crystallinity of the poly-
mer controlled the electrochemical doping kinetics and synaptic behaviour of
artificial synaptic transistors. In this way, they demonstrated both memory
and learning’s long-term retention for IGOST (ion-gel gated organic synaptic
transistors), which are useful for neuromorphic computing, as well as short-
term retention for fast synaptic transmission needed to simulate peripheral
nerves such as nerves of the sensory and motor systems. Their approach
combines a composite IGOST of a polymer semiconductor with an acous-
tic sensor coupled with a triboelectric sensor to demonstrate the feasibility
of their approach in two ways. First, they simulate pattern recognition on
the MNIST data-set of handwritten digits using an IGOST with long-term
retention due to increased crystallinity. Then, they develop artificial audi-
tory sensory nerves that combine an IGOST with short-term retention due
to disordered chain morphology in a polymer semiconductor. [88]

This team adjusted the morphology of the polymer film in order to cre-
ate a variety of synaptic decay times in a single IGOST without changing
the device’s shape or the organic polymer composition. As the polymer
crystallinity varied, the synaptic decay features changed from STP domi-
nant to LTP dominant. Modifying the crystallinity of the synaptic decay
time constant in IGOST also revealed a relationship between synaptic and
morphological features. MNIST recognition accuracy for devices that used
Tanh=310oC films was 94.49% for 8×8 MNIST data and 91.29% for 28×28
MNIST data with LTP-dominant synaptic decay, but these devices cannot
be used for artificial sensory neural systems. On the other hand, Devices
that utilised Tanh=80oC-prepared films, demonstrated appropriate features
for an artificial sensory nervous system, with STP-dominant synaptic de-
generation. Simulations and sensor integration by IGOST demonstrated the
importance of engineering the microstructure of the polymer film for specific
neuromorphic applications (like simulating the central or peripheral nervous
system). This is the first study to demonstrate that the decay-time constant
of devices may be altered by changing the morphology of thin films, rather
than changing presynaptic spike forms. In a single device, synaptic functions
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Figure 13: (a) Schematics of biological synapse and structure of synaptic transistor.
(b) Chemical structure of poly(thienoisoindigo-naphthalene) PTIIG-Np and 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]). Alkyl side chain
(R) is 2-octyldodecayl. Reproduced with permission. [88] Copyright 2019, Elsevier.
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such as SNDP, PPF, SFDP, SVDP, and SDDP were replicated. The aim
of this paper was to develop a new method for engineering organic synap-
tic transistors with a few necessary characteristics for use in neuromorphic
computing, neural prosthetics, bio-interface devices, and soft robotics. [88]

Ling-an Kong and colleagues [89] created ion-gel coupled synaptic transis-
tors with solution-possessed amorphous Indium-Zinc-Oxide (In-Zn-O) thin
films in a study. Because of the substantial electric-double-layer (EDL) ca-
pacitance (4.87 mF/cm2), the ion-gel dielectric produced a strong ionic/electronic
coupling on solution-processed In-Zn-O thin films. Synaptic functions were
simulated using ion-gel gated In-Zn-O FETs. The presynaptic input ter-
minal was the in-plane gate, while the postsynaptic output terminal was
the In-Zn-O channel with source/drain electrodes. Neuro transmitters were
thought to be mobile ions in ion-gel. On the in-plane electrodes, gate pluses
were applied, which were equivalent to presynaptic spikes on the presynap-
tic membrane. The excitatory postsynaptic current (EPSC), spike time-
dependent EPSC, paired-pulse facilitation (PPF), and dynamic synaptic be-
haviours were all replicated. [89]

The high-mobility and low-voltage solution-processed In-Zn-O FETs ben-
efited from highly efficient ion-gel gating. The ion-gel gated In-Zn-O FETs
were most critically employed to simulate synaptic functions in a biological
system. Using solution-processed amorphous semiconductors, the results pre-
sented here provided a new possibility and technique for fabricating artificial
synaptic circuits and neuromorphic systems. [89]

A beautiful example of reservoir computing device based on conducting
polymer gel; sulfonated polyaniline (SPANI) has been reported by Tanaka,
van der Wiel and Matsumoto. [90] In this system, a metal-patterned glass
substrates are covered by sulfonated polyaniline gel and kept in humid envi-
ronment to prevent drying (Figure 14). The device, subjected to AC stimu-
lation exhibited un-pinched hysteresis loop, characteristic for redox processes
in polyaniline. Furthermore, the resulting signal were rich in higher harmon-
ics (within 10 Hz-1 kHz), indicating intrinsic power-law dynamics (Figure
14b-c). These two features indicate the applicability of the device in neu-
romorphic computing: in has rich internal dynamics and memory. These
features have been exploited in speech analysis, namely speaker identifica-
tion. Recorded voices of six speakers (labelled as Jackson, Nicolas, Theo,
Yweweler, George and Lucas) were transformed into cochleagrams, which
were subsequently used as a spatiotemporal input (i.e. cochleagrams corre-
sponding to different spoken digits were applied to different input ports of

32

10.1002/cphc.202200390

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem

This article is protected by copyright. All rights reserved.



the device (Figure 15).
The examples presented above demonstrate the applicability of gel mate-

rials in neuromorphic computing, not only mimicking basin neural/synaptic
functionalities, but also in more complex computational approaches, like
reservoir computing. These computing systems are capable of complex com-
putational tasks, like speaker identification or image recognition.

Polyaniline combined with polyethylene oxide seems to be the most suc-
cessful material combination for fabrication of soft neuromimetic devices: ar-
tificial synapses and electrochemical spiking neurons. Numerous devices and
complex neuromorphic circuits, along with their models and detailed appli-
cation schemes has been developed over last 15 years by Victor Erokhin.
His great contribution to gel neuromorphic devices, the operation of which
is based by dynamic doping of conducting polymer structures accompanied
by ionic diffusion has been summarised in his recent book ”Fundamentals of
Organic Neuromorphic Systems”. [91]
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Figure 14: (a)Schematic of material learning based on SPANI reservoir. There are two
kinds of charge carriers in SPANI: polarons and protons. Polarons are intrinsic electrical
carriers that are generated by self-doping from sulfonic groups (red arrow). Protons can
be directly injected into the SPANI molecular chain under humid conditions (blue arrow),
which generates ionic conduction. Therefore, the electrical properties of SPAN can be con-
trolled by adjusting the humidity of the environment. Various output responses including
electrochemical dynamics have been used for solving complex tasks applying the reservoir
computing (RC) approach. In RC, a randomly connected network (the “reservoir”) is used
to create nonlinear projections of inputs into high-dimensional space. Here, the SPANI
device functions as a reservoir. The network can be trained by a simple supervised readout
layer to learn linear combinations (Σ) of network states. Only the output layer weights
are trained, and the random network itself remains the same during the process. (b) V–t
curves of an 11 Hz sinusoidal input signal with a peak-to-peak voltage (VPP) of 2.0 V
and nonlinear outputs for a SPANI device. The output currents are terminated with a
resistance of 305 kΩ. (c) Log–log plot showing the fast Fourier transform (FFT) spectrum
of output 1 (OUT1). PSD denotes power spectral density. FFT was performed for the
same time periods as the Lissajous curves in Figure S5 (Supporting Information). Higher
harmonic generation from a single input frequency (11 Hz) indicates that the device ex-
hibits high-dimensional mapping, which is essential for achieving multiple classifications
with high accuracy. Reproduced with permission. [90] Copyright 2021, John Wiley & Sons.
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Figure 15: (a) Schematic of spoken-digit classification. The spoken-digit time series sig-
nals in the data-set were converted to cochleagrams by separating the intensities in four
frequency regions up to 130 Hz with Lyon’s auditory model filtering. The cochleagrams
were normalized and applied to the high-SPAN-concentration OEND as time series bias
voltages. After recording and labelling the output from the device, the labelled outputs
were classified by a ridge regression to one-hot target vector with training (90%) and
prediction (10%). The detail is shown in Section S8 (Supporting Information). (b) Nor-
malized confusion matrix of spoken-digit classification with the FSDD data-set of one
speaker (Jackson) when using OEND output signals (accuracy: 66%). The accuracy of
the echo state network (ESN) in the simulation was 78%. (c) Comparison of the accuracy
of spoken-digit classification between the software ESN and OEND output signals for each
speaker. d) Normalized confusion matrix of human classification for all speakers using
OEND output signals (accuracy: 60%). The accuracy of the ESN in the simulation was
63%. Reproduced with permission. [90] Copyright 2021, John Wiley & Sons.
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5. Conclusion

The goal of brain-inspired neuromorphic computing is to offer an effec-
tive replica of the human brain’s functionality through the use of electrical
components. We overviewed the properties and materials of liquid, colloidal
and gel neuromorphic systems, compared them and discussed various liq-
uid based synaptic devices as well as their neuromorphic applications. To
simulate synaptic functions, these gadgets use an aqueous solution. These
liquid-based artificial synapses have potential applications in biocompatible
devices and constitute a new paradigm to explore innovative computational
protocols at the liquid state. Comparative characteristics of the devices re-
viewed are summarised in Tab. 4. We find that neuromorphic device [47] and
Analog:2D-SnO2 memtransistor [71] are devices with shortest cycles. Memory:
2D-SnO2 memtransistor and Analog:2D-SnO2 memtransistor [71] are devices
whose pre-processing time is comparable with their cycle lengths. Actua-
tor, [85] 2D-SnO2 memtransistor and Analog:2D-SnO2 memtransistor [71] have
longest life time. Transistor, [87] 2D-SnO2 memtransistor and Analog:2D-
SnO2 memtransistor [71] can survive largest number of cycles.
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e1006430.
[47] D. Kim, J.-S. Lee, NPG Asia Mater. 2020, 12, 1.
[48] K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, C. F. Pirri,

C. Ricciardi, A. Chiolerio, Appl. Surf. Sci. 2018, 443, 475.

39

10.1002/cphc.202200390

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem

This article is protected by copyright. All rights reserved.



[49] E. Wlaźlak, D. Przyczyna, R. Gutierrez, G. Cuniberti, K. Szaci lowski,
Jpn. J. Appl. Phys. 2020, 59, SI0801.

[50] D. Przyczyna, P. Zawal, T. Mazur, M. Strzelecki, P. L. Gentili,
K. Szaci lowski, Jpn. J. Appl. Phys. 2020, 59, 050504.

[51] H. Chun, T. Chung, Annu. Rev. Anal. Chem. 2015, 8, 19.1.
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gineering. She started experimental research on learning in colloidal systems,
in the framework of European Innovation Council FETOpen project COgI-
TOR: Colloid Cybernetic Systems at the University of the West of England
(UWE).Her research focuses on learning and computing in colloidal frame-
works, and triboelectric nanogenerator based on two-dimensional Nanostruc-
tures. Her research interests include Nanotechnology, Nanomaterials and
Nano-colloids, Energy harvesting, Two-dimensional Nanostructures, Tribo-
electric Nanogenerators.
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Figure 17: Alessandro Chiolerio

Alessandro Chiolerio obtained his PhD from the Physics Department of
Politecnico di Torino in 2009 where he exploited quantum confinement in
metals to perform information processing via the electron spin channel. In
the following years, he studied transport properties of nanocomposite mate-
rials, exploring the conditions for percolation and the occurrence of resistive
switching. He visited several institutes, such as NASA’s Jet Propulsion Lab-
oratory (Pasadena, USA), the Max Planck Institute (Halle, DE) and the
University of the West of England (Bristol, UK) where he is visiting profes-
sor, developing ideas and performing experiments on liquid state cybernetic
systems, in particular holonomic information processing. He is now at the
Bioinspired Soft Robotics group of Istituto Italiano di Tecnologia, Genova
(Italy). Author of more than 125 scientific articles and 32 patents, he has
raised over € 10 million in competitive funding and private capital.
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Figure 18: Konrad Szacilowski

Konrad Szaci lowski graduated from the Faculty of Chemistry, Jagiel-
lonian University (Kraków, Poland) in 1995 (M.Sc.) and 2000 (Ph.D.). After
habilitation (2008) he has moved from Jagiellonian University to AGH Uni-
versity of Science and Technology. Now he is a group leader at the Academic
Center of Materials and Nanotechnology. His initial interest in photochem-
istry and spectroscopy of coordination compounds has gradually evolved to-
wards molecular and nanoscale logic devices and finally towards unconven-
tional computing. At the moment his main research interests encompass the
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design of inorganic materials for memristive applications, mimicking of neu-
tral and synaptic processes in inanimate systems, and relations of musical
harmony with other fields of science. Following an old Latin sentence “Rep-
etitio est mater studiorum” he focuses on single node echo state machines
with delayed feedback and reservoir computing systems. He is an author
of the book “Infochemistry: Information processing at nanoscale” (Wiley
2012) and numerous papers in fields of coordination chemistry, material sci-
ence, spectroscopy, catalysis, and electrochemistry. In his free time he enjoys
classical music, philately and single malts from Islay and Speyside.

Figure 19: Andrew Adamatzky

Andrew Adamatzky is Professor of Unconventional Computing and Direc-
tor of the Unconventional Computing Laboratory, Department of Computer
Science, University of the West of England, Bristol, UK. He does research in
molecular computing, reaction-diffusion computing, collision-based comput-
ing, cellular automata, slime mould computing, massive parallel computa-
tion, applied mathematics, complexity, nature-inspired optimisation, collec-
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tive intelligence and robotics, bionics, computational psychology, non-linear
science, novel hardware, and future and emergent computation. He has au-
thored seven books, mostly notable are ‘Reaction-Diffusion Computing’, ‘Dy-
namics of Crow Minds’, and ‘Physarum Machines’, and has edited 22 books
in computing, most notable are ‘Collision Based Computing’, ‘Game of Life
Cellular Automata’, and ‘Memristor Networks’. He has also produced a se-
ries of influential artworks published in the atlas ‘Silence of Slime Mould’. He
is Founding Editor-in-Chief of ‘J of Cellular Automata’ and ‘J of Unconven-
tional Computing’ and Editor-in-Chief of ‘J Parallel, Emergent, Distributed
Systems’ and ‘Parallel Processing Letters’.
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Entry for the Table of Contents

This paper offers a com-
parative analysis of the
properties and materials
of liquid, colloidal and
gel neuromorphic systems,
and overviews various liq-
uid based synaptic devices
as well as their neuromor-
phic applications. The pa-
per contains five main sec-
tions:

1. Introduction

2. Neuromorphic liquid
systems

3. Neuromorphic colloid
systems

4. Neuromorphic gel sys-
tems

5. Concluding remarks
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